25
Chapter 1: Events and Probability Thursday, June 9, 2010,7:00 (GMT+7) 1. Background Pr(E1E2) = Pr(E1) + Pr(E2) - Pr(E1E2) ng dng: - 2 independent events: Pr(AB) = Pr(A)Pr(B) - 2 disjoint events: Pr(E1E2) = Pr(E1) + Pr(E2) 2. Tóm tt lý thuyết Các mc chđạo Ni dung Take note 1.Verifying Polynomial Identities Giả sử ta có một chương trình nhân các đa thức. Ví dụ: (x + 1)(x 2)(x + 3(x 4)(x + 5)(x 6) x 6 7x 3 + 25 Chương trình của ta sẽ output kết quả la x 6 7x 3 + 25 Ta muốn kiểm tra tính đúng đắn của kết quả này. Ta có thế nhân lần lượt các số hạng với nhau. Thế nhưng việc làm này rất tốn kém, mà thực tế ta lại thực hiện lại giải thuật nhân đa thức cũ như vậy là đi theo con đường cũ rồi. Nếu đã sai vẫn ra kết quả sai mà thôi. Bây giờ ta sẽ sử dụng giải thuật random để giải quyết câu hỏi : F(x) ? G(x) ALGORITHM 1.1: Chọn một số x = a bất kỳ. Kiểm tra nếu F(a) G(a)ta kết luận ngay F(x) G(x). PROBABILISTIC ANALYSIS: Khi F(a) = G(a) ta chưa thế kêt luận ngay F(x) G(x) hơn bởi a có thể là nghiệm của phương trình F(x) G(x) = 0. Giả sử F(x) là đa thức bậc d. Khi đó F(x) G(x) không thế có quá d nghiệm. Tức nếu như F(x) G(x) trong tất cả số nguyên ta chọn chỉ có d trường hợp mà F(a) = G(a). Giải thuật bên có ý nghĩa mở đầu cho phương pháp giải quyết vấn đề bằng xác suất. Không nên chú trọng đến: việc nghiệm đa thức là số thưc hay nguyên việc chọn khoảng {1..100d} hay {1..1000000d}

Tài Liệu Ôn Tập Mô Hình Thuật Toán Internet

  • Upload
    cau-be

  • View
    34

  • Download
    10

Embed Size (px)

DESCRIPTION

Ôn tập môn mô hình thuật toán internet phổ biến

Citation preview

  • Chapter 1: Events and Probability Thursday, June 9, 2010,7:00 (GMT+7) 1. Background Pr(E1E2) = Pr(E1) + Pr(E2) - Pr(E1E2) ng dng: - 2 independent events: Pr(AB) = Pr(A)Pr(B) - 2 disjoint events: Pr(E1E2) = Pr(E1) + Pr(E2) 2. Tm tt l thuyt Cc mc ch o

    Ni dung Take note

    1.Verifying Polynomial Identities

    Gi s ta c mt chng trnh nhn cc a thc. V d: (x + 1)(x 2)(x + 3(x 4)(x + 5)(x 6) x6 7x3 + 25 Chng trnh ca ta s output kt qu la x6 7x3 + 25 Ta mun kim tra tnh ng n ca kt qu ny. Ta c th nhn ln lt cc s hng vi nhau. Th nhng vic lm ny rt tn km, m thc t ta li thc hin li gii thut nhn a thc c nh vy l i theo con ng c ri. Nu sai vn ra kt qu sai m thi. By gi ta s s dng gii thut random gii quyt cu hi : F(x) ? G(x) ALGORITHM 1.1: Chn mt s x = a bt k. Kim tra nu F(a) G(a)ta kt lun ngay F(x) G(x). PROBABILISTIC ANALYSIS: Khi F(a) = G(a) ta cha th kt lun ngay F(x) G(x) hn bi a c th l nghim ca phng trnh F(x) G(x) = 0. Gi s F(x) l a thc bc d. Khi F(x) - G(x) khng th c qu d nghim. Tc nu nh F(x) G(x) trong tt c s nguyn ta chn ch c d trng hp m F(a) = G(a).

    Gii thut bn c ngha m u cho phng php gii quyt vn bng xc sut. Khng nn ch trng n: - vic nghim a thc l s thc hay nguyn - vic chn khong {1..100d} hay {1..1000000d}

  • Nu nh ta chn a trong khong {0,..100d} tc khng gian mu c 100d kh nng. --> Xc sut chn trng nghim ca F(x) - G(x) l 1/100. y cng l xc sut ALGORITHM 1.1 sai. Thc hin thut ton n ln c lp. p dng cng thc cho cc s kin c lp ta c xc sut tht bi ca thut ton 1.1 l ( 1100

    )n 2. Axioms of Probability

    Khng gian mu (Sample Space) l tp hp tt c cc kh nng c th xy ra ca mt s kin. Hm xc sut l mt nh x t tp cc s kin vo tp s thc R. Ta gi hm s ny l: Pr(E) = Xc sut ca s kin E. Conditional Probability: Pr(E | F) =Pr(EF)Pr(F) Law of Total Probability: E1, E2 l cc s kin xung khc (E1 E2 =) m E1 v E2 lp y khng gian mu. Khi vi mt s kin bt k B ta c: Pr(B) = Pr(B E1) + Pr(B E2) => Bayes' Law: Pr(E1 | B) = Pr(B E1) / Pr(B) = Pr(BE1)

    Pr(BE1)! Pr(BE2)

    - d nh ta s coi Conditional Probability nh sau: s kin F l iu kin gii hn khng gian mu thnh mt khng gian mu nh hn. - VD: + khng gian mu ca tp cc s t nhin l {0,1,2,3, ..}. + khng gian mu ca tp cc s t nhin vi iu kin nh hn 5 l {0,1,2,3,4} + S kin s chn l tp ca cc s t nhin chn. (S kin l mt tp con ca khng gian mu). + Hai s kin xung khc (disjoint) lp u khng gian mu l E1 s t nhin chn , v E2 s t nhin l.

    3. Verifying Matrix Multiplication

    Cho 3 ma trn n*n l A, B v C. Ta cn kim tra xem A*B ?= C . Trong A,B l cc ma trn n v, ch bao gm cc s 0 v 1. GIi thut c in: Tnh A*B v so snh vi C. Time: (n3 ). ALGORITHM(1.3) : chn mt vector n v n chiu ngu nhin r = (r1,r2, ....,rn), ri = 0 or 1, 1

  • Ta tnh A*B*r = A * (B *r) ri so snh vi C*r. Case 1: A B r C r suy ra A B C Case 2: A B r = C r. Lc ny vn c th A B C. Ta tnh xc sut : A B C v A B r = C r. Tc xc sut gii thut tht bi. t D = AB - C. Lc ny D 0 v D r = 0 . Do D 0 nn tn ti mt phn t dij trong ma trn D m dij 0 Thm vo D r = 0 nn nj!1 dij rj = 0 ri = nj!1,j i dij rjdij (3.1) Trong cc rj u c chn ngu nhin. Gi s ta chn ngu nhin tt cc cc rj(j = 1 n n) ch cn li ri. Lc ny nj!1,j i dij rj

    dij nhn mt gi tr no c th l 0, 1 hay khc i. Suy ra kh nng chn ri tha mn phng trnh (3.1) l khng qu 1/2 bi ri ch c th nhn gi tr 0 hoc 1. Vy xc sut tht bi trong mt ln chy ALGORITHM(1.3) l 1/2. Chy n ln c lp cho ta xc sut tht bi l (1

    2)n

    Tt c rj u c chn ngu nhin (j = 1,2, ...,n). ch cn li ri ta xt sau cng. Phng php ny c gi l deferred decision. Cc gi tr random ban u ta coi nh c. bc quyt nh ta mi a s kin nhu nhin vo. V d: Cho x1,x2,x3,x4,x5,x6 l 6 s t nhin random. Tnh xc sut x1 + x2 + x4 + x5 + x6 l s chia ht cho 6. p dng deferred decision ta c xc sut ny l 1/6.

    4. A Randomized Min-Cut Algorithm (Karger Algprithm)

    Cho th G = (V,E). Ta nh ngha cut-set l tp cc cnh ca th m nu b cc cnh i s thnh phn lin thng ca th s tng ln. Min-Cut ca th G l cut-set nh nht ca th y Bi ton t ra l tm min-cut ca th. Tnh s cnh trong min-cut . Gii thut c in c phc tp n^3. ALGORITHM: mi iteration ta thc hin mt edge contraction (ch gii phn takenote). Sau khi thc hin n-2 iteration: ta cn li 2 nh.

    Edge Contraction ca 2 nh A v B l vic xc nhp 2 nh A v B li lm 1 nh trong khi gi nguyn mi lin h ca chng vi cc hnh khc trong th.(Hay gi nguyn cc cnh vo ra).

  • Return Min-Cut = S cnh ni 2 nh ny PROBABILISTIC ANALYSIS: Gi S v V - S l hai tp nh b chia r bi Min-Cut. Nu ta ch contract cc nh trong S hoc V-S gii thut s cho kt qu chnh xc. Bt c contract no lm mt cnh trong Min-Cut, kt qu khng chc s chnh xc. Ta gi Ei l s kin ti iteration th i ta khng contract bt c cnh no trong Min-Cut. t Fi l s kin khng c bt c ln no trong s i iteration u tin contract mt mt cnh trong Min-Cut. Ta c: Fi = ij ! 1 Ej Ta cn tnh Pr(Fn!2) Ban u: Gi n,m l s nh v s cnh ca th G. Gi MC l Min-Cut trong G v c l s cnh trong MC. Gi s nh A c bc nh nht trong th deg(A) = k. Suy ra c
  • Iteration th 2: Sau ln chy u tin th cn n-1 cnh. Do vy Pr(E2 |F1 ) = 1 2n!1 Tng t nh vy ti iteration th i: th cn n - i + 1 cnh Pr(Ei |Fi!1) = 1 2n!i!1 Tng kt li ta c: Pr(Fn!2) = Pr(En!2 Fn!3) = Pr(En!2|Fn!3)Pr(Fn!3) = Pr(En!2|Fn!3)Pr(En!3 Fn!4) = ... = Pr(En!2|Fn!3)Pr(En!3|Fn!4) ....Pr(E2 |F1 )Pr(F1 ) ni=1 ( 1 2

    ni+1) = ni=1 (ni1ni+1) = 2n(n1) Ta ly kt qu nh nht trong ln ln chyc chng trnh s dng ALGORITHM 1.4 Pr(fail) = ( 2n(n!1))n(n!1)ln n e!2 ln n = 1n2

    3. Exercises: http://docs.google.com/View?id=dgmqjfk5_188cq53p6ft

    Chapter 2: Discrete Random Variables and Expectation Thursday, June 9, 2010,12:00 (GMT+7) 1. Background 1.1. The inclusive-exclusive principle: Pr(E1E2) = Pr(E1) + Pr(E2) - Pr(E1E2)

  • ng dng: - 2 independent events: Pr(AB) = Pr(A)Pr(B) - 2 disjoint events: Pr(E1E2) = Pr(E1) + Pr(E2) 1.2. Bayes' Law: Pr(E1 | B) = Pr(BE1) / Pr(B) =Pr(BE1)Pr(BE1)+ Pr(BE2) 2. Tm tt l thuyt Cc mc ch o

    Ni dung Take note

    1. Random Variables and Expectation

    Random Variable: mt bin ngu nhin X l mt nh x t tp khng gian mu vo tp cc s thc R. Discrete Random Variable: mt bin ngu nhin ri rc X l mt bin ngu nhin m tp gi tr ca n khng phi l R na m l mt tp c th m c. The Expectation of a Random Variable: E[X] = x x Pr(X = x); x Linearity of Expectation X v Y l cc bin ngu nhin ri rc. E[X +Y] = E[X] + E[Y]

    Mt tp S c coi l c th m c nu tn ti mt song nh gia S v tp cc s t nhin. Ta cn ghi nh inh ngha ny c th hiu c phn tip theo. inh l ny c p dng lin tc bi yu cu cc bin X v Y ch cn ri rc. Gi cho chng minh: s kin ((X = x) (Y = y1 )) v s kin ((X = x) (Y = y2 )) l 2 s kin xung khc (disjoin). Suy ra: Pr ((X = x) (Y =y1 )) + Pr ((X = x) (Y =y2 )) = Pr ((X = x) ((Y = y1 ) Y = y2 ) )) Do : y Pr ((X = x) (Y = y )) = Pr(X = x)

    2. The Bernoulli and Binomial Random Variables

    Bernoulli Random Variable [ or indicator random variable] Xt kt qu ca mt th nghim: Y = 1 nu kt qu thnh cng Y = 0 nu ngc li. vi Pr(Y = 1) = p; E[Y] = 1 . p + 0 . (1-p) = p

    Binomial Random Variable Ta gi X l mt Binomial random variable with parameters n and p nu:

    C 2 cch nh ngha mt bin ngu nhin: 1. nh ngha da trn logic 2. nh ngha da trn xc sut tc ra ch r tp v xc sut ca tng s kin trong tp . Cch th 2 cho nh ngha cht ch hn v c s dng nhiu hn.

  • Pr (X = k) = nipk (1 p)n!k

    Din gii r hn X l s ln thnh cng ca n trials, T1,T2, ... , Tn trong m Pr(T1 = 1 ) = Pr(T2 = 1 ) = . . . . . .= p E[X] = np.

    Vi nh ngha theo cch th 2 ta c mt Distribution ca bin theo xc sut. Binomial random viable with parameters n and p Chng minh: E[X] = np Gi T1,T2, ... , Tn l n trials. Mi Ti l mt Bernoulli random variable with parameter p => E[Ti] = p; i = 1, 2, 3, ..., n p dng Linearity of Expectation ta c: E[X] = E[ ni!1 Ti ] =ni!1 E[Ti ] = np

    3 Conditional Expectation

    Conditional Expectation Xt mt khng gian mu con ca khng gian mu , tha mn Z = z;E[Y | Z = z] = y yPr(Y = y | Z = z) c gi l expectation ca bin ngu nhin Y vi iu kin Z = z. Decomposition Law E[X ] = y Pr(Y = y)E[X | Y = y] Chng minh cng thc ny tng t nh chng minh linearity of expectation. nh l v k vng ca k vng: E[Y] = E[E[Y | Z]

    V d: Xt 2 con xc sc chun (chun tc c 6 mt, mi mt c xc sut 1/6 v ghi mt s khc nhau t 1 n 6). Gieo 1 ln c 2 s l X1 v X2. t X = X1 + X2; E[X |X1 = 2] =

    x

    xPr(X = x|X1 = 2) Nhn thy 6 >= X1, X2 >= 1; y X1 = 2 nn 8>= X >= 3 E[X |X1 = 2] = 8

    x ! 3 xPr(X = x|X1= 2) = 8x ! 3 x 16 = 112 Compare: E1, E2 l c s kin xung khc (E1 E2 =) m E1 v E2 lp y khng gian mu. Khi vi mt s kin bt k

  • B ta c: Pr(B) = Pr(B E1) + Pr(B E2) Chng minh: t: f(Z) = E [Y | Z]. Ta c: E[E[Y | Z] = E[f(Z)] E[f(Z) ] =z Pr(Z = z)f(z) =z Pr(Z = z)E[Y | Z z] = E[X] (ng thc cui suy t

    decomposition law) 4. The Geometric Expectation

    Geometric Distribution X l mt geometric random variable with parameter p nu: Pr(X = n) = (1 p)n!1p T y ta tnh c: Pr(X n) = i!n Pr(X = n) =i!n (1 p)n!1p = p(1 p)n!1

    i!0 (1 p)i= p(1 p)n!1 11 (1 p) = (1 p)n!1

    Cng thc tnh expectation cho bin nguyn dng:: Cho X l mt bin ngu nhin ri rc ch nhn cc gi tr nguyn dng: E[X] = i!1 Pr(X 1) p dng cng thc trn ta tnh c expectation ca geometric random variable: E[X] = i!1 Pr(X 1) = i!1 (1 p)n!1 = 1

    1!(1!p) = 1p

    nh ngha v geometric random variable c a ra di dng phn phi xc sut (Xem Chapter 1) Din gii v ngha, X geometric random variable with parameter p tc X l s ln cn th t c thnh cng u tin bit rng xc sut thnh cng ca mi ln l p. Compare: 1. Binomial Random Variable: The number of Trials : fixed = n The number os Successes: X 2. Geometric Random Variable: The number of Trials: X The number of success: fixed = 1 Chng minh: (cng thc tnh expectation cho bin nguyn dng) S dng nh ngha k vng

  • E[X] = j!1 jPr(X = j) =

    j!1i!ji!1 Pr(X = j) Hon i biu thc sig-ma trn ta c:

    j!1 i!ji!1 Pr(X = j) =i!1 j!i Pr(X = j) = i!1 Pr(X j)

    Extra: Coupon Collector's Problem

    Problem: C n loi coupons trong hp, s lng mi loi rt rt ln. Mi ln ta ly ra 1 coupon. Hi ta phi ly bao nhiu ln c th thu thp c n loi coupons ny. Problem Analysis: Bi ton yu cu tm s ln ly c th thu c n loi. Nu vy s khc nhau gia n-1 loi v n loi l g? Lc ta ly c 1 loi coupon ri. Kh nng c thm loi na l rt d, xc sut ln ly tip theo c thm 1 loi coupon l (n-1)/n. Cn nu xt khi c n-1 loi ri, ly c loi th n kia xc sut ch l 1/n. Nh vy vic ly thm c mt loi coupon mi khng ph thuc vo cng vic ta lm trc m ch ph thuc vo s coupon tnh n thi im hin ti. Tc s coupon cn ly thm i t i-1 loi n i loi ch ph thuc vo gi tr ca i. Proof: Gi X_i l s coupon cn ly thm tnh t lc ta c i-1 loi n lc ta c i loi. Mi X_i (i=1,2,...,n) l mt geometric random variable with parameter pi = 1 i!1n = n!i!1n . Suy ra: E[Xi ] =1pi= nn!i!1 Suy ra: E[X] = E[ ni ! 1 Xi ] =

    ni ! 1 E[Xi ] = ni ! 1 nn!i!1

    Bi ton ny c nhiu ng dng trong thc t v vy bn cn c k c phg php phn tch v li gii. S dng k thut braching process with 0 generation in memory or memoryless. H(n) c gi l Harmonic number. H(n) = ln(n) + (1). chng minh ta ch cn dng bt ng thc tch phn t 1 n n cho hm f(x) = 1/x f( x ) f(x) f( x )

  • t k = n - i + 1 ta dc: = n nk ! 1

    1k= nH(n)

    5. Application: The Expected Run-Time of Quicksort

    Quick sort l mt gii thut tng i n gin v hiu qu. Vn cht cng trong quik sort chnh l chn pivot sao cho hp l, trong ri vo worst case n^2 ca gii thut. Nu nh y ta chn pivot mt cch ngu nhin liu gii thut trn c tr nn tt hn khng? tr li cu hi trn ta s phn tch thi gian tnh ca Quick Sort vi pivot chn ngu nhin. Probabilistic Analysis: Trong gii thut Quick Sort, sau khi chn xong pivot cng vic ca ta l so snh pivot vi tng s trong dy con. y nu phn tch k hn th cu lnh so snh ny chnh l cu lnh c trng ca vng lp trong Quick Sort. Do , ch cn tnh s ln so snh ny ta s thu c thi gian tnh ca thut ton. Gi s ln so snh ny l X. Gi s y_1,y_2,...,y_n l dy c xp xp. Gi X_ij l bin ngu nhin Beunoulli tha mn: X_ij = 1 nu trong qu trnh sp xp ta c so snh y_i v y_j i,j = 1,2,3...,n ; ij; X_ij = 0 nu ngc li. Ta c: X = n!1i!1 nj!i!1 Xij Suy ta: E[X] = E[ n!1i!1 nj!i!1 Xij ] =n!1i!1 nj!i!1 E[Xij ] (5.1) Cng vic tip theo ca ta l i tnh E[X_ij} Xt cc s trong khong t v tr i n v tr j : y_i,y_i+1,....y_j ; (i

  • th chng minh bng phn chng). Lc ny pivot s phi l mt trong j-i+ s trn. Trong c 2 trng hp dn n vic ta phi so snh y_i v y_j. Do : Pr(X_ij = 1) = 2/(j-i+1) Suy ra: E[X_ij] = 2/(j-i+1) ( v X l bin ngu nhin Bernoulli) Thay ng thc trn vo (5.1) ta c: E[X] = n!1i!1 nj!i!1 2j!i!1 t k = j-i+1 ta c: E[X] = n!1i!1 n!i!1k!2 2k S dng lut hon i sig-ma ta thu c: E[X] = nk!2 n!k!1i!1 2k =2 nk!2 n!k!1k = (2n + 2) n

    k!21k 2(n 2 + 1) Rt gn ta c: E[X] = (2n+2)H(n) - 4n hay E[X] = (nln n)

    Exercise Exercise 2.3: 1. Cho f(x) l mt vertex function (f''(x)>=0). Chng minh rng: E[f(x)] >= f(E[x]) 2.Chng minh rng: E[Xk ] (E[X])k Exercise 2.6: C 2 con xc sc chun (chun tc c 6 mt, mi mt c xc sut 1/6 v ghi mt s khc nhau t 1 n 6). Gieo xc sc ta c 2 s l X1 v X2. (a) Tnh: E[X | X1 chn] (b) Tnh E[X | X1 = X2] (c) Tnh E[X1 | X= 9] (d) Tnh E[X1-X2 | X = k Exercise 2.7: Cho X v Y l 2 bin geometric vi tham s (with parameter) ln lt l p v q. (a) Tnh Pr(X = Y) (b) Tnh E[max(X,Y)] (c) Tnh Pr(min(X,Y) = k) (d) Tnh E[X | X Y]

  • Hint: Bn s thy tnh memoryless ca geometric random variable rt c ch. Exercise 2.12: Ta ly cc tm card t trong hp c n loi card. (a) Tnh expectation ca s card phi ly cho n khi c n loi card (b) Nu ta ly ng 2n tm card, k vng ca s tm card khng c chn l bao nhiu? (c) Nu ta ly ng 2n tm card, k vng ca s tm card c chn ng mt ln l bao nhiu? Exercise 2.22: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an. Mi s a_i c i ch vi s lin k cho n khi n n c v tr cn sp xp. Tnh Expected Number of Swap of Buble Sort. Hint: Ta ni a_i v a_j l inverted (b o ln) nu (i < j) AND (a_i > a_j). Mi bc swap trong Buble Sort lm mt i mt inverted pair. Exercise 2.23: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an Tnh Expected Runtime of Linear Insertion Sort. Hint: Ta ni a_i l out of order nu tn ti a_j tha mn (i < j) AND (a_i > a_j). Sau iteration th k trong Linear Insertion Sort, phn t th 1,2,...k u in order. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Answers: ____________________________________________________ Exercise 2.3: 1. Cho f(x) l mt vertex function (f''(x)>=0). Chng minh rng: E[f(x)] f(E[x]) p dng Taylor Expansion ln cn im : f(x) = f() + f'()(x-)

    1! + cf''()(x-)22! ; trong c l mt hng s trong khong (0,1) Do f''(} 0 nn: E [f(x)] E[f() + f'()(x-)

    1! ] = E[f()] + E[f'()(x-)1! ]. V f() v f'() l hng s nn nn: E [f(x)] E[f() + f'()(x-)

    1! ] = E[f()] + E[f'()(x-)] (1) Ly expectation ca c 2 v ta c: E[f() + f'()(x-) ] = f() + f'()(E[x]-)(2) Chn = E[X] ri kt hp (1) (2) li ta c: E[f(x)] f(E[x]) 2.Chng minh rng: E[Xk ] (E[X])k

  • t f(x) = x^k. Ta c f''(x) = k(k-1)x^(k-2) >=0; p dng bt ng thc trong phn 1 ta thu c iu phi chng minh. ____________________________________________________ Exercise 2.6: C 2 con xc sc chun (chun tc c 6 mt, mi mt c xc sut 1/6 v ghi mt s khc nhau t 1 n 6). Gieo xc sc ta c 2 s l X1 v X2. (a) Tnh E[X | X1 chn] Trc ht ta tnh E[X|X1] = E[(X1+X2)|X1] (Linearity of conditional expectation) = E[X1 | X1] +E[X2|X1] = X1 + E[X2] ( v X1 v X2 c lp). = 7/2 + X1 - - trn ta s dng kt qu: E[X 2] = 6x ! 1 xPr(X2 = x) = 6x ! 1 x16= 16 6x ! 1 x = 72

    E[X | X1 chn] = Pr(X1 = 2)E[(X = x |X1 = 2)] + Pr(X1 = 4)E[(X = x |X1 =4)] + Pr(X1 = 6)E[(X = x |X1 = 6)] (decomposition law mc 2.1) = 1

    6(7

    2+ 2) + 1

    6(7

    2+ 4) + 1

    6(7

    2+ 6) = 18

    5

    (b) Tnh E[X | X1 = X2] E[X | X1 = X2] = 6x ! 1 Pr(X2 = x)E[X |(X1 = X2 (X2 = x) ] = 6x ! 1 Pr(X2 = x)2x = = 6x ! 1 163x = 13 6x ! 1 x =1321 = 7

    (c) Tnh E[X1 | X= 9] Do 1 X1 6 m X = 9 nn X1 = 3,4,5,6. E[X1 |X = 9] = 6x ! 3 xPr(X1 = x| X = 9) Dng Bayes' Law: Pr(X1 = x| X = 9) = Pr(X1 ! xX ! 9)

    Pr(X ! 9) = 136436

    = 14

    Thay vo trn ta c: E[X1 |X = 9] = 6x ! 3 x 14 = 214 (d) Tnh E[X1-X2 | X = k] E[X1-X2 | X = k] = E[X1 | X = k] - E[X2 | X = k] ( linearity of expectation) = 0. Bi X1 v X2 l 2 bin hon ton c lp, gi vai tr nh nhau trong biu thc trn. Do vy kt qu ca 2 biu th phi nh nhau. (Chng minh bng phn chng cng l mt cch hay bi E[X] c nh ngha l mt nh x t R vo R. ____________________________________________________ Exercise 2.7: Cho X v Y l 2 bin geometric vi tham s (with parameter) ln lt l p v q. (a) Tnh Pr(X = Y) Pr(X = Y) = n!1 Pr(X = x Y = y) = n!1 Pr(X = x )Pr(Y = y)

  • = n!1 (1-p)n-1p(1-q)n-1q = pq n!1 ((1-p)(1-q)n-1 = pq 1

    1- (1-p) (1-q) = pqp ! q - pq (b) Tnh E[max(X,Y)] Do X v Y l 2 bin geometric vi tham s (with parameter) ln lt l p v q nn E[X] = 1/p v E[Y] = 1/q Gi X1 l mt Bernoulli random variable tha mn X1 = TRUE khi v ch khi X = 1 tc ln th u tin thnh cng. Pr(X1 = TRUE) = p; X1 = FALSE nu ngc li. E[max(X,Y)] = Pr(X1 = TRUE) E[max(X | X1 = TRUE , Y) + Pr(X1 = FALSE) E[max(X | X1 = FALSE , Y) = p * E[Y] + (1-p)*E[max(X | X1 = FALSE , Y) ] ( v X1 = TRUE khi v ch khi X = 1 nn max(X|X1= 1,Y) = Y) (b-1) Khi X > 1 , gi X* l s ln cn phi th cho n ln thnh cng u tin. Khi E[X| X1 = FALSE] = E[X* +1]. E[max(X,Y)] = p * E[Y] + (1-p)*E[max(X* + 1 , Y) ] Gi Y1, v Y* l bin tng t nh X1 v X*, ch cn thay X bi Y. Lm tng t nh trn ta thu c: E[max(X,Y)] = p * E[Y] + (1-p)*( q*E[max( X* + 1 , Y|Y1 = TRUE) + (1 - q)*E[max(X* + 1 , Y*+1)] ) = p * E[Y] + (1-p)*( q*E[X* +1] + (1-q) *E[max(X*,Y*) + 1]). Do tnh memoryless ca phn phi geometry nn E[X*] = E[X], E[Y*] = E[Y], E[max(X*,Y*) + 1] = E[max(X,Y)], E[X] = 1/p v E[Y] = 1/q . Thay vo ta c: E[max(X,Y)] = p/q + (1-p)*(q*(1/p+1)+(1-q)*(E[max(X,Y)]+1) )

    Suy ra : E[max(X,Y)] = 1 !pq!qp- p -qp ! q -pq

    (c) Tnh Pr(min(X,Y) = k) Pr(min(X,Y) = k) = Pr(X = k Y k + 1) + Pr(X = k Y = k) + Pr(X k + 1 Y = k) = Pr(X = k)Pr(Y k + 1) + Pr(X = k)Pr( Y = k) + Pr(X k + 1 )Pr( Y = k) = (1-p)k-1p(1-q)k + (1-p)k-1p(1-q)k-1q + (1-p)k p(1-q)k-1q (xem muc 4 chng 2: Pr(Y n ) = (1-q)n-1) = (1-p)k-1(1-q)k-1(p + q - pq)

  • (d) Tnh E[X | X Y] Li gii tng t (b) E[X | X Y] = 1

    p ! q - pq ____________________________________________________ Exercise 2.12: Ta ly cc tm card t trong hp c n loi card. (a) Tnh expectation ca s card phi ly cho n khi c n loi card Bi ny tng t nh Coupon Collector Problem . Xem mc 2.4.Kt qu: E[X] = H(n) (b) Nu ta ly ng 2n tm card, k vng ca s tm card khng c chn l bao nhiu? Gi X_i l s loi card ly c ngay sau khi rt card th i. (i = 1,2,...,2n). D thy: X_1 = 1; Vi i>=1, c 2 trng hp sau: 1. Card tip theo thuc mt loi no c ri. Nh vy X_i = X_(i-1). Xc sut xy

    ra s kin ny l Pr(Xi = Xi-1) = Xi-1n 2. Card tip theo thuc mt loi hon ton mi. Nh vy X_i = X_(i-1) + 1. Xc sut

    xy ra s kin ny l Pr(Xi = Xi-1 + 1) = 1 - Xi-1n Suy ra: E[Xi |Xi-1] = Xi-1 Xi-1n + (Xi-1 + 1)(1 - Xi-1n ) = 1 + Xi-1(1- 1n) Ly Expectation ca 2 v ta c: E[X_i] = E[E[X_i | X_i-1]] = 1 + a*E[X_i-1]; vi a = 1-1/n. Bin i cng thc truy hi trn ta thu c: E[X2n] = a2n-1X[1] + a2n-2+ . . .+ a + 1 ; vi a = 1-1/n.

    Thay X_1 = 1 vo ra rt gn ta c: E[X2n] = a2n-1 + a2n-2+ . . .+ a + 1 = 1-a2n1-a ; Khi n ln ta c th thay: (1- 1

    n)n e-1. Kt qu cui cng: E[X2n] = n(1-e-2)

    (c) Nu ta ly ng 2n tm card, k vng ca s tm card c chn ng mt ln l bao nhiu? L lun tng t nh trn. Ch cn thy trng hp X_i = X_(i-1) bi X_i = X_(i-1) - 1 Lc ny hng s a tr thnh 1 - 2/n

    E[X2n] = n2(1-e-4) ____________________________________________________ Exercise 2.22: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an. Mi s a_i c i ch vi s lin k cho n khi n n c v tr cn sp xp. Tnh Expected Number of Swap of Buble Sort. Proof: Ta ni a_i v a_j l inverted (b o ln) nu (i < j) AND (a_i > a_j). Gi X_ij l mt Bernoulli random variable tha mn: X_ij = 1 nu a_i v a_j l mt inverted pair. Pr(Xij = 1) = nk!1 Pr(ai = k

    aj > k) = nk!1 1n n-kn = 1 - 1n nk!1 k = 12 - 12n X_ij = 0 nu ngc li.

  • t X = s ln Swap trong Buble Sort Trong Buble Sort, s ln swap chnh l s inverted pair. Do vy: X = n-1i!1 nj!i!1 Xij . Ly expectation 2 v: E[X] = E[ n-1i!1 nj!i!1 Xij ] = n-1i!1 nj!i!1 E[Xij ] (Linearity of Expectation) E[X] = n-1i!1 nj!i!1 (12 - 12n) = (n-1)24 ____________________________________________________ Exercise 2.23: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an Tnh Expected Runtime of Linear Insertion Sort. Proof: Sau khi sp xp cc s c th t t l: 1,2,...,n Gi s trc khi sp xp cc s c th t 1,2,...,n ang v tr ln lt l x_1,x_2, ... ,x_n. y (x_1,x_2, ... ,x_n ) l mt hon v ca (1,2,...,n) x_i v n v tr th nht cn thc hin |x_i - i| ln swap. Tng s ln swap l X = ni!1 |xi - i| Trong (x_1,x_2, ... ,x_n ) l mt hon v ca (1,2,...,n). E[X] = E[ ni!1 |xi - i|] = ni!1 E[|xi - i|] (Linearity of Expectation) E[|ai - i|] = i-1k!1 Pr(ai = k)(i - k) + nk!i!1 Pr(ai = k)(k - i) =1n( i-1k!1 (i-k) + nk!i!1 (k-i))

    = 1n( i-1j!1 j + n-ij!1 j )

    Suy ra: E[X] = ni!1 E[|xi - i|] = 1n( ni!1 i-1j!1 j + ni!1 n-ij!1 j ) . p dng lut hon i sig-ma ta c: E[X] = 1

    n( n-1j!1 n-1i!j j + n-1j!1 n-ji!1 j ) =

    1n( n-1j!1 ((n-j)j ) + n-1j!1 ( (n-j)j ))

    = 2n( n-1j!1 ((n-j)j ) = 2 n-1j!1 j - 2n( n-1j!1 j2 ) = n(n-1) - 2

    n-1 (n-1)n(2n - 1)6 E[X] = 2

    3n2 + 1

    3

    S

    Chapter 5: Balls and Bins Thursday, June 10, 2010,12:30 (GMT+7)

  • 1. Background 1.1. The inclusive-exclusive principle: Pr(E1E2) = Pr(E1) + Pr(E2) - Pr(E1E2) ng dng: - 2 independent events: Pr(AB) = Pr(A)Pr(B) - 2 disjoint events: Pr(E1E2) = Pr(E1) + Pr(E2) 1.2. Bayes' Law: Pr(E1 | B) = Pr(BE1) / Pr(B) =Pr(BE1)Pr(BE1)+ Pr(BE2) 1.3. Expectation

    1.4. Binomial Distribution

    : n trials + p success 1.5. Geometric Distribution

    : n trials + 1 success 2. Tm tt l thuyt Cc mc ch o

    Ni dung Take note

    1.The Birthday Paradox

    Problem: C 30 ngi trong phng, Hi xc sut tn ti 2 ngi c ngy sinh trng nhau l bao nhiu? Problem Analysis: Ngy sinh c 365 kh nng. S ngi l 30, 29 hay ch c 1 ,2 c khc g nhau khng? Khi c 1 ngi chc chn l khng trng vi ai. Khi c 2 ngi th kh nng khng trng chnh l kh nng ngi 2 sinh khac ngy ngi 1. Khi c 364 tng hp trong s 365 trng hp c th. Xc sut l 364/365. Nh vy xc sut ngi th i khng trng vi ngy sinh ca nhng ngi trc hon ton khng ph thuc vo ngi trc sinh ngy no m ch ph thuc vo gi tr ca i. V xc sut ny l: 1 - (i-1)/365 Proof: i theo lp lun trn ta tnh dc xc sut 30 ngi khng sinh trng ngy l: 30i!1 ( 1 i!1365) 0.2937

    - Khng k nm nhun (leap years) v sinh i (twin) Thm vo : tnh s ngi cn trong phng xc sut tn ti 2 ngi c ngy snh trng nhau bng 1/2 T cng thc (1) c th rt ra gi tr ca m xc sut ny = 1/ 2 l: m2/2n =

  • Tng qut bi ton cho n ngy sinh v m ngi c ngy sinh khng trng nhau: Pr = m!1i!0 ( 1 in) mi!0 e! in = e mi!0 ! in =e!m(m!1)2n (1) trn ta s dng cng thc 1 x e!x vi x tng i gn 0.

    ln2 hay m = 2 n ln2 Gi tr ny ch c tim cn l cn n. Nh vy l rt nh so vi nhn nh ban u. V th n c gi l Paradox. 2. Balls into Bins

    Tng qut vn Birthday Paradox trn ta xy dng c mt m hnh ton hc gi l balls into bins. y c s tng ng s ngi l s bng v s ngy sinh l s hp. Nu by gi ta nm m balls vo n bins (gi s khng nm trt qu no) , lc ny mi bins s c mt s bng nht nh. Ta gi maximum load l s bng cha trong hp c nhiu bng nht. nh l: Xc sut maximum load ln hn 3 ln n/ln ln n l khng qu 1/n. Proof: Xt bin th nht. Xc sut c t nht M balls trong bin 1 s l: n

    M(1

    n)M (chn ra M qu trong s n qu. Xc sut mi qu vo hp 1 l 1/n). n

    M(1

    n)M 1

    M! (eM)M Tron bt ng thc th 2 ta s dng cng thc: kkk! < i!0 kii! = ek ] Do xc sut tn ti mt bin cha nhiu hn M balls l: n n

    M(1

    n)M n(e

    M)M Thay M = 3 ln n/ln ln n vo ri chuyn ton b sang dng exp ta chng minh c xc sut ny khng qu 1/n

    Dng Taylor Expansion cho e^k

    3. The Poisson Distribution

    4. Application Hashing: Problem Set Membership 4.1. Chain Hashing 4.2. Fingerprint

    Problem: Cho tp S = {s_1,s_2, ... ,s_m} l tp con ca mt tp rt ln universe U. Vi mt phn t x bt k chn t U, ta phi tr li cu hi:" x c l phn t ca S hay khng?". Cu hi ny c gi l Set Membership Problem . 1. Chain Hashing Phng php c in nht l to mt bng bm tm

    hiu th no l rt ln bn c th coi S l tp cc bi ht trong my tnh ca bn. Cn U l tp ton b bn nhc trn th gii.

  • Method 4.3. Bloom Filter Method

    kim, Bn c th dng hm bm ngu nhin.Phng php ny lun cho kt qu chnh xc v thi gian kh nh. Theo phn tnh mc 2, maximum load bng ln n/ln ln n l khng qu 1/n. Vy th thi gian tm kim ln hn (ln n/ln ln n ) vi xc sut khng qu n. Nhc im ca phng ph ny l truy cp b nh qu ln : m phn t ca tp S khng th lu trong RAM c. 4.2. Fingerprint Method Ta nh ngha mt hm to fingerprint nh sau: f: S -> B Trong B l tp cc s nh phn b bt, D thy B c 2^b phn t. Ta ch cn lu m phn t, mi phn t b bt trong RAM. Tc cn m*2^b bit. Vic tnh f(x) cng chnh l vic tm ra fingerprint ca x. ALGORITHM Tnh f(x). So snh f(x) vi tt c cc f(s_i); s_i thuc S C 2 trng hp xy ra: Case 1: Nu f(x) f(s_i); mi i = 1, 2, ...,m => x khng thuc S. Case 2: Nu tn ti 1 x khng thuc S. Gi s ngc li x thuc S th phi tn ti i m f(x) = f(s_i) vi 1

  • = 1 Pr(i: f(x)f(si ) ) Pr (x S ) (4.2) Pr (x S ) = 0 do S l tp con c m phn t ca tp U rt rt ln. Pr(i: f(x)f(si ) ) = mi!1 Pr(f(x)f(si ) ) =

    mi!1 (1 Pr(f(x) = f(si ) ) Mi f(s_i) l mt fingerprint di b bits. Do vy xc sut f(x) = f(s_i) ch l 1/2^b. Vi mi i = 1,2, ... , m. Suy ra: Pr(i: f(x)f(si ) ) = (1 12b )m Thay vo ng th (4.2) ta c:

    Pr(false positive) = 1 (1 12b

    )m 1 e!m2b m2b

    xp x trn ta dng 2 ln cng thc: 1 x e!x khi x nh. Chn b = 32 tc fingerprint 32-bit, gi s t in c 2^16 password xu tc password ngi s dng khng c php dng. Khi trong RAM ta phi lu: 2^16 * 4 bytes = 256KB;

    Pr(false positive) 216232

    165536

    4.3. Bloom Filter Method Ging nh fingerprint method ta s dng mt nh x f t tp S vo tp cc gi tr n-bit By gi thay cho vic mi mt phn t cho ra mt fingerprint ta ch cn mt dy n bt m ta gi l Bloom lu tt c cc f(s_i). Nu f(s_i) tr li gi tr no m ti bit = 1 th ta thit lp bit ny. V d: Bloom n = 4 bit 0000; sau khi tinhs f(s_1) = 2 = 0010. Ta thu c Bloom 0010. Sau khi tnh f(s_2) = 10 = 1010 ta thu c Bloom 1010. Phng php Bloom Filter s dng mt Bloom, v cc hm h_i; i =1,2,...,k Ta ni y nm trong Bloom nu tt c cc v tr bit 1 ca y u c trong Bloom. V d: y= 8 = 1000 nm trong Bloom 1010.; y = 1001 khng nm trong Bloom 1010. ALGORITHM Tnh h_i(x); i =1,2,...,k x thuc S h_i(x) nm trong Bloom no vi mi i =1,2,...,k

    thc hin. y ta coi S l tp rt quan trng, "th ly nhm cn hn b st".

  • PROBABILISTIC ANALYSIS: Case 1: Khng tn ti i h_i(x) nm trong Bloom => x khng thuc S. Gi s ngc li x thuc S th phi tn ti i: 1
  • 3. Exercises: http://docs.google.com/View?id=dgmqjfk5_184c7sdskcv 4. Cng thc ny ch no , em c nu thy th chuyn vo nh: = 1 - Pr(A[j], 1jn: A[f(x)] = A[j])) Exercise Exercise 5.21: Trong open addressing, hash table c ci t bng mng, hon ton khng s dng linked-lists. Mi entry trong bng ch c th rng hoc cha 1 phn t. Bn c th nhp vo link sau tm hiu r hn. http://en.wikipedia.org/wiki/Open_addressing http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm Vi mi key k trong table ta nh ngha mt probe sequence h(k,0),h(k,1) .... ,h(k,n); n l s entry trong table. chn kha k ta tnh ln lt h(k,0),h(k,1) .... cho n khi tm c trng chn k, sau n ln tht bi ta hiu l bng full v khng th chn thm Khi tm kim cng lm tng t nh vy, tnh ln lt h(k,0),h(k,1) ....n khi tm c kha k, hoc tm thy mt trng th chng t trong bng khng c kha k. Gi s h(k,j) c th nhn bt c gi tr ngu nhin no trong n entries ca bng v tt c cc h(k,j) c lp. Sau khi s dng bng ny lu gi m = n/2 phn t, ta nhn c yu cu tm kha k trong bng . Gi X_i l s probe (thm d) cn thc hin chn kha th i. t X = max {X_i}; 1 i m l s thm d ln nht cn thc hin chn phn t c kha m (a) Chng minh Pr(X>2log n) 1/n (b) Chng minh expectation ca di ln nht ca chui thm d cn thc hin l E[X] = O(log m). Ch : n = 2m. Phng php trn cn c gi l Double Hashing. V d: h(k,i) = a*h(k) + b*h(i) (mod n) tc l dng 2 hash function. (c) Open addressing/Linear Probing l mt trng hp ring ca phng php ny. : h(k,i) = h(k) + i (mode n); tron h(i) = i. Nhng khng hn nh vy bi h(k,i) v h(k,i+1) khng cn c lp nhau na. Hy a ra nh hng ca s khac bit ny v tm cch p dng Double Hashing cho vic tm xpectation ca di ln nht ca chui thm d cn thc hin cho Open addressing/Linear Probing. ( thi K52 - CNTT - HBK HN)

  • Exercise 5.22: Gi s list cc bi ht bn u thch l X, v list cc bi ht ti u thch l Y. Bit rng |X| = |Y| = n. Ta to ra Bloom filter ca cc tp X v Y s dng cc s m bits v k hash functions. (a) Tnh expectation ca s cp bit khc nhau trong Bloom filter ca X v Y (b) Tnh E[ |X Y|] (c) Gii thch ti sao ta c th s dng phng php ny tm nhng ngi c s thch cng th loi nhc thay cho vic so snh tt c list mt cch trc tip p s: (a) n(2p-p2 ) trong p = (1 - 1

    n)mk;

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Answer Exercise 5.21: Trong open addressing, hash table c ci t bng mng, hon ton khng s dng linked-lists. Mi entry trong bng ch c th rng hoc cha 1 phn t. Bn c th nhp vo link sau tm hiu r hn. http://en.wikipedia.org/wiki/Open_addressing http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm Vi mi key k trong table ta nh ngha mt probe sequence h(k,0),h(k,1) .... ,h(k,n); n l s entry trong table. chn kha k ta tnh ln lt h(k,0),h(k,1) .... cho n khi tm c trng chn k, sau n ln tht bi ta hiu l bng full v khng th chn thm Khi tm kim cng lm tng t nh vy, tnh ln lt h(k,0),h(k,1) ....n khi tm c kha k, hoc tm thy mt trng th chng t trong bng khng c kha k. Gi s h(k,j) c th nhn bt c gi tr ngu nhin no trong n entries ca bng v tt c cc h(k,j) c lp. Sau khi s dng bng ny lu gi m = n/2 phn t, ta nhn c yu cu tm kha k trong bng . Gi X_i l s probe (thm d) cn thc hin chn kha th i. t X = max {X_i}; 1 i m l s thm d ln nht cn thc hin chn phn t c kha m Proof: (a) Chng minh Pr(X>2log n) 1/n ln chn th i, trong bng c i - 1 entries. Ta phi tnh h(i.j) cho n khi tm c entry trng. Nh vy X_i l mt geometric random variable with parameter pi = 1 - i-1n . Theo lut phn phi ny: Pr(Xi = j) = (1-p)j-1p Suy ra: Pr(Xi j) = l!j Pr(X = j) = l!j (1-p)j-1p = p(1-p)j-1 l!0 (1-p)l = p(1-p)j-1 11-(1-p) = (1-p)j-1 Suy ra: Pr(Xi > 2log m) = Pr(Xi 2log m + 1 ) = (1-pi )2logm; thay pi = 1 - i-1n v n

  • = 2m vo ta c: Pr(Xi > 2log m) = ( i-12m)2logm ( m2m)2logm = 1m2 (b) Chng minh expectation ca di ln nht ca chui thm d h(i,j) cn thc hin l E[X] = O(log m). Ch : n =2m.

    E[X] =x!2 log m ( xPr(X = x)) +

    m

    x ! 2 log m (xPr(X = x)) < 2 log mx!2 log m Pr(X = x) + n

    m

    x ! 2 log m Pr(X = x) E[X] < 2 log mPr(X 2 log m) + nPr(X > 2 log m) = 2 log m + n 1

    n= 2 log n trn ta s dng: Pr(X 2 log m) 1 v kt qu Pr(X > 2 log m) 1

    n t cu a.

    Ch trn ta a ra nhn xt X_i l mt geometric random variable with parameter pi = 1 - i-1n . Do vy: E[Xi!1] = 1pi!1 = nn-i = 11 -; trong = in Cng thc ny cho ta thy: "Nu nh trong bng c i kha th expectation ca s ln thm d cn lm l 1/(1-a) trong a l t s gia s phn t a vo bng v s entries bng c th cha c" (c) Open addressing/Linear Probing l mt trng hp ring ca phng php ny. : h(k,i) = h(k) + i (mode n); tron h(i) = i. Nhng khng hn nh vy bi h(k,i) v h(k,i+1) khng cn c lp nhau na. Hy a ra nh hng ca s khac bit ny v tm cch p dng Double Hashing cho vic tm xpectation ca di ln nht ca chui thm d cn thc hin cho Open addressing/Linear Probing. ( thi K52 - CNTT - HBK HN) Proof: Gi s by gi thy cho vic tnh h(k,0),h(k,1) .... ,h(k,n) mt cch ln lt ta s tnh h(k,i_0),h(k,i_1) .... ,h(k,i_n) vi (i_1,i_2 ,....,i_n) l mt hon v ca (1,2,...,n). Mi hon v c gi l mt case. Nh vy ta c n! case. Trong n! th t c th, c 1 v ch 1 hon v l (i_1,i_2 ,....,i_n) = (1,2,...,n) dn ta n Linear Probing. Ta gi Linear Probing l case_1 Mt nhn xt na l cc hon v ny u c vai tr tng ng nhau tc nu lm Linear Probing th cng c th lm (3,1,2,...,n-1,n) hay bt k hon v no cng cho ta mt kt qu ging nhau khi tnh expectation. Tr li vi Double Hashing ta nh ngha bin ngu nhin X = max {X_i}; 1 i m l s thm d ln nht cn thc hin tm phn t c kha m. E[X] = n!i!1 Pr(CASE = casei ) E[X|CASE = casei ]; trong CASE l mt hon v ca b (1,2,...,n). V cc case_i l tng ng nhau nn: Pr(case_i) = 1/n! vi mi i = 1,2,....,n!, v E[X|CASE = case_i] = E[X|CASE = case_1] = E[X|CASE = Linear Probing] vi mi i = 1,2,....,n!. Do vy: E[X|CASE = Linear Probing] = E[X] = O(log n);

  • Ch : Gi X_i l s probe (thm d) cn thc hin chn kha th i. trn ta a ra nhn xt X_i l mt geometric random variable with parameter pi = 1 - i-1n . Do vy: E[Xi!1] = 1pi!1 = nn-i = 11 -; trong = in Nhn xt ny ch ng cho trng hp Double Hashing khng c g m bo n s ng cho Linear Probing.