42
Synthetic Biology works A Montagud E Navarro P Fernández de Córdoba JF Urchueguía presents | Toggle switch | Repressilator | Counting machine z ETH iGEM 2005 | Memory device z ETH iGEM 2007 | Cell free system z Imperial iGEM 2007 | Synthetic pattern formation | Artificial Quorum Sensing | Artemisinin production

Synthetic Biology works

  • Upload
    lamnhi

  • View
    231

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Synthetic Biology works

Synthetic Biology works

A MontagudE Navarro

P Fernández de CórdobaJF Urchueguía

presents

Toggle switch

Repressilator

Counting machineETH iGEM 2005

Memory deviceETH iGEM 2007

Cell free systemImperial iGEM 2007

Synthetic pattern formation

Artificial Quorum Sensing

Artemisininproduction

Page 2: Synthetic Biology works

Toggle switch

Toggle switch

Page 3: Synthetic Biology works

Toggle switch

Toggle switch

Page 4: Synthetic Biology works

Toggle switch

Toggle switch

● pTAK117● pTAK102

–– steady states–– unsteady state

Page 5: Synthetic Biology works

Repressilator

Page 6: Synthetic Biology works

Repressilator

Repressilator

n = 2.1 α0 = 0

n = 2  α0 = 0

n = 2           α0/α = 10‐3

Page 7: Synthetic Biology works

Repressilator

Repressilator

siblings behaviour

phase amplitude period

Page 8: Synthetic Biology works

Counting machine

ETHZ iGEM 2005

Counting machine

The counter is a finite state machine implemented as a genetic circuit. It has 4 internal states R1 to R4. The transitionbetween these states is induced by an external stimulus withvalues 0 and 1 ‐ denoting whether it is absent or present, respectively. Repeated stimulus will lead to successivetransitions and finally to repeated cycling through those 4 states. Each time the state R4 is reached, an output signal is

generated. This leads to a counting behavior where everysecond occurence of 1 (high signal) is indicated by the output signal.

ETHZ iGEM2005

http://parts.mit.edu/wiki/index.php/ETH_Zurich_2005

Page 9: Synthetic Biology works

Counting machine ETHZ iGEM2005

Counting machineETHZ iGEM 2005

IPTG

Page 10: Synthetic Biology works

Counting machineETHZ iGEM 2005

Counting machineETHZ iGEM 2005

Biologically, a NOR gate can be implementedthrough a promoter with high basal activity that isrepressed by three effectors. If there is at least oneof the three repressors, transcription is inhibited. 

NOR gate

Page 11: Synthetic Biology works

Counting machineETHZ iGEM 2005

IPTG ≈

dR1/dt = k_syn_R1 ∙ rep(S) ∙ rep(R2) ∙ rep(R3) ‐ k_deg_R1 ∙ R1

dR2/dt = k_syn_R2 ∙ act(S) ∙ rep(R3) ∙ rep(R4) ‐ k_deg_R2 ∙ R2

dR3/dt = k_syn_R3 ∙ rep(S) ∙ rep(R1) ∙ rep(R4) ‐ k_deg_R3 ∙ R3

dR4/dt = k_syn_R4 ∙ act(S) ∙ rep(R1) ∙ rep(R2) ‐ k_deg_R4 ∙ R4

n

act

n

act

KA

KA

Aact+

=1

)( n

repKR

Rrep+

=1

1)(

Counting machineETHZ iGEM 2005

Page 12: Synthetic Biology works

Counting machineETHZ iGEM 2005

Memory device

educatETH

ETHZ iGEM 2007

Page 13: Synthetic Biology works

Memory device

Fig. 1: Flow diagram. This figure shows the protocol with which the final systemshould be tested as well as the test results in form of the reported colors. Theprotocol is divided into three phases: (1) a training or learning phase in whichthe system learns an input and stores it in its memory, (2) a memory phase in which the system keeps the content of its memory, and finally (3) a recognitionphase where the output of the system depends on the content of its memoryas well as the current input. 

educatETH

ETHZ iGEM 2007http://parts.mit.edu/igem07/index.php/ETHZ

Memory device

two learning inputsATC

IPTG

one memory inputAHL

educatETH

ETHZ iGEM 2007

Page 14: Synthetic Biology works

Memory device

t0 : learningCI & P22CII = 0

ATC → P22CII

IPTG → CI

educatETH

ETHZ iGEM 2007

Memory device

t1 : memoryIPTG / ATC removed

AHL

if at t0, in cell : ATC → P22CII ctes

IPTG → CI ctes

educatETH

ETHZ iGEM 2007

Page 15: Synthetic Biology works

Memory device

t2 : recognitionATC

IPTG

if at t0, in cell : ATC → P22CII

IPTG → CI

educatETH

ETHZ iGEM 2007

Memory device

CI

CI

CI

P22CII

P22CII

P22CII

t0

t1

t2

educatETH

ETHZ iGEM 2007

Page 16: Synthetic Biology works

Cell‐free system

Cell‐free system

eukaryote or prokaryote

transcription or transcription + translation

http://parts.mit.edu/igem07/index.php/Imperial

Page 17: Synthetic Biology works

Cell‐free system

Batch‐mode CFStranscription‐translation in bulk solutionexpression limited by nutrients & energy

Continuous‐exchange CFStranscription‐translation in dialysis membrane

expression sustained by diffusion of nutrientswastes diluted in feeding solution

Vesicule encapsulated CFSphospholipid bilayer separates from solution

maintained for a longer time period because of membrane diffusionnon‐specific pore protein increases reliability  of material exchange

Cell‐free system

Expression system can be quality‐controlled by manipulating adjustable parameters e.g. buffers are addedto maintain optimummagnesium concentrations forefficient translation; protease inhibitors can be added tominimize degradation of synthesized proteins

No self‐replication of your genetically engineered deviceleads to a fixed amount of DNA being expressed andmore control over the rate of expression

No selective pressure on your genetically engineered devicebecause the system is non‐living and does not undergonatural selection

No DNA mutation of your genetically engineered devicebecause there is no DNA replication

Less characterization and experience of use in thelaboratories compared to E. coli

No concurrent expression of existing genome, thereforeyour genetically engineered device ismore energy efficient

Expensive system has no sustained metabolism to convertcheap energy (like sugars) into useable one for the gene expression machinery

Process is quick and simple requiring only preparation ofcell extract and feeding solution and subsequent addition ofDNA template

Short expression lifespan because of limited energy of thesystem even in the presence of an ATP regenerating system

System is not restricted by the policies imposed ongenetically modified organisms

DisadvantagesAdvantages

Page 18: Synthetic Biology works

Cell‐free system

pink line : – control homemade E. coli S30 extract + homemade premix no DNAblue line : homemade E. coli S30 extract + homemade premix + DNAyellow line : commercial E. coli S30 extract + commercial premix + DNAblack line : homemade E. coli S30 extract + commercial premix + DNAgreen line : + control GFP protein in solution

homemadeE. coli CFS

Cell‐free system

dark blue line : 8ºCpink line : 15ºCyellow line : 20ºCblue line : 30ºC

commercialE. coli CFS

Page 19: Synthetic Biology works

Synthetic pattern formation

Synthetic pattern formation

Page 20: Synthetic Biology works

Synthetic pattern formation

Synthetic pattern formation

Page 21: Synthetic Biology works

Synthetic pattern formation

Synthetic pattern formation

Page 22: Synthetic Biology works

Synthetic pattern formation

Artificial Quorum Sensing

Page 23: Synthetic Biology works

Artificial Quorum Sensing

Integrateintercellular comunication : quorum sensingcellular metabolism : acetate

transcriptional regulation : GFP

Tunable circuit

Page 24: Synthetic Biology works

Artificial Quorum Sensing

pH(int) = 7.6

pH(ext) = 5 ‐ 8

ΔpH = 

pH(int) – pH(ext)

Artificial Quorum Sensing

system after 10 hours

1/Kl

Page 25: Synthetic Biology works

Artificial Quorum Sensing

Page 26: Synthetic Biology works

in anaerobicconditions, E. coliproduces moreacetate

without pta, extracel∙lular [acetate] is notafected by oxygencondition

Artificial Quorum Sensing

Page 27: Synthetic Biology works
Page 28: Synthetic Biology works

Artificial Quorum Sensing

Artificial Quorum Sensing

pH promoter

tuning parameters

Page 29: Synthetic Biology works

Artificial Quorum Sensing

pH(int) – pH(ext)

system after 10 hours

1/Kl

Conclusions

System works as a ‘quorum sensor’acetate, signal molecule, produced constantly

signal diffuses membrane

[acetate] relates to cell density

GFP expression only when a threshold is reached

Mathematical model predicts acurately the system’s behaviour

Page 30: Synthetic Biology works

Artemisinin production

Artemisinin production

Page 31: Synthetic Biology works

Anophelesmosquito with Plasmodium falciparumparasite causes malaria

Artemisinin from Artemisina annua is highly effectiveagainst multi‐drug‐resistant Plasmodium

short supply

expensive

Total chemical synthesis is difficult and expensive

Artemisinin production

Saccharomyces cerevisae

semi‐synthesis to artemisinicacid

Goals

Page 32: Synthetic Biology works

Saccharomyces cerevisae

semi‐synthesis to artemisinicacid

mevalonate pathway

Saccharomyces cerevisae

semi‐synthesis to artemisinicacid

mevalonate pathway

A. annua:amorphadiene synthase

novel cytochrome P450 monooxygenase

Page 33: Synthetic Biology works

Saccharomyces cerevisae

semi‐synthesis to artemisinicacid

mevalonate pathway

A. annua:amorphadiene synthase

novel cytochrome P450 monooxygenase

Overall metabolic tuningoverexpressionsinhibition

Artemisinin production

1. Adjusting the mevalonate pathway

2. From amorphadiene to artemisinic acid

3. Artemisinic acid analysis

Page 34: Synthetic Biology works

1‐ Adjusting the mevalonatepathway

increase farnesil pyrophosphate(FPP) production

decrease sterols generation

ADS from A. annua

measuring [amorphadiene] by strains

ADS with GAL1 promoter

[amorphadiene] by strains

Page 35: Synthetic Biology works

ADS with GAL1 promoter

upregulated: tHMGR

[amorphadiene] by strains

5x

ADS with GAL1 promoter

↑: tHMGR, upc2‐1 (↓sterol TF)

[amorphadiene] by strains

Page 36: Synthetic Biology works

[amorphadiene] by strains

ADS with GAL1 promoter

↑ : tHMGR

↓ : erg910x

[amorphadiene] by strains

ADS with GAL1 promoter

↑ : tHMGR, upc2‐1

↓ : erg9

20x

Page 37: Synthetic Biology works

ADS with GAL1 promoter

↑ : upc2‐1

↓ : erg9

2 x tHMGR

[amorphadiene] by strains30x

[amorphadiene] by strains

pGAL1‐ADS

↑ : upc2‐1

↓ : erg9

2 x tHMGR

↑ : erg20

Page 38: Synthetic Biology works

pGAL1‐ADS

↑ : upc2‐1

↓ : erg9

2 x tHMGR

what enzyme?previous clues for a A. annuacytochrome P450

which one? comparativegenomics

Asteraceae family would sharecommon ancestors enzymesfor the early steps of thesesquiterpene lactonessynthesis

2‐ From amorphadiene toartemisinic acid

Page 39: Synthetic Biology works

71C171C271C3

71C471D12

71D1371D18

71D1671D20

71AV173A1

98A379F1

701A393C1

75A175B2

76B6706B1

84A188A3

90A190B1

50 changes

100100

90

74

79

91

86

100

90

66

92

100

90

9785

88

60

86100

100

71C171C271C3

71C471D12

71D1371D18

71D1671D20

71AV173A1

98A379F1

701A393C1

75A175B2

76B6706B1

84A188A3

90A190B1

50 changes

100100

90

74

79

91

86

100

90

66

92

100

90

9785

88

60

86100

100

Z. mays

C. roseus

Mentha x Piperita

N. tabacum

Artemisia annuaH. tuberosus

A. thaliana

C. roseus

A. thaliana

A. thaliana

P. hybrida

G. max

G. arboretum

CYP71D hidroxilasesubfamily

non‐A typeP450 enzymes

A type P450 enzymes

3‐ Artemisinic acid analysis

isolation of:CYP71AV1

CPR : native redox partner, NADPH:cytochrome P450 oxidoreductase

EPY224 transformed with both genes

culture medium analysed by gas chromatography mass spectrometrylooking for artimisinic acid

Page 40: Synthetic Biology works

GC‐MS analysis

transgenic yeast and A. annua share a peak → artemisinic acid

negative control does not

transgenic yeast product correlates withartemisinic acid

artimisinin purification

> 96 % of the synthetised artemisinic acid was removed from the cell pellet by washing with alkaline buffertherefore, artemisinic acid is transported out of the cell, but remains bound to cell surface on acidic medium

a one‐step purification method was developed:1) ether extraction of the culture medium2) silica gel column chromatographic separation

Page 41: Synthetic Biology works

in vitro enzymeassays

microsomes

1

2

3

+ amorphadiene

+ artemisinic alcohol (1)

+ artemisinicaldehyde (2)

CYP71AV1 activities

Scientifical conclusions

Transgenic yeast effectively produces  artemisinic acidArtemisinic acid is produced at a biomassfraction comparable to that produced by A. annua but over a much shorter time (4‐5 days vs. several months)

100x specific productivity for yeast vs. A. annua

Page 42: Synthetic Biology works

Medical conclusions

Given the existence of known, relatively highyielding chemistry for the conversion of artemisinicacid to artemisinin microbially produced artemisinicacid is a viable source of this potent family ofantimalarial drugsA conservative analysis suggests that artemisinincombination therapies could be offered significantlybelow their current pricesIn addition to cost savings, this bioprocess shouldnot be subject to factors like weather or politicalclimates that may affect plant cultivation

sources

Gardner et al, Construction of a genetic toggle switch in Escherichia coli. Nature. 2000

Elowitz & Leibler, A synthetic oscillatory network of transcriptional regulators. Nature. 2000

http://parts.mit.edu/wiki/index.php/ETH_Zurich_2005

http://parts.mit.edu/igem07/index.php/ETHZ

http://parts.mit.edu/igem07/index.php/Imperial

Basu et al, A synthetic multicellular system for programmed pattern formation. Nature. 2005

Bulter et al, Design of artificial cell–cell communication using gene and metabolic networks. PNAS. 2004

Ro et al, Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006