44
Motivation Definitions Repressilator Internal Synchronisation External Synchronisation Synchronisation of Biological Clock Signals Capturing Coupled Repressilators from a Control Systems Perspective Thomas Hinze Mathias Schumann Stefan Schuster [email protected] Friedrich Schiller University Jena Department Bioinformatics at School of Biology/Pharmacy Modelling Oscillatory Information Processing Group 4th International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS2011) Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Synchronisation of Biological Clock SignalsCapturing Coupled Repressilators from a

Control Systems Perspective

Thomas Hinze Mathias Schumann Stefan Schuster

[email protected]

Friedrich Schiller University JenaDepartment Bioinformatics atSchool of Biology/Pharmacy

Modelling OscillatoryInformation Processing Group

4th International Conference onBio-Inspired Systems and SignalProcessing (BIOSIGNALS2011)

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 2: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Human Daily Rhythm: Trigger and Control System

www.wikipedia.org

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 3: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 4: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 5: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 6: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 7: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 8: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 9: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 10: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 11: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Biological ClocksSignificance

• Nanoscaled oscillatory reaction systems

• High precision and self-sustainability

• Robust and reliable control systems formanifold processes

• Adaptability to specific environmental conditions(e.g. cycles of light/darkness)

• Infradian (period > 1 day), circadian (≈ 1 day), andultradian (< 1 day) rhythms

• Several independent evolutionary origins

• Prototypes for fine-grained clock synchronisation

• Medicine, agriculture, bionics, material sciences, biology

=⇒ Keeping environmental time within living organisms

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 12: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Chronobiology

science of biological rhythms and clock systems

βιοζlife

λογοζscience

rhythm

ρυθµοζ

χρονοζtime

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 13: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Circadian Clock• Undamped biochemical oscillation• Period approx. 24 hours persisting under constant

environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

pertu

rbat

ion

conc

entr

atio

n

subs

trat

e

time

=⇒ Biological counterpart of frequency control systemSynchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 14: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Circadian Clock• Undamped biochemical oscillation• Period approx. 24 hours persisting under constant

environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

pertu

rbat

ion

conc

entr

atio

n

subs

trat

e

time

=⇒ Biological counterpart of frequency control systemSynchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 15: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Cyanobacterium Synechococcus elongatus“Simplest and earliest cells known to exhibit circadian phenomena”

www.genome.jgi−psf.org www.wikipedia.org1µm

• Prokaryotic autotrophic picoplankton in tropical seas• Assumed to be on earth for more than 3.5 billion years• Clock: Phosphorylation cycle without gene expression

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 16: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

1. MotivationChronobiology and Circadian Rhythms

2. DefinitionsSpecifications for Synchronisation of Oscillatory Signals

3. RepressilatorGene Regulatory Network with Oscillatory Behaviour

4. Internal SynchronisationSimulation Studies using Coupled Repressilators

5. External SynchronisationFrequency Control Systems with Phase-Locked Loop

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 17: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Entrainment vs. SynchronisationEntrainment

• Oscillating signal (frequency, phase, and amplitude)dynamically adapts to (varying) external stimulus.External stimulus itself not influenced.

Synchronisation• External: Entrainment to external

stimulus (e.g. light-dark cycleinduced by sunlight)+ adaptation to signal shapeof external stimulus

• Internal: oscillating signalsmutually adapt, converge to acommon signal

=⇒ Entrainment can be seen as special case ofsynchronisation

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 18: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Properties of Synchronous Oscillations (I)Undamped oscillations

• Modelled oscillation results from solution of ordinarydifferential equations (ODEs) describing dynamicalbehaviour of the biochemical clok system

• Eigenvalues of Jacobian matrix (real parts < 0) mostlyindicate undamped oscillations

• Limit cycles (represented by orbital courses) as method ofchoice for numerical data

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 19: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Properties of Synchronous Oscillations (II)

Asymptotic or total adaption• Harmonisation of oscillating substrate concentration

• after finite time tsync within• arbitrarily selectable ε-neighbourhood

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 20: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Properties of Synchronous Oscillations (III)

Monofrequential oscillation after tsync

• Fast Fourier Transformation / Fourier analysis(discrete data processing and comparison of peaks)

• Laplace transform and subsequent algebraic processing(preferably for sinusoidal signals)

• Numerical exploration (e.g. sampling)

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 21: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Internal Clock Synchronsiation: Technical ProtocolsEach node in a bidirectionally coupled computer network

• Comprises a specific clock (potential deviations to others)

• Can communicate with all other nodes bysending/receiving local time stamps

• Requests time stamps from others (mutually exchange)

• Successively adjusts its local clock(Lamport, Christian, Berkeley algorithms)

Berkeley algorithm. A. S. Tanenbaum and M. van Steen, Distributed Systems Principles and Paradigms, 2001

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 22: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

External Clock Synchronsiation: Technical ProtocolsEach node in unidirectionally coupled computer network

• Comprises a specific clock (potential deviations to others)• Localised within hierarchial network structure• Retrieves time stamps exclusively from upper layers

(unidirectional signal transduction)• Successively adjusts its local clock by propagating time

stamps from clock(s) in root position

Network Time Protocol (NTP). de.wikipedia.org/wiki/Network_Time_Protocol

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 23: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

1. MotivationChronobiology and Circadian Rhythms

2. DefinitionsSpecifications for Synchronisation of Oscillatory Signals

3. RepressilatorGene Regulatory Network with Oscillatory Behaviour

4. Internal SynchronisationSimulation Studies using Coupled Repressilators

5. External SynchronisationFrequency Control Systems with Phase-Locked Loop

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 24: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Repressilator PrototypeIn-vitro Oscillating Gene Regulatory Network

Eulowitz et al., Nature 403:335-338, 2000

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 25: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Repressilator Model: Network Topology

Based on M.B. Elowitz, S. Leibler. A synthetic oscillatory network of transcriptional regulators.Nature 403:335-338, 2000

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 26: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

ODEs Formalising Repressilator’s Dynamic Behaviour

d LacI_Protein

d t= k_tl · LacI_mRNA − k_p · LacI_Protein

d TetR_Protein

d t= k_tl · TetR_mRNA − k_p · TetR_Protein

d cI_Protein

d t= k_tl · cI_mRNA − k_p · cI_Protein

d LacI_mRNA

d t= a0_tr +

a_tr · KMn

KMn + cI_Protein− k_tl · LacI_mRNA − k_r · LacI_mRNA

d TetR_mRNA

d t= a0_tr +

a_tr · KMn

KMn + LacI_Protein− k_tl · TetR_mRNA − k_r · TetR_mRNA

d cI_mRNA

d t= a0_tr +

a_tr · KMn

KMn + TetR_Protein− k_tl · cI_mRNA − k_r · cI_mRNA

Reaction rates and parameter setting: k_tl = 6.93, k_p = 0.069, k_r = 0.347,

a0_tr = 0.03, a_tr = 29.97, KM = 40, n = 3 resulted from parameter fitting based on

available experimental data (Garcia-Ojalvo et al.).

System implies sustained limit-cycle oscillations after transient phase.

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 27: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Dynamical Behaviour of the Repressilator (TetR)

Initialisation at limit cycle avoids transient phase=⇒ Eliminates its influence on synchronisation time

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 28: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Period Control by Velocity of Protein Degradation

Variable degradation rates k_p = ln(2)/x (frequence parameterx = 3, . . . , 15) of proteins sufficient for clock advance or delay.Frequence control: prerequisite for synchronisability.

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 29: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Repressilator’s Transfer Function

Correlation between velocity of protein degradation and period.Identification of minimal period delimiting sustained oscillations.

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 30: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

1. MotivationChronobiology and Circadian Rhythms

2. DefinitionsSpecifications for Synchronisation of Oscillatory Signals

3. RepressilatorGene Regulatory Network with Oscillatory Behaviour

4. Internal SynchronisationSimulation Studies using Coupled Repressilators

5. External SynchronisationFrequency Control Systems with Phase-Locked Loop

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 31: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Coupled Repressilators for Internal Synchronisation

Bidirectional diffusion of TetR proteins between either repressilatorsenable internal synchronisation. Diffusion parameter diff as additionalrate constant (linear kinetics)

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 32: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Typical Synchronisation Run

time steps

Tet

R a

bund

ance

Typical synchronisation run of two TetR-coupled repressilators,coupling strength diff = 0.04, initial phase shift 182◦.

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 33: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Time to Synchronisation for Various Initial Phase Shifts

0 50 100 150 200 250 300 350

2000

4000

6000

8000

1000

012

000

1400

0

diff = 0.01

diff = 0.04

diff = 0.07

diff = 0.1

diff = 0.13

180°

phase shift φ

timeto

synchronize

initial phase shift

time

to s

ynch

roni

satio

n

diff = 0.01

diff = 0.04

diff = 0.07

diff = 0.10

diff = 0.13

Time to synchronisationsubject to various initialphase shifts. Parameterdiff= 0.01, . . . , 0.13denotes couplingstrength from weak tostrong coupling. Initialantiphase rhythmicity(phase shift 180◦)between bothrepressilators causes thehighest effort tosynchronise bothoscillatory signals bymutual forcing.

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 34: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Time to Synchronisation for Various Initial Frequencies

Weak diffusion, diff =0.01, frequency parameter x ratio: 9.475 / 9.5Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 35: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Time to Synchronisation for Various Initial Frequencies

Weak diffusion, diff =0.01, frequency parameter x ratio: 9.4 / 9.5Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 36: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Time to Synchronisation for Various Initial Frequencies

Weak diffusion, diff =0.01, frequency parameter x ratio: 9.3 / 9.5Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 37: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Time to Synchronisation for Various Initial Frequencies

Weak diffusion, diff =0.01, frequency parameter x ratio: 9.2 / 9.5Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 38: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Time to Synchronisation for Various Initial Frequencies

Weak diffusion, diff =0.01, frequency parameter x ratio: 9.1 / 9.5Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 39: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Time to Synchronisation for Various Initial Frequencies

Weak diffusion, diff =0.01, frequency parameter x ratio: 9.0 / 9.5Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 40: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Frequency Synchronisation Window

Ratios of initial frequencies subject to synchronous frequency considering variety of

coupling strengths diff = 0.01, . . . , 0.13: variant of an Arnold tongue

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 41: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

1. MotivationChronobiology and Circadian Rhythms

2. DefinitionsSpecifications for Synchronisation of Oscillatory Signals

3. RepressilatorGene Regulatory Network with Oscillatory Behaviour

4. Internal SynchronisationSimulation Studies using Coupled Repressilators

5. External SynchronisationFrequency Control Systems with Phase-Locked Loop

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 42: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Frequency Control System with Phase-Locked Loop

coupledone or several

core oscillator(s)

local feedback(s)

global feedback path

damping and delay)(loop filter for

affectsfrequency

signaltuning

signal comparator

frequency deviation)(phase difference or

signaloutput (reference)

stimuliexternal

errorsignal

Coupled repressilators as core oscillator of frequency control systemable to manage external synchronisation to external stimuli (referenceoscillation)

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 43: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Conclusions and Take Home Message

• Repressilator as promising biochemical in-vitro modelsystem to explore synchronisation of circadian oscillations

• Inherent oscillation similar but not equal to sinusoidalcourse (hence not “symmetric”)

• Repressilator coupling by diffusion of TetR protein enablesinternal synchronisation.

• Arbitrary initial phase shifts (also antiphasic behaviour)become harmonised while adaptation to different initialfrequencies spans a synchronisation window.

• Coupled repressilators can be considered as part of afrequency control system based on phase-locked loop(PLL) utilising external synchronisation.

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster

Page 44: Synchronisation of Biological Clock Signalshinze/slides-biosignals...Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster Motivation Definitions Repressilator

Motivation Definitions Repressilator Internal Synchronisation External Synchronisation

Special Thanks go to . . .

German Federal Ministry of Educationand Research, project 0315260A withinResearch Initiative in Systems Biology

... you for your attention. Questions?

Department Bioinformatics, FSU JenaStefan Schuster

Department Bioinformatics, FSU JenaMathias Schumann

... the funding organization

... my coworkers

Synchronisation of Biological Clock Signals T. Hinze, M. Schumann, S. Schuster