System NOise and Link Budget

  • Upload
    leo3001

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 System NOise and Link Budget

    1/35

    SYSTEM NOISE AND

    LINK BUDGETUpdates: 9/24/13; 10/6/14

  • 8/18/2019 System NOise and Link Budget

    2/35

    Introduction

    •  Any system (wired or wireless) receives and generatesunwanted signals

    •  Natural phenomena or man-made (Noise)

    •  Unwanted signals from other systems (Interferences)

    • 

    Man-made Noise: due to other subsystems (e.g.; powersupply)

    •  Natural Noise: due to random movements and agitation of

    electrons in resistive components (e.g., due totemperature)

    We focus on system thermal noise!

  • 8/18/2019 System NOise and Link Budget

    3/35

    Thermal Noise Characteristics

    •  Thermal noise due to agitation of electrons•  Except at absolute zero temperature, the electrons in

    every conductor (resistor) are always in thermal motion

    •  Function of temperature

    • 

    Present in all electronic devices and transmissionmedia

    •  Cannot be eliminated

    •  Particularly significant for satellite communication•

      The Sun contributes to the thermal noise at the receiver

    http://homes.esat.kuleuven.be/~cuypers/satellite_noise.pdf

  • 8/18/2019 System NOise and Link Budget

    4/35

    Spectral Power Density of (white)

    Noise•  Amount of thermal noise to be found in abandwidth of 1Hz in any device or conductoris:

    •  N 0 = noise power density (in watts) per 1 Hz ofbandwidth

    •  k = Boltzmann's constant = 1.3803 ! 10-23 J/K (or W/

    (K.Hz))

    • 

    T = temperature, in kelvin (absolute temperature)

    •  Note Watt = J/sec = J.Hz

     N 0

      = kT   W/Hz

    ( )

  • 8/18/2019 System NOise and Link Budget

    5/35

    Thermal Noise Noise Power

    •  Noise is assumed to be independent of frequency

    •  Thermal noise present in a bandwidth of B Hertz (in

    watts):

    or, in decibel-watts( )W/Hzk 0   T  N    =   TB N    k =

     BT  N  log10log10klog10   ++=

  • 8/18/2019 System NOise and Link Budget

    6/35

    Thermal or White Noise

    •  From the plot of the spectral density of thermal noise overfrequency, can see that the noise is flat frequency

    spectrum till around 100GHz or so and starts to fall off at

    around 1TeraHz

  • 8/18/2019 System NOise and Link Budget

    7/35

    Thermal Noise Model

    •  At any temperature, thermal motion of electrons result inthermal noise

    •  This is due to difference between the resistor’s terminals

    •  The thermal noise source in the resistor delivers a

    power to the load (watt)

    •  Or in Watt/Hz: We call this noise power density :

    TB N    k = Noise randomprocess has

    Gaussian

    Distribution withzero mean and

    some SD( )W/Hzk 

    0  T  N    =

  • 8/18/2019 System NOise and Link Budget

    8/35

    Modeling the Thermal

    Noise (Open Circuit – No Load) •  The noise generated due to temperature T by a resistivecomponent has normalized power spectrum (also called

    mean-square voltage spectrum): 2RkT(V^2/Hz)

    •  k = Boltzmann's constant = 1.3803 ! 10-23 J/K

    • 

    T = temperature, in kelvin (absolute temperature)•  Therefore the average power that a voltage or current

    source can deliver (available) is: 2RkT.2B=4RkTB (V^2)

    •  The RMS voltage equivalent of the thermal noise will be

    V rms   =   AveragenoisePower   =   4kTRB V ( )Example A: Calculate the open-circuit Vrms reading when we connect a true RMSvoltmeter to a 100Kohm resistor at room temperature (20 deg. C) with BW=1MHz to

    measure the generated thermal noise. Draw the equivalent circuit.

    True RMSMultimeter

    R

    Vrms

    Equivalent Thermal Noise Model

  • 8/18/2019 System NOise and Link Budget

    9/35

    Noise Power Delivered to the Load

    •  The voltage delivered to the load is maximum whenRs=RL=R

    •  Thus, VL(t) = Vs(t)/2! 

    • 

    Spectral Noise Density at the load will be:kT/2=No/2 (W/Hz)

    Sub

    system

    Rs

    Vs(t) RL

    VL(t)

    Equivalent Thermal Noise Model

    P Load 

      =

    V  L

    (t )2

    2=

    [V s(t ) / 2]

    2

     R=

    V s(t )

    2

    4 R=

    V rms

    2

    4 R

  • 8/18/2019 System NOise and Link Budget

    10/35

    Thermal Noise Power

    %MATLAB CODE:T= 10:1:1000;

    k= 1.3803*10^-23;B=10^6;No=k*T;N=k*T*B;N_in_dB=10*log10(N);

    semilogy(T,N_in_dB)title(‘Impact of temperature in

    generating thermal noise in dB’)

    xlabel(‘Temperature in Kelvin’)ylabel(‘Thermal Noise in dB’)

    0 100 200 300 400 500 600 700 800 900 1000

    -102.15

    -102.16

    -102.17

    -102.18

    -102.19

    -102.2

    Impact of temperature in generating thermal noise in dB

    Temperature in Kelvin

       T   h  e  r  m  a   l   N  o   i  s  e   i  n   d   B

  • 8/18/2019 System NOise and Link Budget

    11/35

    Two-Ports Sub-System Noise Characterization

    •  A subsystem’s noise behavior can be characterized byseveral parameters:

    •  Available Gain (G)

    •  Noise Bandwidth (B)

    • 

    Noise Figure or Factor (F)

    G, B,F

    Input signal &

    noise

    output signal &

    noise

    Subsystem

    Rs

    Vs(t)RL

    VL(t)

    Equivalent Thermal Noise Model

  • 8/18/2019 System NOise and Link Budget

    12/35

    Two-Ports Sub-System Noise Characterization

    •  A subsystem’s noise behavior can be characterized byseveral parameters:

    •  Available Gain (G)

    •  Noise Bandwidth (B)

    • 

    Noise Figure or Factor (F)•  Available Gain:

    •  The available output noise spectral density due to input white noise

    will be:

    •  The available output noise power due to input white noise will be:

    S ao

      =G ! N 0

      / 2 W/Hz( )

    Pao

      =G ! 2 B !  N 0

      / 2 W( )

    G, B,F

    Input signal &noise

    output signal &noise

    Sao & PaoNo /2 

  • 8/18/2019 System NOise and Link Budget

    13/35

    System Noise Bandwidth (B)

    Two-Ports System•

     

     Assuming the system isdriven by white noise!

    •  So is the available

    output power spectraldensity (W/Hz)

    • 

    Pao is the available

    output power (W)

    •  G=Go is the mid-band

    available gain (DC gain)

    S o( f ) =G( f )S i( f ) =G( f ) N o

    2

    Pao   =   S o( f )df   =!"

    "

     #   N o

    2G( f )df 

    !"

    "

     # 

    Pao   =G $2 B $ N 0  / 2 W( )

    % B =1

    2GG( f )df 

    !"

    "

     # 

    G(f)

    Output PowerSpectrum Density

    So(f)

    Input PowerSpectrum Density

    Si(f)

    The availableoutput noise

    power due to

    input white noise

  • 8/18/2019 System NOise and Link Budget

    14/35

    Example A

    •  (1) Find the BW for a first-order low-pass Butterworth filterwhose gain is given as follow (assume DC gain Go=1):

    • 

    (2) Assuming the input of the system above is driven bywhite noise, find the output available power.

    G( f )=1

    1+ ( f   /   f 3dB )2

    G(f)

    Output PowerSpectrum Density

    So(f)

    Input PowerSpectrum Density

    Si(f)

    f 3dB

  • 8/18/2019 System NOise and Link Budget

    15/35

    Remember:Two-Ports Sub-System Noise Characterization

    •  A subsystem’s noise behavior can be characterized byseveral parameters:

    •  Available Gain (G)

    •  Noise Bandwidth (B)

    • 

    Noise Figure or Factor (F)

    G, B,F

    Input signal &

    noise

    output signal &

    noise

    Subsystem

    Rs

    Vs(t)RL

    VL(t)

    Equivalent Thermal Noise Model

    Let’s talk aboutthis!

  • 8/18/2019 System NOise and Link Budget

    16/35

    System Noise Figure (F)

    F  = SNRi   / SNRo

    =1+Te

    To

    •  The most basic definition of noise figure came intopopular use in the 1940’s when Harold Friis defined the

    noise figure F of a network to be the ratio of the signal-to-

    noise power ratio at the input to the signal-to-noise power

    ratio at the output.

    http://cp.literature.agilent.com/litweb/pdf/5952-8255E.pdf

  • 8/18/2019 System NOise and Link Budget

    17/35

    G, B,

    F, Te

    SubSystem

    Input Signal Power=Psi

    Input Noise Power

    Spectrum DensitySni=kT

    Psi.G

    Available Noise PowerDue to input thermal noise:

    kTGB

    Available Noise PowerDue to internal noise:kToGB(F-1) = Nr

    System Noise Figure (F)•  We define the Noise Figure (Noise Factor) as:! 

    •  We often express F in dB

    •  Note that F>1

    •  Nr is the available output noise power due to the two-portsub-system

    •  Te is effective (internal) temperature of the subsystem

    • 

    To is output equivalent temperature into the subsystem

    F  = SNRi  / SNR

    o

    =1+Te

    To

    Pao(noise) =

    kTGB+ kToGB(F  !1)=

    kGB(T  +To(F  !1))) =

    k (T  +Te) "G " B

    Find the expression forSNRi? SNRi = Psi/kToB

    Note: T=To

  • 8/18/2019 System NOise and Link Budget

    18/35

    Example B

    •   Assume the antenna contributes to the input thermal noise of the system by

    T=10K

    •  Find the available input noise spectral density (Sai)

    •  Find the available output noise spectral density (Sao)

    •  Find the available output noise power (Pao)

    • 

    Find the noise figure for the system (F)•  Draw the thermal noise circuit model for the antenna

    Gain = 100dBB=150 KHzTe = 140 K

    output signal &

    noise

    Antenna

  • 8/18/2019 System NOise and Link Budget

    19/35

    Cascaded System

    • 

    !"#$"%&% #()*#+#,&-# $". )& #/-01/2 )+ $3-)/./.4 "5"/1")1&

    4"/.# ".% .3/#& 0630&67 89:9;:9?@

    •  AB,3,"1 : A3 : A;?A

  • 8/18/2019 System NOise and Link Budget

    20/35

    Example CCascaded System

    •  FB".,:

  • 8/18/2019 System NOise and Link Budget

    21/35

    ]V"-01& ̂

    _/6&1# F6".#-/`&6

    • 

    N##(-& MN:aR%9-O b36 ,K& ".,&.." A, : ;R%9%O

    C&&%1/.& 13## : =%9O T3## ,K63(4K ,K& -",$K&%.&,Z36c /# R?Y%9?

    •  C/.% ]\PM ".% ]PM b36 " %/031& ".,&.."?

    •  \# ,K/# PC ,6".#-/`&6 -36& 1/c&1+ ,3 )& " K".%#&, 36 "

    )"#& #,"73.d

    Power Amplifier(PA)

    C&&%1/.&

    M,

    RFTransmitter^/4/,"1

    ^","

    Freq. ConverterMatchedNetwork

    Do it on yourown!

  • 8/18/2019 System NOise and Link Budget

    22/35

    Expression E b /N 0•  Ratio of  signal energy per bit (J/b) to noise power densityper Hertz (W/Hz)

    •  R = 1/Tb; R = bit rate; Tb = time required to send one

    bit; S = Signal Power

    TR

     N 

     RS 

     N 

     E b

    /

    00

    ==

    Eb = S . Tb = W x Sec / bit = Energy (J) / bit

    •  Given a value for E b /N 0 to achieve a desired error rate,

    parameters of this formula can be selected

    •  As bit rate R increases, transmitted signal power must

    increase to maintain required E b /N 0

  • 8/18/2019 System NOise and Link Budget

    23/35

    Probability of Bit Error Rate

    (PBER)

    Question: Assume we requireEb/No = 8.4 dB for bit error of

    10^-4. Assume temperature is290 Kelvin and data rate is set

    to 2.4 Kbps. Calculate therequired level of the received

    signal.

    8.4 dB

    10^-4

  • 8/18/2019 System NOise and Link Budget

    24/35

    T/.c 9(%4&, N."1+#/#

    •  Link characteristics (in terms of power, capacity, and frequency of

    operation)•  Noise Analysis is generally significant to characterize the received signalby the receiver

    •  System is generally balanced in term of dynamic range (in TX and RXdirections)

    •  Design Objective: –  Offer good quality of service (QoS)

     –  Provide high signal level (SNR and SNIR)

     – 

    Guarantee intelligibility and fidelity (PBER) –  High accuracy (BER)

    •  Conflicting Parameters (next slide)

    C36Z"6% 1/.c

    8%3Z.13"%@

    P&5&6#& 1/.c

    8(013"%@

  • 8/18/2019 System NOise and Link Budget

    25/35

    Link Budget

    Detailed View

    RF UnitReceiver

    (F, Go, B)C&&%1/.&

    M6

    DecoderM. ^/4/,"1

    ^","

    Power AmplifierC&&%1/.&

    M,

    RF Transmitter^/4/,"1

    ^","

    Freq. Converter

  • 8/18/2019 System NOise and Link Budget

    26/35

    Budget Link Analysis -

    Conflicting Parameters

    •  9_ e f3[ e FK&6-"1 J3/#&

    •  [JP e f3[EC/%&1/,+ e M, e !3#,

    •  9]P e f3[ e [JP e M, e !3#,

    • 

    C6&g? e C/%&1/,+ e ^+."-/$ P".4&

    •  [+#,&- T3## e ^+."-/$ P".4& e f3[ e U",&6/"1 e !3#,

    •  f(/$&., M3Z&6 ^/##/0"73. e T/b& F/-& e !3#, e !3-01&V/,+

    •  9/, 6",& e J3/#&

    • 

    F&-0&6",(6& e [JP

    • 

    Let us see how through an example!! 

  • 8/18/2019 System NOise and Link Budget

    27/35

    ]V"-01& ]

    •  Assume the frequency of

    operation is 1900 MHz. The

    following parameters are given

    •   Antenna gain is 0dBd

    • 

    Feedline loss is 0.5 dB•  Noise figure of the RF unit is 8 dB

    •  RF Unit gain is 40 dB

    •   Antenna noise temp is 60 Kelvin

    •  Detector BW is 100 kHz

    •  Detector’s SNR is 12dB

    • 

    Use a design margin of 3 dB(above the required sensitivity)

    •  Transmit power is 43 dBm

    •  Part I: Find the following

     –  Total system noise figure

     –  Total system gain

     –  Noise power at the detector (Pn)

    •  Part II: Find the signal power

    required into the detector indBm

    • 

    Part III: Find the RX power into

    the receiver (Pr) such that the

    detector operates properly

    (Psen of the receiver)

    • 

    Part IV: The maximum dynamicrange

    RF UnitReceiver

    (F2, G2, B2)C&&%1/.&8C;O A;@

    M6

    DecoderM.% ^/4/,"1

    ^","

    N.,&.."

    8A3O F3OP@M#%

  • 8/18/2019 System NOise and Link Budget

    28/35

    ]V"-01& ] GM"6, \ [31(73.

    •  J3 : SF

    •  C;: C&&%1/.& T3##

    •  A; : ;EC; : b36 F6".#-/##/3. T/.&

    •  CB,3,"1 : C; D 8C

  • 8/18/2019 System NOise and Link Budget

    29/35

    Budget Link Analysis - Review

    Conflicting Parameters

    •  9_ e f3[ e FK&6-"1 J3/#&

    •  [JP e f3[EC/%&1/,+ e M, e !3#,

    •  9]P e f3[ e [JP e M, e !3#,

    • 

    C6&g? e C/%&1/,+ e ^+."-/$ P".4&

    •  [+#,&- T3## e ^+."-/$ P".4& e f3[ e U",&6/"1 e !3#,

    •  f(/$&., M3Z&6 ^/##/0"73. e T/b& F/-& e !3#, e !3-01&V/,+

    •  9/, 6",& e J3/#&

    • 

    F&-0&6",(6& e [JP•

     

  • 8/18/2019 System NOise and Link Budget

    30/35

    Other Types of Noise

    •  Intermodulation noise – occurs if signals with differentfrequencies share the same medium

    •  Interference caused by a signal produced at a frequency thatis the sum or difference of original frequencies

    •  Crosstalk – unwanted coupling between signal paths

    •  Impulse noise – irregular pulses or noise spikes•  Short duration and of relatively high amplitude

    •  Caused by external electromagnetic disturbances, or faultsand flaws in the communications system 

    Question: Assume the impulse noise is 10 msec. How manybits of DATA are corrupted if we are using a Modem operating

    at 64 Kbps with 1 Stop bit? 

    64000 x 7/8 = 56000 bit / sec56000 x .01 = 560 data bits effected

  • 8/18/2019 System NOise and Link Budget

    31/35

    Other Types of Noise - Example

    Intermodulation noise(Diff. signals sharing the

    Same medium)

    Crosstalk(coupling)

    Impulse noise

  • 8/18/2019 System NOise and Link Budget

    32/35

    What Next?

    •  Other types of impairments!..

    •  Channel characteristics

  • 8/18/2019 System NOise and Link Budget

    33/35

    Other Impairments

    •  Atmospheric absorption – water vapor and oxygencontribute to attenuation

    •  Multipath – obstacles reflect signals so that

    multiple copies with varying delays are received

    • 

    Refraction – bending of radio waves as theypropagate through the atmosphere

  • 8/18/2019 System NOise and Link Budget

    34/35

    ImpairmentsWhy are they important?

  • 8/18/2019 System NOise and Link Budget

    35/35

    References

    •  Black, Bruce A., et al. Introduction to wireless systems.Prentice Hall PTR, 2008, Chapter 2

    •  Stallings, William. Wireless Communications & Networks, 2/E .Pearson Education India, 2009; Section 5.3

    • 

    M F Mesiya, Contemporary Communication Systems, First edition

    Chapter 6.