60
Symposium on Climate Change Challenges in River Basin Management 1–1 January 2011 · Oulu · Finland Abstract Proceedings | Editor: Teemu Ulvi www.waterpraxis.net

Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

Symposium on Climate Change Challenges in River Basin Management1�–1� January 2011 · Oulu · Finland

AbstractProceedings|Editor:TeemuUlvi

www.waterpraxis.net

Page 2: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

Preface 4

Session 1: Climate Change Scenarios and Assessment 5

AnOverviewoftheClimateChangeChallengesinRiverBasinManagement

intheBalticSea 6

ImpactofPastandFutureClimateVariabilityonSnowmeltHydrologyinCentralFinland 7

MeetingtheClimateChangeChallengesinRiverBasinPlanning–

aScenarioBasedApproach 8

Land-useandClimateChangeScenarioIntegrationinaRiverBasinManagement

Perspective 9

AConceptualApproachforDelimitingSet-backLinesfortheGuadianaEstuarineSystemas

aMeansofManagingRetreatinResponsetoSea-levelRise 11

ModellingFutureNutrientEmissionsforaWellCoordinatedRiverBasinManagement 13

Session 2: Hydrology and Ecology 15

LakeIceinFinland–ObservedTrendsandFutureOutlooks 16

SimulatingSnowmeltEffectsonPartiallyFrozenSoilalongFellGradientinFinnishLapland 18

ImprovingtheEcologicalStatusofRunningWatersBasedonFishCommunityinWFD:

DoesClimateChangeAffecttheMitigationMeasures? 20

EcologicalResponsetoClimateChangeAssessedbyPhytoperiphytonStructureinStreams 22

TheHydrologicalandEcologicalImpactsofClimateChangeinLargeLakes–CaseStudyof

LakeSaimaa,FinnishLakeDistrict 24

Session 3: River Basin Management 25

IntroductiontotheRiverBasinManagementPracticesinFinland 26

IntegratingHydro-geomorphicandLandscapeMetricstoAnalyzetheResponseof

StreamWaterQualitytoLandUseandClimaticStressors 28

AnalysisofExistingWaterProtectionActionPlansatSulejowReservoirinPoland 29

AdaptationofLandandWaterManagementtoClimateChangeinCentralAsiaUsing

PaymentsforEcosystemServices 30

Session 4: Groundwater 32

ApplicationofORPfortheCharacterisationoftheGroundDrinkingWaterunder

ChangingClimateConditions 33

CouplingofSoilFrosttoSurfaceWater-groundwaterFlowModeltoEstimatethe

EffectsofClimateVariabilityonGroundwaterLevelsinColdSnowDominatedRegion

inCentralFinland 35

StudyingGroundwater-RiverWaterInteractionattheCatchmentoftheRiverVantaa

andItsTributaries,SouthFinland 37

2 ClimateChangeChallengesinRiverBasinManagement

TableofContents

Page 3: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

Table of Contents

�Climate Change Challenges in River Basin Management

Session 5: Socio-economical and Institutional Issues of the WFD 38

River Basins as Planning Institutions: How to Avoid the Place-centrist Trap 39

Institutional Approaches to the Implementation of the Water Framework Directive

around the Baltic Sea 40

Planning in Safe Waters – Institutional Continua of Water Management Planning

and the Challenge of Responsiveness 41

Integrated Modelling of Cost-effective Reductions of Nutrients to the Baltic Sea 42

Vulnerability Assessment Model for Local Tourism in Terms of Climate Change Challenges 44

The Interactive Use of Multicriteria Decision Analysis to Support the Evaluation of

Restoration Alternatives – the Case Study Related to the Enhancement of Migratory

Fish Stocks in the River Iijoki 45

Participatory River Basin Management Supported with the Complementary Use of Models 47

Poster Session 48

Towards Plural and Conditional Water Management – a Challenge for Knowledge

Production 49

Density Functional Studies of the Initial Stage of Aluminium Oxide Dissociation in

Clean Water 50

Climate Variability Effects on the Groundwater Table Fluctuations and Nitrate Nitrogen

Concentrations in Agricultural Lands 52

Comparison of Climate Change Scenarios and GCM Models for Kashafrood Basin of Iran 54

Assessment of Impacts and Adaptation Measures of Climate Change for Water Quality

in Agricultural Area 56

Water Scarcity and the Management of Water Resources in Syria and Lebanon 57

Assessing the Effects of Agricultural Contaminants on Fontanili Ecosystems in North Italy 58

Picture credits (page 1, from left to right): Simo Räsänen (Wikipedia Commons), Vitas Girdauskas (Charity and Support Fund Sesupe Euroregion, Sakiai Office), Simo Räsänen (Wikipedia Commons), Julian Weber (Fotolia.com), Seppo Hellsten (SYKE), Matti Piiroinen (Wikipedia Commons).

Page 4: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

TheSymposiumonClimateChangeChallengesinRiverBasinManagementwasheldintheUni-versityofOuluinFinlandon17–19January2011.TheSymposiumwasorganisedbytheBalticSeaRegion Programme 2007–2013 project Water-praxis – From theory and plans to eco-efficient andsustainablepractices to improve thestatusoftheBalticSea,incooperationwiththefollow-inginitiatives:

• VACCIA–VulnerabilityAssessmentofEcosystemServicesforClimateChangeImpactsandAdaptation;

• GENESIS–GroundwaterandDependentEcosystems: New Scientific and Technical BasisforAssessingClimateChangeandLand-useImpactsonGroundwaterSystems;

• CEWIC–CentreofExpertiseintheWaterIndustryCluster;

• GISBLOOM–ParticipatoryMonitoring,Forecasting,ControlandSocio-EconomicImpactsofEutrophicationandAlgalBloomsinRiverBasinsDistricts;

• VALUE–DoctoralPrograminIntegratedCatchmentandWaterResources

Management;• Human-EnvironmentRelationsintheNorth:

resourcedevelopment,climatechangeandresilience(Fidipro,FinnishAcademy).

TheSymposiumaimedtobeaforumwherein-formation exchange between policy makers,stakeholders and scientists can take place onissuesthatarecloselyrelatedtothe implemen-tationofEUwaterpolicies.Particularemphasiswaspaidtotheimpactsofclimatechangewithinthecontextofothermultiple stressors, suchasagricultureandeutrophication.ThemainthemesoftheSymposiumwere:

• Integratedmodelingasapartofriverbasinandgroundwatermanagement;

• UsingWaterFrameworkDirective(WFD)formitigationofclimateeffects;

• The influence of climate change scenarios on

theprocessesofWFDimplementation;• Researchongroundwateranddependent

ecosystemsforGroundwaterDirective(GWD);• Climatechangeeffectsonhydrologyand

wateravailability;• Landuseandclimatechangeimpactson

groundwateranddependentecosystems;• Methodologyonclimatechangescenarios

andlanduseinEuropeancasestudies;• Interactionsbetweenclimate,hydrologyand

ecosystems;• Assessinglanduseandclimateeffectson

waterqualityandwatersecurity• Institutionalissuesinclimateintegrationin

riverbasinplanning;• Socio-economicanalysisforassessmentand

adaptationtoclimatechange;• Participatorymethodsforintegratedand

adaptivewaterresourcesmanagement.

During the Symposium more than 40 oral andposterpresentations,coveringversatiletopicsre-latedtochallengesthatclimatechangeisposingon the management of water resources, wereheld.Thispublicationconsistsoftheabstractsofpresentations.

The organising committee

• SeppoHellsten,FinnishEnvironmentInstituteSYKE–Chair

• TeemuUlvi,FinnishEnvironmentInstituteSYKE–Co-chair

• Anne-MariRytkönen,FinnishEnvironmentInstituteSYKE

• JoukoInkeröinen,NorNet,UniversityofOulu• HannuHeikkinen,ThuleInstitute,University

ofOulu• KariLaine,ThuleInstitute,UniversityofOulu• RiittaKamula,ThuleInstitute,UniversityofOulu• BjørnKløve,UniversityofOulu• NatalieFischer,HamburgUniversity

ofAppliedSciences• VeronikaSchulte,HamburgUniversity

ofAppliedSciences

Preface

4 ClimateChangeChallengesinRiverBasinManagement

Preface

Page 5: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

5ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

Session 1: Climate Change Scenarios

and Assessment

Page 6: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

� ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

An Overview of the Climate Change Challenges in River Basin Management in the Baltic Sea

W.Leal,N.Fischer&V.Schulte

ResearchandTransferCentre“ApplicationsofLifeSciences“,HamburgUniversityofAppliedSciences,Hamburg,Germany

Thispaperpresentsanoverviewof theclimatechangechallengesrelatedtoriverbasinmanage-mentintheBalticSearegion,alongwithsomeoftheon-goingandplannedactionstocopewithclimate change in the region. The first part of

the paper outlines the extent to which climatechange influences Baltic countries and describes someoftheeffortsundertakenbygovernmentsacross the regions to copewith it.The secondpartoutlines thepotentialorexpected impactsofclimatechangesonriverbasins,whilethethirdpartofthepaperdescribessomeoftheon-goingeffortstomeasureandreducepotentialclimatechange impacts on river basins seen in a sam-pleofBalticcountries.Finally,thepaperpresentssomeofthechallengestheyface.

Page 7: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

�ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

A.TorabiHaghighi,H.Marttila&B.Kløve

WaterResourcesAndEnvironmentalEngineer-ingLaboratory,UniversityOfOulu,Oulu,Finland

Thewaterresourcesareoneofthemainissueswhich is affected by climate change. It can beseen in e.g. changes at availability, timing andmagnitude in precipitation, stream runoff,snowmeltingandgroundwaterseepage.Thesechangescanaffecthumanlife,industrial,energyproduction, irrigation and aquatic ecosystems.Precipitationand runoff, two importantparam-etersinwaterresourcesystem,canchangeduetoclimatechange.Inaddition,changesintem-perature play a major role in runoff behaviour,especiallyincoldregionsasitcanchangesnowmeltingbehaviour.Thisfurtheraffectstherunoffextremebehaviourincatchments.

Inthispaper,changesintemperatureandrainfallandtheeffectonrunoffbehaviorandsnowmelt-ing is evaluated in West-Central Finland. Morethan200,000temperatureandrainfalldatafrom7 climatology stations (Seinäjoki, Jyvaskyla,Ve-santo,Ähtäri,Vieremä,KauhajokiandViitasaari)from the years 1959–2009 were analyzed. Theimpactofpastandfutureclimatewasanalyzedinaregionof45,000km².Foreachstation,datawereanalyzedbydividingthe50yeartimeseriesinto 3 categories for comparison of change intime: I) two 25 years periods for the first catego-ry,II)three17yearsperiodsforsecondcategoryand III) five 10 years periods for third category. Dataanalysiswasdoneforaverageandextremehydrological and climatologically parameters.Thehighlightsoftheresultsare:

• Therainfallamountincreasedinallstationsfrom1.5%to11.5%inthesecondhalfoftimeduration(1984–2009)comparedwiththe first half (1959–1984).

Impact of Past and Future Climate Variability onSnowmelt Hydrology in Central Finland

• Theincreasingtrendofrainfallcanbeseenin17yearsperiodsinallstationsexceptforJyväskyla.

• Theincreasingtrendofrainfallcanbeseenin10yearsperiodsonlyinVieremäandKauhajokistations.

• DuringDecembertoMarch,MaytoJulyandOctobertheamountofrainfallwasincreased.

• ThestrongestincreasinginrainfallwasfoundforFebruary.

• MaximumrainfallaccruedinAugustandJuly,butitseemsthiswillchangedinthefuture.

• Averagetemperatureincreasedinallstations.Onmonthlyscalethetemperaturechanged-0.48–+2.2°C,andfastestincreasingwasoccurredinJanuarywithaverageincreaseofabout+1.7°C(circa1.1°Cmorethanannualaverage).

• In the last five decades, the third decade wasthecoldestandthefourthdecadewasthewarmest.Thisindicatessomelongtermfluctuations.

• Animportantparameterincoldregionhydrologyisthetemperaturedifferencebetweentwocontinuousdayseffectingonsnowmeltingratesandfrost.Thepresentdataindicatethatthiswillchangemorethansingledayvalues.

Finally, it can be predicted that in future, thetypeandtimingofrainfallischangingincentralFinland with an increase in runoff and flood risk duetorainfallandsnowmeltingoccursimulta-neously.

Page 8: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

� ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

Meeting the Climate Change Challenges in River BasinPlanning – a Scenario Based Approach

H.S.Hansen

AalborgUniversity,CopenhagenInstituteofTechnology,Ballerup,Denmark

Introduction

During the last decennium climate change hasreceived much attention and especially variousmitigationandadaptationstrategieshavegainedpoliticalawareness.Particularly thewaterman-agementwillbeaffectedbyderivedconsequenceslikesealevelrise,changedprecipitationpatterns,increasing ground water level, and flooding. In ordertomitigatethemostsevereconsequencesforthesocietyitisdecisivethatregionalplannersandwatermanagersaddresstheclimatechangeissue in their planning efforts. Using modellingandsimulation,wecanincreaseourunderstand-ing of the future land-use system under influence ofachangingclimateandaccordinglyreduceun-certaintyconcerningdecisions.Thecurrentpaperdescribeshowtocombine land-usesimulationswithregionalclimatechangescenariosandper-form impactassessmentsof futureregionalde-velopment. We describe how the definition of adaptationstrategiescan facilitate spatialplan-ningmeasures to counteract theconsequencesofpotentialclimatechanges.

The Modelling and Assessment Framework The land-use modelling is carried out with theLUCIAframeworkforland-usechangeimpactas-sessment(Hansen,2007,Hansen,2010)andtheland-use scenarios are based on the SRES nar-rativeswhich representdifferent future societaldevelopmentspathfortheworldintwodimen-sions. A focus on economic or environmentalconcern in the first dimension, and global or local developmentpatternsontheseconddimension.LUCIAhasamulti-levelstructure,wheretheup-perregionallevelrepresentsthedrivers,whereasthedetailedlowerlevelrepresentstheland-use.

Thedrivingforcesfortheamountofrural-urbanchangearebasicallypopulationgrowthandeco-nomicgrowth.Thesedriversrepresentwhatwecall macro-level drivers, and they are modelledexternallytoourmodelinvarioussectormodels,and basically define the demand for land from each active land-use type. The future climatedata–mainlyprecipitationdata–areprovidedbythePRUDENCEandENSEMBLEprojects,andthedailyrunoffisestimatedbythewellknowncurvenumbermethod,whichiscloselylinkedtoland-use.

The impact assessment is concerned with flood-ing and soil erosion. Flood hazard mapping isused to determine the areas susceptible to flood-ing when discharge of a stream exceeds thebank-full stage. Using future precipitation andrunoffdata,alongwithtopographicdata,mapscanbeconstructedtoshowareasexpectedtobecovered with floodwaters. The topographic di-mension of flooding is obtained by an algorithm, which finds the elevation difference between a specific grid-cell and its closest neighbouring grid-cellcontainingariver,whilerespectingtheoverallcatchmentstructure.Thesoilerosionriskassessmenttakesoutsetinthereviseduniversalsoil leach equation (RUSLE) that predicts long-term,average-annualerosionbywater.

Finally,severalalternativeland-useplansareintro-duced to mitigate the enhanced risk of flooding.

Page 9: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

�ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

Land-use and Climate Change Scenario Integrationin a River Basin Management Perspective

L.Hallin-Pihlatie1,H.S.Hansen2,J.Rintala3&A.Rytkönen4

1) FinnishEnvironmentInstitute,Geoinformatics Unit,Helsinki,Finland2) AalborgUniversity,Copenhagen,Denmark3) CentreforEconomicDevelopment,Transport andtheEnvironmentinNorthernOstro- bothnia,Oulu,Finland4) FinnishEnvironmentInstitute,RiverBasin ManagementUnit,Oulu,Finland

Introduction

There isaneed to integrate theuseof climatechangeandland-usescenariosinactivitiesrelat-ed to land-useplanningand resourcemanage-ment. Depending on the climate and land-usepatterns of the future, runoff and the nutrientloads will change, affecting the water qualitywithinriverbasins.Climatechangeandland-usescenariointegrationisthereforearelevantissueforevaluatingdifferentland-usedevelopmental-ternativesinariverbasinmanagementperspec-tive.Thispaperdescribesandtestsasetoftoolsfor climate change and land-use scenario inte-grationinastudyareaintheOulujoki-IijokiRiverBasinDistrictinNorthOstrobothnia.

Storytellingisbeingusedtoexpressthepossibili-ties,challengesanddevelopmentoptionsofthefuture.TheIntergovernmentalPanelonClimateChange(IPCC)hasdevelopedemissionscenarioscalledSRESthatcorrespondtothestorylinesanddriving forcesused in the IPCC framework.Ac-cordingtotheSRESscenariooftypeA,theworldwill facea technology-driven future,where thechallengesoftodaywillbesolvedbytechnologi-cal innovationsandnotbychanges in lifestyle.IntheSRESscenariosoftypeB,thefuturedevel-opmentsaredriven toa largerdegreebyenvi-ronmentalconcern,changinginmanywaystheworldoftoday.IntheSRESscenariosoftype1,e.g.A1andB1, the solutionsareofglobalna-

ture,whileintheSRESscenariosoftype2,e.g.A2andB2,thesolutionsarebasedonregionalapproaches.The latterA2andB2scenariosareusedinourapproach,duetotheregionalscaleofourstudy.

Simulating SRES scenarios with the LUCIA modelling framework

Land-useisstronglyrelatedtothedevelopmentof society. Therefore the land-use pattern of atechnology driven world will on regional levellookverydifferentfroma land-usepattern inaworld driven by environmental concern. To beable to evaluate the environmental effects ofdifferentSRES scenarios, land-usepatterns thatcorrespond to the SRES scenarios need to besimulated.TheLandUseChange ImpactAnaly-sis (LUCIA) frameworkcanbeused forproduc-ing land-use scenarios, based on the land-usepatternandchangeswithinitoftoday(Hansen2007).LUCIAisbasedonaconstraintcellularau-tomataapproach,wherethesumoffactorssuchasproximity,accessibilityandsuitabilityandzon-ingconstraintstogetherdeterminetheland-usepatternoftheoutcome.

In particular in the western part of the studyarea, rapid population growth has taken placeduringthecalibrationperiod,betweenyear2000and2008.During thisperiod, the totalareaoffields has also increased. As a first step, GIS analyses were carried out in ArcGIS to find the factorsandconstraintswhichbestcouldexplainthe changes within the land-use pattern thathad taken place during the calibration period.CORINE Land Cover data, the Urban StructureMonitoring System, the Field Parcel Register,soil, road,riverandstreamdatawhereusedtoproduce the land-use, the accessibility and thesuitabilitymap layers ina250meter resolutionforthewholestudyarea.AdditionallytheNatura2000networkandland-useplanningdatawereused to indicate the constraintsof thebuilt-up

Page 10: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

10 ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

areaexpansion.Bychanging theweightof thefactors,theindividualfactorsthemselvesandthetypeofconstraintincomparisonwiththebase-linevaluesanddatasets,land-usescenariosrep-resentingSRESA2andB2fortheyear2040wereproduced.Thepopulationprojectionsonmunici-pal levelobtainedfromtheStatisticsofFinlandwere assumed to affect the extent of built-upareaexpansion.

Integration of land-use and run-off data in RiverLifeGIS

Land-useinduceddiffuseloadingplaysthemostimportantrole indeterioratingwaterquality. Inordertoevaluatetheeffectsthatoursimulatedland-usechangesmayhaveonwaterqualityandnutrient loads in a river basin, another raster-basedfreeware,theRiverLifeGIStool,wasused.InRiverLifeGIS,theamountofnutrientloadscanbeestimatedbasedon run-offand the relativeabundance of a particular land-use class (Kar-jalainen&Heikkinen2005). InRiverLifeGIS, thenutrientloadsfortheland-usepatternsoftodayandoftheA2andB2scenarioswerecalculatedbasedonrun-offvaluesproducedbytheFINESSIproject(FINESSI).Land-usedataoftheyear2007and average runoff figures for the period 1961–1990wereusedtorepresentthenutrientloadingof the baseline situation. Average run-off datamodelled by the FINESSI project to match the

SRESA2andB2scenariosfortherelevanttimeperiod 2040–2069 were used. To produce this10 kilometer resolution run-off data represent-ing the baseline and theA2 and B2 scenarios,theHydrologicalModellingSystemoftheFinnishEnvironmentInstitutehadbeenusedinconjunc-tionwithseveralglobalclimatemodels,suchasHadCM3,EH4OPYCandNCAR/PCM.Withtoolsanddatasetsdescribedinthispaper,thenutrientloadsoftodayandofthefuturedevelopmental-ternatives,inthiscasetheSRESA2andB2land-use scenarios, could be evaluated from a riverbasinmanagementpointofview.

References

FINESSI. 2.7.2010. http://www.finessi.info/fines-si/index.php?=&lang=en Hansen,H.S.2007.Anadaptiveland-usesimula-tionmodelforintegratedcoastalzoneplanning.TheEuropean InformationSociety: Leading thewaywithgeo-information.(Eds.)Fabrikant,S.I.,Wachowicz,M.LecturenotesinGeoinformationandCartography.Pp35-53.Springer-Verlag.Ber-lin.

Karjalainen,S.M.&Heikkinen,K.2005.TheRiv-erLifeprojectandimplementationoftheWaterFramework Directive. Environmental Science &Policy8.pp.263-265.Elsevier.

Page 11: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

11ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

D.Sampath,T.Boski&F.Martins

CentrodeInvestigaçãoMarinhaeAmbiental,UniversidadedoAlgarve,Faro,Portugal

Introduction

Abetter understandingof the sensitivityof es-tuarinesystemstoforcingfromsea-levelriseorfromhuman interference is required if the sus-tainablemanagementofestuarinehabitatsistobeachieved.However,duetotheuncertaintyofdeterminingthemagnitudeofsea-levelriseandsediment supply intoanestuary,weproposeaconceptual scenario-based approach to modelthemorphologicalevolutionofanestuaryinre-sponsetotheabovementionedpressuresduringthe21st century.The approachwas applied totheGuadianaestuarinesystem,whichhasbeensubjected to a drastic reduction in river flow and sediment discharge due to the construction ofmore than 40 dams along the Guadiana River.In addition, the construction of jetties at themouthof theGuadianaRiver has reducedma-rinesedimentsupplytotheestuary.Weadoptedan estuarine sedimentation model – an ideal-izedbehaviour-orientedmodel – topredict thelong-termmorphological evolutionof theGua-diana estuary. Three IPCC (2007) sea-level risescenarioswereusedinthisstudy:(1)theglobalsustainability scenario (B1); (2) balanceduseoffossil fuelunderaglobalizedeconomyscenario(A1B);and(3)intensiveuseoffossilfuelunderaglobalizedeconomyscenario(A1FI).Undereachsea-levelrisescenario,foursimulationswerecar-riedout for four, locallyderived, sedimentationrates:(1)human-intervention(approximatelyhalfofthe2ndscenario),(2)minimumlong-termrate(millennial-scale),(3)average(averageofthesec-ondandthefourthscenarios)and(4)maximum(equalstosea-levelriserate).

Set-back lines for the Guadianaestuarine system

Basedontheoverallimpactsofsea-levelriseandsedimentsupplyscenarios,threesetsofset-backlines for human activities are proposed for theGuadianaEstuary.As thepresent sedimentdis-chargeistoolowtomaintainastableeffectivewaterdepth in the lowerestuary, themorpho-logicalevolutionof theestuaryduring the21stcentury is probably best representedunder thescenario that combines the A1FI sea-level risescenario (59cm) and the human interventionsedimentation scenario (0.65 mm/yr). The first set-back line (outer perimeter) therefore repre-sentsthelandwardlimitoftheintertidalzoneinresponse to the above scenario. The landwardmigrationoftheintertidalzonewouldbemoresignificant on the Portuguese margin of the estu-arycompared to theSpanishmargin.Althoughtheremaybealossofsaltmarshhabitatsonthewesternmargin,thereislikelytobealandwardshiftintheentiresystem.Eventhoughsubmer-gencemaybeconsideredasa loss, intermsofrestrictingthetypeofeconomicactivitiesabletotake place there, from an environmental pointofview it is recommended that theprocessbeallowed to occur. Managed retreat would bea better option for economic activities such assaltproduction.OntheSpanishmargin,duetothe limited landwardmigrationofthe intertidalzone,thereislikelytobeahighriskofsaltmarshhabitatsdisappearing.Inaddition,thelandwardtranslation of mean sea-level will be significant ontheSpanishmargin,anditssaltmarsheswillexperience more pressure due to acceleratedsea-level rise thanwill be the caseon thePor-tuguesemargin.Thus,saltmarshhabitatsalongtheeasternmarginwouldbesqueezed further.Mitigationmeasuresshouldbetakentoimprovethenaturaladaptabilityof this region.Thesec-ond(intermediate)set-backlinewasdemarcated

A Conceptual Approach for Delimiting Set-back Lines for the Guadiana Estuarine System as a Means of Managing Retreat in Response to Sea-level Rise

Page 12: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

12 ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

basedon the landward limitsof intertidal zoneresultingfromtheA1B(48cm)sea-levelrisesce-narioandtheminimumsedimentationscenario(1.3 mm/yr).The third set-back line was delim-itedbasedonthelimitsofhorizontaltranslationofthe0mcontouroftheGuadianaRiverinre-sponse to the A1FI sea-level rise scenario andthehuman-interventionsedimentationscenario.Beyondthislimit,acompletemanagedretreatisrecommendedbecausetheareawillbedrownedpermanentlybytheendofthe21stcentury.Fromariverbasinmanagementperspective,ifthesed-

iment flushing frequency of the Alqueva dam can be increased, deterioration of salt-marshes canbeminimized.Thus,theconceptofenvironmen-tal flow should be redefined to include the sedi-ment flushing frequency of large reservoirs.

References

IPCC.2007.ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroup ItotheFourthAssessmentReportoftheIntergov-ernmentalPanelonClimateChange.

Page 13: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

13ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

Modelling Future Nutrient Emissions for a Well Coordinated River Basin Management

J.Hürdler&M.Venohr

Leibniz-InstituteofFreshwaterEcologyandInlandFisheries,Dept.ofLowlandRiversandShallowLakes,Berlin,Germany

Nutrient emissions by river systems are one ofthe main pollution sources into the Baltic Sea.Annualemissionsand loadshavebeenused todescribe general nutrient fluxes. By the recently improved and implemented method to calcu-late monthly fluxes with MONERIS the link be-tweenspatialpatternsofnutrientemissionsandtheirtemporaleffectonwaterqualityaspectsinaquaticsystemshasbeenestablished.

Beyondthat,animplementationofdevelopmentscenarios concerning socio-economic, land-useand climate change helps to achieve meaning-ful results. This delivers helpful arguments formanagement options and the implementationofmanagementplans.Resultsofthecalculationsshow significant changes for the future develop-mentofnutrientemissionstotheOderRiverBa-sinandloadstotheSzczecinLagoon.

Introduction

UndertheframeworkofBONUS,theEU-ProjectAMBER (Assessment and Modelling Baltic Eco-systemResponse)wasestablishedin2009.Mainfocus of the project is to link ecological needsand appropriate political management options.Direct atmospheric deposition on the sea andloadsfromthesurroundingriversystemsarethedominant nutrient sources and strongly influ-encetheBalticEcosystem.Toderiveappropriatemanagementoptionsitisnecessarytoknowthefunctionalrelationshipbetweenemissionsintheriverbasin,transformationandretentioninlim-nicsystemsandtheresultingloadsfromtheriverto the coastal waters. The nutrient emissionsmodel MONERIS has been used to model thecurrent and future nutrient emissions from the

catchment to the surfacewatersand the loadsfromtheriversystemtothefollowingconnectedwaterbody.

The Oder as an important emitter of nutrientsto the Szczecin Lagoon and the Baltic Sea hasbeenchosenasa studyarea.Beyond that, theexpectedclimate, socio-economicand land-usechanges,aswellastheireffectonthehydrologyandthenutrientemissionswereconsideredforthe modelling of future conditions in the OderRiverBasin.[3]

Materials and Methods

Site descriptionTheOderRiverbasinislocatedsouthoftheBal-tic Sea and covers an area of 118,611 km² [2]withanmaximumdimensionbetweenlatitudes49°30’N to53°50’Nand longitudes13°00’ Eto20°00’E.Withameandischargeof550m³/s,the 912 km long river flows into the Szczecin la-goon.ConcerningtheBalticSeatheriverbasinisoneofthedominantemitter.Thisfactiscausedbyintensiveagriculturaluseandtheemissionof15.5millionInhabitants.[1]

Data SourceTheOderRiverbasinwasdividedinto493sub-catchmentswithameansizeof240km².Mostof the requireddata formodel runshavebeenderivedfromageographicalinformationsystem(GIS)baseddatasets.Forprecipitationinforma-tionglobaldatabyGPCC(GlobalPrecipitationCli-matologyCentre)wereused.Inadditiontothis,precipitationdataforthefuturescenarioswereprovidedbytheREMO(RegionalClimatemodel)[5].DatasetsfortheatmosphericdepositionbyEMEP(EuropeanMonitoringandEvaluationPro-gramme)wereutilized.Thesocio-economicandland-use development scenarios originate fromthe IKZM-Oder Project and were developed bythe Institute for Ecological Economy Research(IÖW)[4].

Page 14: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

14 ClimateChangeChallengesinRiverBasinManagement

Session1:ClimateChangeScenariosandAssessment

MethodMONERIShasbeenappliedtomodelnutrientin-putsbypointsourcesanddiffusepathwaysfortheperiodof1983to2005onyearlyandmonth-lybasis.Formodellingof futureconditions,so-cio-economic and land-use changes have beencalculatedbyintegratingofdevelopmentscenar-ios. There have been implemented a “businessas usual”, “Intensification” and a “Liberalisation” scenario[4].Theeffectofthedevelopmentandclimate change scenariosonnutrient emissionsand loads have been calculated separately andincombinationtoidentifythenet-effectofthesescenariosonthenutrientbalance.

Results

Formonthlycalculations inpresenttimes (1983to2005),hotspotsofemissionshavebeeniden-tified in the mountainous parts in the south (ero-sion),incentralparts(agriculture)andsinglesub-catchments(urbansystems).Themonthlyresultssuggestthattemporalvariationofemissionsandloads aremainlydrivenbyhydrology and tem-perature.Theclimatechangescenariosassumeadecreaseintheprecipitationandrun-offandsubsequentlycauseadecrease in thenutrient emissionsandloads. The development scenarios range fromincreasedtodecreasedagriculturalactivities.Asa resultemissions fromagriculturewill increaseordecrease,too.Althoughtheeffectofthede-velopmentscenariosisingeneralratherlow,buta combination of increased land-use and de-creasing water availability may cause significant changes in in-stream loadsandconcentrations.Therefore loads to the lagoondecrease,butatthe same time higher nutrient concentrationsandpossiblenegativeeffectsonthewaterqual-itycanbeexpected.Ontheotherhand,the“Lib-eralisation” scenario will have a positive effecton the water quality, due to a more moderateagriculturaluse.

Conclusion

By identifying temporal and spatial distributionofnutrientemissionswithanapportionmentof

differentdiffusepathways,astrongprerequisitefor the evaluation of effective measures to re-duceemissionhavebeendetermined.Thenet-effectofthedevelopmentscenariosisquitelow.Considering climate change, dryer climaticallyconditionsmaycauseafurtherreductionofnu-trientemissions,butcouldalsoleadtoincreaseconcentrations in the river system. For the im-plementationofsustainablemanagementplanstheseresultscanofferusefulargumentsforthedevelopmentofoptionsforreductionofnutrientemissionsintotheOderRiverBasin.

Acknowledgments

This research is financially supported by the Fed-eralMinistryofEducationandResearch(BMBF)andtheEuropeanUnion(EU).

References

(1) Behrendt,H.,Opitz,D.,Kolanek,A.,Korol,R.&Stronska,M.2008.Changesofnutri-entloadsintheOderRiverduringthelastcentury–theircausesandconsequences.JournalofWaterandLandDevelopment.No.12,127-144

(2) Behrendt,H.&Dannowski,R.2005.NutrientsandheavymetalsintheOderRiversystem,WeißenseeVerlag,Berlin,353pp.

(3) BACCAuthorTeam.2008.AssessmentofClimateChangefortheBalticSeaBasin,Springer,Berlin,473pp.

(4) Hirschfeld,J.,Behrendt,H.,Edler,J.,Janßen,H.,Knippschild,R.&Czarnecka-Zawada,S.2009.TransformationsprozesseimEinzugs-gebietderOder–Szenarien2020.IKZMOderBerichte56

(5) Umweltbundesamt.2006.KünftigeKlima-änderungeninDeutschland–RegionaleProjektionenfürdas21.Jahrhundert.7pp.

Page 15: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

15ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

Session 2: Hydrology and Ecology

Page 16: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

1� ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

E.Kuusisto

FinnishEnvironmentInstitute,FreshwaterCentre,MonitoringandAssessmentUnit,Helsinki,Finland

Inacountrywith187,888lakes,itisnowonderthatlongdataseriesexistonlakeicevariables–particularlybecauseallthosewaterbodiesfreezeeverywinter.Thelongestcontinuousobservationseriesonbreak-upbeginsin1822(LakeKallave-si),onfreezingin1833(LakeKallavesi)andonicethickness in1909 (LakeMuurasjärvi).–Amuchlongerdataseriesisavailableonthefreeze-upofRiverTornio,itstartsasearlyasin1693.

Unlikeriverice,lakeiceisvirtuallyunaffectedbyman‘sactions inwatercoursesand riverbasins.Only exceptionally do e.g. thermal effluents, a roadembankmentorheavyregulationalterlakeiceconditionstoacertaindegree.Thusthena-ture‘s fingerprint in lake ice is very pure – a fact whichoffersmanypossibilitiesinclimatechangeresearch.

LakeKallavesiislocatedineasternFinlandatthelatitudeof63°N.Accordingtothelineartrendsfitted to the whole series, the freezing date has shifted to 15 days later in 1833–2009 (figure 1), while thebreak-updatehas shifted to12days

Lake Ice in Finland – Observed Trends and Future Outlooks

earlier in 1822–2010 (figure 2). Both trends are significant at the level of 99.9 per cent.

Atsub-serieslevel,verydifferenttrendscouldbefound from these series. E.g. the shift towardslater break-up in 1822–1867 is 14 days, signifi-cant at the levelof99.9per cent. If this trendwouldhave continuedas such, the expectancyforthebreak-updatein2008wouldhavebeenJulythe8th.Astothefreezingdate,thetrendin1987–2008, significant at the level of 95 %, is as highas26daysforthatshortperiod.

AtLakeOulujärvi,iceobservationsstartedinthewinter of 1854–1855. During 156 winters, thefreezingdatehasshiftedninedayslaterandthebreakupdateelevendaysearlier.TheextremesoffreezinghavebeenOctober22nd (1894,1902)and December 24th (1929), those of break-upMay3rd(1921)andJune23rd(1867).

Astothethicknessoflakeice,somelongseriesfrom observation sites in Southern and centralFinlandhaveindicationsofathinningtrend,someintheNorthernFinlandofathickeningtrendun-til2002(Korhonen,2005). Inrecentyears, lakeice has been relatively thin in the north, whilethe thickest ice in thewholeobservationseriesat almost all measuring sites in Southern Fin-

landwasobserved inthewinter2002–2003.

How will ice conditions developinFinnishlakesinthefuture?Cli-matechangewill inevitablybeapowerfulagent.Icebreak-upwilloccur earlier, freezing will occurlater and the ice cover periodwill be shorter. The effects willbestronger inthesouththan inthe north. E.g. Weyhenmeyer &al(2005)foundthebreak-updatetoshifttoaround14daysearlierper 1°C rise in air temperatureFigure1:FreezingdatesofLakeKallavesi1833–2009.

Page 17: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

1�ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

in Southern Sweden, but only4 days per 1°C rise in NorthernSweden.

The effects of climate changeon the maximum ice thicknesswill not be straightforward. Icethicknessdependsonbothtem-peratureconditionsandsnowfall.Increasedsnowfallcouldincreasesnow ice and this way also in-crease total ice thickness. Prob-ably the maximum ice thicknesswill decrease in the south butin the north an opposite trendispossible,atleastinthenextoneortwodec-ades.

References

Korhonen, J. 2005. Ice conditions in lakes andrivers in Finland. The Finnish Environment 751,145p.(inFinnishwithasummaryinEnglish).

Weyhenmeyer, G.A., Meili, M. & Livingstone,D.M.2005. Systematic differences in the trendtowardearlierice-outonSwedishlakesalongalatitudinaltemperaturegradient.Verhandlungender internationalenVereinigung der Limnologie29(1):257-260.

Figure2:Break-updatesofLakeKallavesi1822–2010.

Page 18: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

1� ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

Simulating Snowmelt Effects on Partially Frozen Soilalong Fell Gradient in Finnish Lapland

P.Liwata1,P.Hänninen2,J.Okkonen3&R.Sutinen1

1) GeologicalSurveyofFinland,Rovaniemi, Finland2) GeologicalSurveyofFinland,Espoo,Finland3) GeologicalSurveyofFinland,Kokkola,Finland

Nearly half of the annual precipitation falls assnow in northern Finland. Snowmelt providessubstantialgroundwaterreservesyetthresholdconditions with respect to infiltration through partially frozen soil in spring are not well un-derstood. We monitored snow and soil condi-tionsinasmallcatchmentofSammaltunturifell(67˚99’N, 24˚12’E), Finnish Lapland, in spring 2010.Twoautomaticmonitoringstationsarelo-catedinsidethecatchmentareaonafell(moun-tainshapedbyPleistoceneglaciations)gradient,forestat370mandtreelineat480ma.s.l.For-eststationismeasuringsoilandairtemperature,as well as soil water content (SWC), whereasthe tree line station records soil, snow and airtemperature,SWCandelectricconductivity,pre-cipitation,snowdepthandapparentsnowwaterequivalent(ASW).Athirdmonitoringstationwasestablishedonasmallstreamformeasurementsof water quality: water temperature, electricalconductivity,pH, redox-potential,anddissolvedoxygen. We also accomplished radar measure-mentsofsnowpackandsoilthicknessandmeas-ured snow water equivalent within the surveylinesalongtheelevationgradientsinlateMarch2010.

Partofthesnowevaporatestotheatmosphere,part of it flows as surface run-off having effect on floods and risk of landslides, and part of it infiltrates to the groundwater during spring melt eventhroughpartiallyfrozensoil(Sutinenetal.2008; 2009). In high altitudeswe try to tacklethese questions with monitoring, time series-measurementsandhydrogeologicalmodels.

Radar data indicated soil thickness to vary be-tween0.5andsevenmetersandsnowpackthick-nessbetween63and147cmsuch that spatialvariabilitywashigh in tree line,whereas forestsiteshadratherevensnowpack.Beforetheonsetofthesnowmelt(on28thofApril)thesnowpackwasatthethickest,94cm,intheforeststationas compared to thatof 56 cm in tree line sta-tion. Soil temperature (20-cm-depth) remainedbelow 0 ̊C until the 1st of June. Due to air tem-perature rise notably above 0 ̊C on 27th of April, theonsetofsnowmeltoccurredthroughouttheelevationgradient.AtbothstationstheeffectofsnowmeltwasseenastheriseofASW(29thofApril) oneday later.The riseof SWCwas seenin the tree linestationon30thofApril,and intheforeststationon5thofMay,twoandsevendaysaftertheonsetofsnowmelt.Thissuggeststhat snowmelt water infiltrates rather unim-pededthroughthesoil.ThemaximumSWCwasobserved to be rather simultaneous with snowdisappearance in the tree line, whereas in theforest snow disappeared almost a month laterthan maximum SWC. We contend that snow-melt infiltration through partially frozen soil sig-nificantly contributes to ground water reserves. Snowmeltwasalsoseeninwaterqualityofthecatchment creek:water temperature increased,electricalconductivitydecreased,phdecreased,redox-potentialincreased,anddissolvedoxygendeacreased.

Our intention is to simulate soilwater storage,groundwater recharge and runoff during 2010with1Dcoupledheatandmasstransfermodelfor soil – plant – atmosphere systems – Coup-Model(JanssonandKarlberg,2004).Inthisstudythe CoupModel is validated with soil tempera-ture,SWCandsnowdepthfromtheautomaticmonitoringstations.Otherinputsaresoiltexture(from3–5differentdepths),slopeinN-SandE-Wdirections,initialsnowdepth,andthethicknessof the organic layer.The outputs of the Coup-Modelinthisstudyaresurfacerunoff,drainage

Page 19: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

1�ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

flow and deep percolation to ground water, sur-face water infiltration rate into soil, snow water equivalent and frost depth. The input for themeteorologicaldata,usedasdrivingvariablestothemodel,weuseprecipitation,airtemperature,relativehumidity,wind speedandglobal radia-tion,fromApriltoJune2010.

References Jansson,P.-E.&Karlberg,L.2004.Coupledheatand mass transfer model for soil-plant-atmos-

phere systems. Royal Institute of Technology,Dept of Civil and Environmental Engineering,Stockholm,435pp.

Sutinen,R.,Hänninen,P.&Venäläinen,A.2008.Effectofmildwintereventsonsoilwatercontentbeneath snowpack. Cold Regions Science andTechnology,51,56-67.

Sutinen,R.,Äikää,O,Piekkari,M.&Hänninen,P.2009. Snowmelt infiltration through partially frozensoilinFinnishLapland.Geophysica45,23-35.

Page 20: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

20 ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

T.Vehanen1,T.Sutela1&A.Huusko2

1) FinnishGameandFisheriesResearchInstitute, Oulu,Finland2) FinnishGameandFisheriesResearchInstitute, Paltamo,Finland

Introduction

TheWaterFrameworkDirective(WFD)enforcesthe development of assessment methods formonitoring the ecological qualityofwaters us-inginformationfromdifferentbiologicalqualityelements (fish, invertebrates, plants). In Finland a fish-based assessment method (FiFI, Finnish Fish Index)wasdevelopedtoestimatetheecologicalstatus of boreal rivers. In the FiFI five fish met-ricsareusedtomeasuretheecologicalstatusofrunning waters based on fish abundance, species composition andage structure.Themainpres-sures in the Finnish rivers affecting ecologicalstatus are morphological (dams, flood control, dredging)andwaterquality(agriculture,forestryandpeatmining)pressures.Inaddition,thelarg-estacidsulphatesoilareasinEuropearefoundinFinland.

Based on our research water quality, especiallyloadingof solids andphosphorus fromagricul-ture land can have a large negative impact onriverine fish populations. Toxic responses and recruitment failures of fish have been reported duetoacidreleasesfromsulphatesoils.Dredg-ing and loading of sediments results in habitatloss especially for salmonid fishes. Where should wefocusoninourmitigationeffortstoimprovethe ecological status of rivers? Should we fo-cus on diminishing anthropogenic acidification, loadingofnutrients,loadingofsolidsorphysicalhabitat restoration? Based on recent scenariosclimatewillwarmupintheNordiccountrieses-peciallyinwinterincreasingwinterprecipitation

Improving the Ecological Status of Running Waters Based on Fish Community in WFD: Does Climate Change Affect the Mitigation Measures?

andfrequencyofheavyprecipitationevents.Thisis likely to change the timing and increase themagnitudeofloadingofsedimentsandnutrientsfromagriculture,peatminingandforestry.Heavyprecipitation events will increase the possibilityofacidreleasesfromacidsulphatesoilsreleasingalsometalslikeFeandAl.Increasedsedimenta-tion together with extreme flow conditions will alter the fish habitat.

Mitigation of anthropogenic impact

Based on the long term fish data from in-stream physical restoration we show that changes inflow conditions are important regulators of the fish population. In the case of extreme flow conditions, forexampleafterheavydrought, instream restoration alone can be an ineffectivemethod to mitigate fish populations. Our results suggestedthatinthefutureawiderperspectiveshould be adopted in our restoration efforts;frominstreamrestorationtotherestorationoftheentirecatchment.Thiswasalsosupportedbythe results from the water quality – fish commu-nity relationships: the variability in fish commu-nitydynamicswas largelydrivenbyagriculturalpractices. Therefore, reducing loading of solidsandphosphorus isaneffectivewayto improvethe fish community composition and ecological status.Focusshouldbeinthewholecatchment,forexample,minimisingtheuseofphosphorusfertilizers, preventing mobilisation of solids byvegetatedbufferstrips,oravoidingditchinganddrainage.Climate change increases the risk forfish populations being negatively affected by acidicsoils,andweneedbetterunderstandingofthe behaviour of these problem soils. Specifically, innovativemethods toprotect thewaters fromacidicleaks,andinformationhowthesemethodsworkinachangingclimatearesorelyneeded.

Page 21: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

21ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

References

Sutela, T., Vehanen, T. & Jounela, P. 2010. Re-sponse of fish assemblages to water quality in borealrivers.Hydrobiologia641:1-10.

Sutela, T. & Vehanen, T. 2010. Responses of flu-vial fish assemblages to agriculture within the borealzone.Fish.Manage.Ecol.17:141-145.

Vehanen,T.,Sutela,T.&Korhonen,H.2010.En-vironmental assessment of boreal rivers using fish

data – a contribution to theWater FrameworkDirective.Fish.Manage.Ecol.17:165-175.

Vehanen,T.,Huusko,A.,Mäki-Petäys,A.,Louhi,P.,Mykrä,H.&Muotka,T.2010.Effectsofhabi-tatrehabilitationonbrowntrout(Salmotrutta)inborealforeststreams.Freshw.Biol.doi:10.1111/j.1365-2427.2010.02467.x(inpress).

Page 22: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

22 ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

Ecological Response to Climate Change Assessed by Phytoperiphyton Structure in Streams

S.Komulaynen

InstituteofBiology,KarelianResearchCenterRAS,Petrozavodsk,RepublicofKarelia,Russia.

Introduction

Streamecosystemsareatriskforchangesduetoclimatechangesbecausetheecologicalprocessesin water are strongly influenced by temperature. Twomainapproachesdominateinthestudiesoftemperature rise impact on river environments:analyses of the historical series of observationand modeling of changes in laboratory or field experiments.Weattemptedtoresolvethis taskbycomparing thestructureand functionofat-tached algal communities in rivers with similarmorphometryandhydrologicalregime,buttheirbasinindifferentgeographicalareas.

The use of algae seems to be appropriate formonitoring of freshwater ecosystem becausetheir occurrence is influenced rather by water quality than the geographical location. Algaewhich inhabit rivers with high flow rates are con-stantly exposed to relatively equalized, averagefluctuations for each given river. Periphyton was chosenofasresearchobject isconditionedbe-cause attached communities are not subjectedto short influence of accidental local changes in hydrobiological and hydrochemical regime andreflect the average prevalent one in a certain wa-terbody.

Study areas

More than 60 streams in north-western RussiafromLakeLadoga to theBarentsSea (RepublicofKarelia)werechosenonthebasisoftheperi-phytontaxonomyinvestigated.Alongthesouth-north latitudinalgradient total radiation rangesfrom75 inLadogaLakeregionto30kcal/cm²/yearinKolaPeninsula,andthemeanannualairtemperaturerangesfrom3.1°Cto0.0°Caccord-

ingly.Asresultthemeanannualwatertempera-ture ranges from 6.1°C for Lake Ladoga basinstreamsto3.9°CforBarentscoaststreams.

Results and discussion

The rising temperature produces direct and in-direct effect on periphyton communities: in first case-duetobiochemicalandphysiologicalproc-esses in cells, in the second case-by modifyingthe conditions of the catchment area and veryoftenindirecteffectsseemtobeofgreatersig-nificance.

AttachedcommunitiesintheriversoftheBarentsSearegiondominatedbycoldresistantspecies.Euglenophyta,PyrrophytaandCharophytadropout of algae flora. A decrease in diversity of blue-greenalgaeascomparedwithgreenonesisalsocharacteristic for the northern basin algae flora. ItisnotedthattheratioCyanophyta/Chlorophytais 1.2/1.0 and this apparently reflects specificity of the northern rivers periphyton algae flora. How-ever,blue-greenalgaeofNostocales are ratherdiverse,widespreadanddominateinthealgoce-nosisoftheriversofKolaPeninsula,thatiswhyNostocales/Oscillatorialesratiofortheexaminedregions are respectively: Lake Ladoga -1.6, Bar-entsSea-4.0.

Thedeclineinspeciesdiversity,characteristicofthe Barents Sea zone, is often due to nutrientsupply, rather than temperature, and is relatedtothechemicalcompositionofwater.Thus,tem-peraturecontributestotheselectionofdominantspecies, and the presence of most species de-pendsonnutrientsupply.Thespeciesthatshowahighphosphorusandnitrogendemandarethefirst to drop out of algal coenoses. A rise in the number of single-taxon families and genera isdue to decreased mineralization.As a result, asmallnumberofleadingfamiliesthataccountforover70%ofthespeciesbeginstoplayamoreimportantrole.Alltaxonomicallyrareandscarce

Page 23: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

23ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

speciesareimpoverishednorthwards,sothatthetaxonomic homogeneity of algal flora increases.

Decreaseofmeantemperatureandbiogenscon-tainsleadtodecreasedabundanceanddiversityofallochthonicplanktonandbenthicformsandalsotothetrivializationoftheperiphytoncom-muniy structure which is followed by the de-creaseindominantspeciesnumber.Structureofallochthonic flora changes in dependence to the numberoflakes,theirmorphometryandtrophicstatuswhichchangesfromnorthtosouth.Theshorteningofphenophasesobservednorthwardsresultsintheclosergrowthmaximaofperiphy-ton:oneindistinctmaximumisrecordedinJuly,andtheotherinAugust-September.However,intheKolaPeninsulaonemaximum is clearlyob-served intherivers in lateAugusttoearlySep-tember.

Lowperiphytonproductionintensityisalsoduetothelownutrientsaltcontentofwater,which,inturn,iscausedbytheabsenceofwatermac-rophytes,animportantproducer.Therefore,thedischargebasin is theonly sourceofbiogenes,butbecause itdoesnotmeltdownuntil fall,aproduction intensity peak is observed in fall,

when water bodies are enriched in biogenes,rather than in summer when favorable condi-tionsareprovided.

Conclusions

Thedataobtainedcanbeusedtoassesschangesin climate caused by human activities becausechanges brought about by warming will proveto be similar to those observed when compar-ing ecologically homogeneous algal coenosesforming inwaterbodiesmoreor less similar inhydrologicalregimebutdifferinginclimaticcon-ditions.Thisinitsturnwillallowtoforecasttheconsequencesofanthropogenicclimaticchang-es by global worming, and to find out how it af-fectsaquaticecosystems.Inordertoimplementrationalandeffectivestrategiesfordealingwiththisproblem,reliableinformationisrequiredonthedifferent aspects of climate change and itsrelatedeffect.

In addition, the specificity of periphyton as a special ecological group was confirmed. It can beusedasan indicator todeterminethe typesofwaterbodies located indifferentgeographiczones.

Page 24: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

24 ClimateChangeChallengesinRiverBasinManagement

Session2:HydrologyandEcology

S.Hellsten1,M.Marttunen2,T.Nurmi2,A.Parjanne2&N.Veijalainen2

1) FinnishEnvironmentInstituteSYKE, FreshwaterCentre,Oulu,Finland2) FinnishEnvironmentInstituteSYKE, FreshwaterCentre,Helsinki,Finland

Introduction

Recentclimatechangescenariospredictincreaseby3–7degrees intemperatureand13–26%inprecipitation in Central Finland (Ruosteenoja &Jylhä 2007). Changes are reflected in surface wa-ter runoff and water level fluctuations of lakes. Lake littoral is adapted for specific fluctuating water levels and therefore even small changesin extension and timing can cause significant changes in biota (Hellsten 2001). Further alsorecreational use of lake is easily hampered bychanginglevels.

Effectsofdifferentclimatechangescenariosonflows and water levels of large Lake Saimaa in Finnish Lake District was studied by using thewatershed simulation and forecasting system(WSFS).Thehydrologicalconditionsweresimu-lated by using five climate change scenarios for periods2010–39and2040–69withcomparisontoyears1971–2000.Hydrologicalandecologicaleffectswereevaluatedbyusingwaterlevelindi-cator systemcomprisingof22different indica-tors.

The Hydrological and Ecological Impacts of Climate Change in Large Lakes – Case Study of Lake Saimaa, Finnish Lake District

Threatened species under threat

All scenarios are producing higher water levelsduring winter and increased out-flow from lakes. However, trends in summerandautumnwaterlevelsaredependingonscenario.Mostnegativechangerelatedtonestingsuccessofthreatenedringedseal,whichissufferedofincreasedwaterlevel fluctuation during ice covered period. Ad-ditionally risk of downstream floods is increasing and therefore water level regulation is neededmore often in future. Our study confirms the ob-viousnegativeeffectofclimatechangeonvul-nerablelakebiotaanduseoflakes.

ReferencesHellsten,S.2001.Effectsoflakewaterlevelregu-lation on aquatic macrophytes stands and op-tions to predict these impacts under differentconditions.ActaBot.Fenn.171.47p

Ruosteenoja, K. & Jylhä, K. 2007. Temperatureand precipitation projections for Finland basedonclimatemodelsemployedintheIPCC4thAs-sessmentReport.ThirdInternationalConferenceonClimateandWater,Helsinki,Finland,3–6Sep-tember2007.Proceedings,p.404-406.

Page 25: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

25ClimateChangeChallengesinRiverBasinManagement

Session3:RiverBasinManagement

Session 3: River Basin Management

Page 26: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

2� ClimateChangeChallengesinRiverBasinManagement

Session3:RiverBasinManagement

A.Laine1&A.Keto2

1) CentreforEconomicDevelopment,Transport andtheEnvironmentforNorthOstrobothnia, Oulu,Finland2) FinnishEnvironmentInstitute,Freshwater Centre,Helsinki,Finland

Organizing in river basin planning and management

The Ministry of the Environment is responsiblefortheguidanceandEUreportinginriverbasinplanningandmanagementonnational level. IthasclosecooperationwiththeMinistryofAgri-cultureandForestry,theFinnishEnvironmentIn-stituteand,inlesserdegree,alsowiththeFinnishGameandFisheriesResearchInstitute.

Mainland Finland is divided into five river basin districts (RBDs). In addition, two internationalriverbasindistrictswithSwedenandNorwayaredesignated covering parts of Northern Finland.Centres for Economic development, TransportandtheEnvironmentareresponsiblefortheplan-ningofriverbasinmanagementintheirrespec-tivedistricts,withoneof thecentresbeingap-pointedtoco-ordinatethemanagementofeachof the five RBDs, together with a steering group. The centres have additionally set up regionalcoordinationgroups,whoseothermembers in-cludeinvitedrepresentativesofthemainnationalandlocalauthorities,organizations,landownersand business interests responsible for the use,protectionandstateofwaterbodies.Moreover,theGovernmentofÅland is responsiblefortheriver basin district that covers the autonomousÅlandIslandsprovince.

The ecological state of water bodies

Most of Finland’s classified surface water bodies (ca.3000)areinahighorgoodecologicalstate.Waterswith lower ecological status thangood

Introduction to the River Basin Management Practicesin Finland

include almost a third of the classified lakes, but ca.90%ofthetotallakeareaisingoodorexcel-lentstate.RiversinNorthernFinlandaregeneral-lyinexcellentorgoodstate.Riverswhosestatusis classified as being only moderate or poor are morenumerousincoastalregionsalsoaffectingthestateofthecoastalwaters.Aquaticecosys-tems are affected by various factors includinghighnutrient loadsfromfarmland,hydrologicalengineering,andinsomecaseshighconcentra-tions of metals and acidity, caused by artificial drainage, especially inareaswithacid sulphatesoils.Thechemicalstateofthewatersisgener-allygood.

Of the 3800 ground water areas only 82 arein poor state. It has, however, been estimatedthat human impact may cause changes to thegroundwaterstatusataltogether500areasandtherearerisksinadditional250areas.

Implementation of RBMPs

Technical,legal,economicalandpolicymeasuresareneeded inall thesectors.Thebiggestchal-lengewillbe in reducingtheagricultural loads.Ofothermeasures, reducing loadsofdomesticwastewaterinareasoutsideseweragenetworksandreducingtheharmful impactsofhydrologi-calengineering,water-levelregulationandlanduse on acid sulphate soils are essential. Othermeasures include lake and river restorations,groundwaterprotectionandreducingloadsfromforestry areas, peatland drainages and aquaticculture.

The so called additional measures presented intheRBMPsforimprovingtheecologicalstatusofthewaterbodieswill increase theannualcostsused for this purpose already now by approxi-mately15%.Thismeansadditionalannualcostsof approximately 235 million euro (44 €/inhabit-ant/year).

Page 27: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

2�ClimateChangeChallengesinRiverBasinManagement

Session3:RiverBasinManagement

When theCouncilofStateapproved thesevenRiver Basin Management Plans (RBMPs) of Fin-land in lateDecember2009, itprovidedprepa-ration of a National Implementation Strategyfocusingonadministrativeandeconomicalpol-icymeasures, responsibilities in implementationand funding. The Ministry of the Environmentdrafted theplan through cooperationwithdif-ferentgovernmentalsectorsandstakeholdersatthenationalandregionallevel.Forinstancetheregionalcooperationgroupswereaskedtogivetheirinputtotheimplementationstrategy.

ThemeasuresintheRBMPsarenotbindingforsingleactors.Thestategovernmentandmunici-palitieswillpromoteactivitieswithintheframe-workoftheirbudgetaryfunds.Manyactionsare,however,voluntaryandtheirsuccessdependsonthereadinessandwillofenterprisesandindivid-ualcitizenstoimplementthem.Theenvironmen-tal authorities can support the implementationbytakingtheobjectivesoftheRBMPsintocon-

siderationwhengrantingenvironmentalpermitsforcertainactivities.

Second planning round

Thenationalcoordinationgroup forRBMplan-ning, with representatives from all five river ba-sin districts, Finnish Environment Institute, theMinistryoftheEnvironmentandtheMinistryofAgricultureandForestry,hasstartedthesecondplanningroundforriverbasinplanningandman-agement.Intheearlyphasesofthework,issuessuchasrevisionsofwaterbodycharacterizationand ecological classification and also joint public consultation with Marine and Flood Risk Man-agementwillbehighlighted.RevisionofthePro-gramofMeasureswillbemadeuntil2013andfirst revision of RBMPs for public consultation un-tilSeptember2014sothatthenationalGovern-mentcanapprovetherevisedplansbytheendof2015.

Page 28: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

2� ClimateChangeChallengesinRiverBasinManagement

Session3:RiverBasinManagement

Integrating Hydro-geomorphic and Landscape Metricsto Analyze the Response of Stream Water Quality to Land Use and Climatic Stressors

C.A.GonzalesInca

DepartmentofGeography,UniversityofTurku,Finland

Human land use has transformed natural land-scapesrapidlyinthelastcentury,affectingspa-tial and temporalpatterns (structure), andeco-logicalandbiogeochemicalprocesses(function)ofecosystems(Wuetal.2003).Severalstudiesincatchment scale have found empirical relation-ship between the proportion of different landusetypesandwaterqualityparameters,particu-larlyagriculturalareasexplainingsuspendedsedi-ment,NandPloadingintowatercourse(Ekholmetal.1997).However,thespatialarrangementoflandusehasrarelybeenassessed.Theshort-termand seasonal variations in stream water chem-istryaremainlydrivenbyclimaticvariationandterrestrialbioticprocesses(Semkin,etal.1994).Catchmentpropertiesplayan important role inrunoff generation and ground water recharge.In boreal landscape, water infiltration raises the water table, which eventually reaches the sur-face in floodplains and riparian areas, increas-ing subsurface and surface flow (Beldring 2002). Therefore,itisimportanttoanalyzetheinterac-tionbetweenspatialpatternoflanduse,catch-mentpropertiesandclimaticvariation insolutetransport.Inthispaper,theeffectsofspatiallandusepatterns regulating streamwaterquality inborealagriculturalcatchments (YläneenjokiandPyhäjoki,SouthwestFinland)isstudiedusinghy-dro-geomorphicandlandscapemetricindexandmonthlywaterqualitydata

References

Beldring, S. 2002. Runoff generating processesin boreal forest environments with glacial tills.NordicHydrology33(5)347-372.

Wu,J.,Jenerette,G.D.&David,J.L.2003.Link-ing Land-use Change with Ecosystem Proc-esses: A Hierarchical Patch Dynamic Model. InGuhathakurta, S. (Ed) Integrated Land Use andEnvironmentalModels–Asurveyofcurrentap-plicationsandresearch:99-119.Springer,Berlin,Germany.

Ekholm,P.,Malve,O.&Kirkkala,T.1997. Inter-nalandexternalloadingasregulatorsofnutrientconcentrations in theagriculturally loadedLakePyhäjärvi (southwest Finland). Hydrobiologia345:3-14.

Semkin, R.G., Jeffries, D.S. & Clair, T.A. 1994.Hydrochemical Methods and Relationships forStudyofStreamOutputfromSmallCatchments.InMoldan,B.andCerny,J.(Eds)Biogeochemistryof Small Catchments –A Tool for Environmen-talResearch,SCOPE51:163-187.J.JohnWile&Sons,Chichester,UK.

Page 29: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

2�ClimateChangeChallengesinRiverBasinManagement

Session3:RiverBasinManagement

M.Imbierowicz,J.Skrzypski,I.Zbici ski&A.Ziemi ska

FacultyofProcessandEnvironmentalEngineering,TechnicalUniversityofLodz,Poland

Introduction

Sulejów Reservoir is a typical lowland reservoirsituatedinCentralPoland.Itis15.5kmlongthebasinhasanelongated, trough-like shape. It ischaracterizedbyamaximalwidthof2.1kmandmaximaldepthof4.5m.Itsmeanannualreten-tion time ranges from a dozen to four dozendays.

Dam reservoirs constructed on lowland riverssuffernumerousenvironmentalandwaterqual-ity problems. Eutrophication resulted from theriver phosphorus supply, effects with a distur-bance of the ecological balance of the ecosys-temandoccurrenceofblue-greenalgaebloomsduringsummers.Theymayhavecancerousandtoxiceffectonhumans,bydegradinglivercells,damaging the nervous system or irritating therespiratorymuscles.Fornearly30years,themainfunctionofthereservoirwassupplyingtheCityof Łód (about800,000inhabitants)withdrink-ingwater,howeverproblemswithwaterqualityrestrictthisfunctionnowadays.Thereservoirstillservesasarecreationalarea,howevertheoccur-renceof toxicalgalbloomsmay further restrictitsuse.TheconcentrationsofnutrientindicatorsarewithinthenormsforClassIIinthePilicaandClassIIIintheLuciazaRiver.Thephysico-chemi-calanalysesof thewater indicatedthatdiversepollutant concentrations occur in the reservoir.Thebasic indicatorsthatdeterminewaterqual-itybelong toPurityClass I,althoughseveralofthem,suchasBOD5,CODMn,CODCr,suspendedmatter, nitrates, phosphates, total phosphorus,andmanganese,areatvaluesthatcorrespondtoclassesIIandIII.Thus,theoverallwaterqualityin

the reservoir does not conform to the specifica-tionsofPurityClassI.

Water protection action plans at Sulejow Reservoir area

The most important tasks to improve the eco-logicalstatusoftheSulejówReservoirare:• thereductionofpointandnon-sources

pollutioninenteringtheriveroriginatedfromsewage,stormrun-offandunsoundagriculturalandforestrypractices;

• theimprovementofwaterqualityandreductionofeutrophicationofthecatchment–PilicaRiver–SulejówReservoirsystem;

• thereductionofhealthhazardsduetothepresenceoftoxicalgalbloomsintheSulejówReservoir–recreationalareafortheCityofŁód (800,000inhabitants);

• providingnewemploymentopportunitiesandawarenessraising;

• involvementoflocalauthorities,stakeholdersandlandowners.

Thearticle contains theanalysisof theexistingwaterprotectionactionplansandprojectsreal-ized in theSulejówReservoir region.Theplansability to improvetheecological statusofSule-jowReservoirisassessedinthepaper.

Analysis of Existing Water Protection Action Plans at Sulejow Reservoir in Poland

Page 30: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

30 ClimateChangeChallengesinRiverBasinManagement

Session3:RiverBasinManagement

Adaptation of Land and Water Management to ClimateChange in Central Asia Using Payments for Ecosystem Services

M.Genina

TheRegionalEnvironmentalCentreforCentralAsia,EnvironmentalManagementandPolicyProgram,Almaty,Kazakhstan

WaterandagriculturearetwosectorsinCentralAsiathatarehighlyvulnerabletoclimatechangeimpactsduetodominationofstrongcontinentalclimate and desert and semi-desert ecoregions(Mizina et al, 1999). Calculations show that by2050thewaterrunoffinthebasinsoftheAmuDaryaandtheSyrDarya (thetwomainCentralAsianregions)willdryupby10to15andby6to10%,respectively(Ibatullinetal,2009).Morethan two-thirdsof the total availablewater re-sourcesinCentralAsiaareconsumedbyirrigatedagriculture to grow rice, cotton, sugar beets,grapes, fruits and cattle forage. At the sametime,thecountryassessmentsshowthat70%ofpotentialdamagefromunfavorableweatherandclimateconditionswillaffectagriculture.

This reportaims to:a)describe thekeyclimatechange impacts andpossible adaptationmeas-ures in water and agricultural ecosystems ofCentral Asia; b) provide recommendations onutilizationofPESasatoolforclimatechangead-aptationandIWRMinCentralAsia.Thisresearchusesacombinationofmethodsincludingdocu-mentanalysis,literaturereviewandopen-endedinterviewswithlocalandinternationalexperts.TheclimaticconditionsofCentralAsiavaryfromregion to region,however theyhaveone thingin common: the climate is highly continentalwithextremelyvaryingtemperatures,andscantprecipitationthroughoutthearea.Overthelast100 years the average annual temperature inCentralAsian region increased by 0.18°C (Ibat-ullinetal(2009:13)).Whenlookingintothefu-tureunderpessimisticscenario(A2),bytheendofXXIcenturytheincreaseinaverageannualair

temperatureascomparedwiththebaseperiod(1960–1990)will vary from4.7°C inKyrgyzstanto5.5°CinTurkmenistan,whereasinamoreop-timisticscenario(B2)theexpectedriseinannualairtemperaturewillbearound1–1.5°Clower.

Theimpactsonbothwaterecosystemsandhu-manuseare tobesubstantial, sinceallmodelspredict substantial declines in total naturalwa-terresourcessupplyintheregionofCentralAsialargelyduetothemeltingglaciersoverthenextcentury.These impacts compriseof the follow-ing,butarenotlimitedto:a)naturalresources:rapid glacier melting and reduction of snowcover,changeofhydrographicregimeofsurfacewaters, increasing desertification processes, land degradationandsalinization,lossofbiodiversity,increaseddeforestation;b)humanuse:reducedaccessofthepopulationtocleandrinkingwater,projected reductionof cropyields, reduction inpasturesproductivity,reductionoffeedcapacityand the animal production, change in the em-ploymentstructureofruralpopulation,threattothefoodsecurity,energysecurityissues(CAREC,2009).

Inthecontextofunsustainableenvironmentalre-sourceuseandhighvulnerabilityofagriculturalecosystems to climate change, the adaptationpoliciesshouldfacilitatemoreeffective,integrat-ed and participatory approaches to watershedmanagement (Genina, 2008; CAREC, 2009).Since2000atleastonapoliticallevelatargetintheregionwastakentowardsamoreintegratedandparticipatoryapproachinwaterandlandre-source management.The recently created riverbasincouncilsandthedraftNationalIWRMPlaninKazakhstanshowcasethistrend.Atthesametime, the institutionalchangesarenotenough.Diversification of financial sources and the use of economicincentivetoolshavebeenrecommend-ed as a needed adaptation measure in CentralAsia.

Page 31: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

31ClimateChangeChallengesinRiverBasinManagement

Session3:RiverBasinManagement

PaymentforEcosystemServices(PES)representsa market-based tool for more efficient watershed andrelatedecosystemsmanagementtocomple-ment thecommand-and-controlmeasures (UN-ECE2007).Thisframeworkofincentivesensuresgreaterinvolvementofstakeholdersandsustain-able financial mechanisms (contractual transac-tion)betweenecosystemserviceusers(irrigation,drinking, recreation) and sellers (farmer asso-ciations,forestowners,localauthorities,privatecompanies).

Inthiscontext,in2009theRegionalEnvironmen-tal Center for Center Asia (CAREC) initiated a first programonpilotingandpromotingPESschemesin Central Asia. The program started with thelegislativeandfeasibilityassessmentofthepilotareaofChonAksuuwatershed,IssykKuloblast,Kyrgyzstan,withsupportfromtheSwissFederalOffice for the Environment (FOEN).

The Chon-Aksuu River watershed is situated intheNorthoftheIssyk-KulLake.Itincludeshighlandscomposedbypasturesand forestswheretakescattleisbeingraisedandloweragriculturelands, close to the lake, where cereals, forageandfruitsarebeinggrown.Downstreamfarmersfacewatershortagesduringtheirrigationperiodand high levels of suspended sediments in theriverduetoovergrazingwhichleadtotheblock-ingofwaterpipes.Sustainablemanagementofforestsandpasturesupstreamwouldallowbet-terwater storage in the soil and lowererosionrates which leads to a more stable water sup-ply of better water quality. At the preliminaryworkshop the stakeholders agreed that bothwaterandpastureuseassociationswillsignupthecontracttodevote5%fromtheircollectedfeestothestateforestmanagementagencyifitimprovesinthegrazingandforestmanagementpracticesup-stream.

Thepilotprojectwillstarttobeimplementedinthe end of 2010 with support from GEF SmallGrantsProgram.The lessonsandrecommenda-tionsonPESfromthisprojectonceavailablewillbesharedlocally,regionallyandglobally.

References

CAREC.2009.GapAnalysisintheareaofClimateChange and Energy Efficiency in Central Asia: Defining opportunities for CAREC.

GeninaM.2008.Alegacyofunsustainablewa-ter use: adapting irrigation policies to climatechangeinKazakhstan.ThesispaperfortheDe-greeofMSinEnvironmentalSciencesandPolicy,NorthernArizonaUniversity,USA.

Ibatullin, S., Yasinsky, V. & Mironenkov. 2009.TheimpactofclimatechangeonwaterresourcesinCentralAsia.EurasianDevelopmentBank.

Mizina,S.V.,Smith,J.B.,GossenE.,Spiecker,K.F.&Witkowski,S.L.1999.Anevaluationofadapta-tionoptionsforclimatechangeimpactsonagri-cultureinKazakhstan.MitigationandAdaptationStrategiesforGlobalChange,4(1):1573-1596

UNECE.2007.Recommendationsonpaymentforecosystemservicesinintegratedwaterresourcemanagement.

Page 32: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

32 ClimateChangeChallengesinRiverBasinManagement

Session4:Groundwater

Session 4: Groundwater

Page 33: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

33ClimateChangeChallengesinRiverBasinManagement

Session4:Groundwater

Application of ORP for the Characterisation of the Ground Drinking Water under Changing Climate Conditions

L.Kliucininkas,V.Racys,D.Peciulyte&E.Petkeviciene

KaunasUniversityofTechnology,DepartmentforEnvironmentalEngineering,Kaunas,Lithuania

Introduction

Global climate change has influence on both quantitative and qualitative characteristics ofthegroundwater.Redoxreactionsingroundwa-terareusuallybiologicallymediatedand there-fore, theoxidationreductionpotential (ORP)ofgroundwater systems depends upon biodegra-dationprocesses.Oxidationandreductionreac-tions control the behaviour of many chemicalconstituentsinthegroundwater.Thedetermina-tionofORP is advisable inwater that containsarelativelyhighconcentrationofaredox-activespecies,e.g.,organiccarbon,thesaltsofmanymetals(Fe2+,Mn2+)andstrongoxidising(chlorine,oxygen) and reducing (sulfite ion) agents. Com-paredwithsurfacewater,groundwaterrelativelyisolatedfromtheatmosphere leadstostrongerreductionreactions(Wengetal.,2007).Theob-jectiveofthestudyperformedinFrancewastoevaluate the use of ORP as a control tool anddetermine its relationship to dissolved oxygenand residual iron concentration in filtered water. Resultsshowedthatabovealowminimumvalueofdissolvedoxygen,residualironconcentrationandORPwerenot affectedby varying thedis-solvedoxygenlevel.Anon-linearregressionwasestablished to correlate total residual iron con-centrationtoORP(Catherine,V.etal.1998).

Study area

Šešup riversub-basinbelongstoNemunasriverbasindistrictandcoversterritories inLithuania,PolandandRussianFederation (Kaliningradob-last).Thetotalareaoftheriverbasinis6105km²,

themajorpartof the riverbasin (>78%) is inthe territoryof LithuanianRepublic.AgricultureistheprevailingeconomicactivityatŠešup riverbasin.Majorpartofthegroundwaterwellsusedfor potable water does not meet requirementsof the iron concentration in water (≥0.2 mg/l). Thegroundwaterinthestudyarea(Upper–lowerCretaceous) contains calcium sodium chloridebicarbonate,it ismoderatelyhard,it isalkaline,ithassomedissolvedsalts,itisasoda-typewa-ter.Theconcentrationofchlorides inthewaterishighandalsothenorms-exceedingconcentra-tionofironisrecorded.Thevalueofammoniumalso exceeds the specified indicator value (Dili -nasJ.etal,2006).

Results

Paper provides results of the study, where oxi-dationreductionpotential(ORP)wasusedasanindicatortotracktrendsofthemetallicpollutionofthedrinkinggroundwater.Waterwellswithvery high, medium and low concentrations ofironwere selected fordetail analysis.Measure-mentswereperformedatBarzdaiandKeturnau-jiena settlements (water consumption less than100m³/day). In 2010 authors have performedseveral sampling campaigns indrinkinggroundwaterwells,alsotapwatersamplesweretakenintheselectedresidences.

The maximal concentration of total iron 6.93mg/lwasindicatedinwaterwellatBarzdaiset-tlement, respectively minimal value 0.065 mg/lwasregisteredatKeturnaujienasettlement.Theconcentrations of NH4+ in Barzdai water wellhavevariedfrom0.14mg/linJuneto0.72mg/linMarch;therespectiveORPvaluesvariedfrom-94mVinMarchto-130mVinJune,2010.Theanalysis results show high correlation betweenNH4+ andORP values, however therewerenotnoticed significant correlations between concen-trationsoftotalironandORP.

Page 34: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

34 ClimateChangeChallengesinRiverBasinManagement

Session4:Groundwater

Comparativeanalysesoftapwaterinthewatersupplysystem(withoutdevicesforironandman-ganeseremoval)haveshowedthatinresidences,wherewaterwassupplied fromthewaterwellwith very high concentration of iron, consider-abledecreaseof ironconcentration (inaverageby3times).Intheresidences,wherewaterwassuppliedfromthewaterwellwithhighconcen-trationof iron, theconcentration remainedun-changed.Tapwaterat the residenceswith lowconcentrationofironinwaterwellhasindicatedthe increase of the iron concentration. In gen-eral, analyses of tap water have showed highcorrelation between concentration of iron andORP,alsosomeregularitywasobservedbetweenconcentrationsof ironandistance inthewatersupplysystemfromthewaterwell.

ResultsofthestudyshowthatORPmonitoringdatacouldbeusedtotrackconditionsandsea-sonalvariationsofmetallicpollution,andcould

provide feedback for more efficient metal remov-alprocessfromthedrinkinggroundwater.

References

Weng H.-X., Qin Y.-Ch. & Chen X.-H. 2007. El-evated iron and manganese concentrations ingroundwater derived from the Holocene trans-gressionintheHang-Jia-HuPlain,China.Hydrol-ogyJournal,15,715-726.

Tremblay,C.V.,Beaubien,A.,Charles,P.&NicellJ.A.1998.Controlofbiologicalironremovalfromdrinkingwaterusingoxidation-reductionpoten-tial.WaterScienceandTechnology.V.38,Issue6,121-128.

Dili nas J., Jurevi ius A. & Zuzevi ius A. 2006.FormationofironcompoundsintheQuarternarygroundwaterofLithuania.Geologija,55,67-74.

Page 35: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

35ClimateChangeChallengesinRiverBasinManagement

Session4:Groundwater

J.Okkonen&B.Kløve

WaterResourcesandEnvironmentalEngineeringLaboratory,DepartmentofProcessandEnvironmentalEngineering,UniversityofOulu,Finland

Introduction

InFinland,nearly60%ofthecommunitywatersupplyisgroundwateranditsuseisexpectedtoincreaseto70%inthefuture.Thegroundwaterrequireslesschemicaltreatmentowingtoitsgoodqualityanditisalsobetterprotectedagainstpol-lutionassurfacewaters.Mostaquifersusedforwater supply in Finland are glaciofluvial deposits, i.e.,eskers.Eskersaretypicallywellsortedgravelandsanddepositsthatarecommonaquifers inborealregions. IncentralFinland,thewaterta-bleusually liesbetween2and4metersbelowthegroundsurface(Korkka-NiemiandSalonen,1996). Central Finland is classified as having a mid-boreal climate and typically a permanentsnow cover from November toApril. Precipita-tionishighestinsummer(JunetoAugust),andlowestinspring(MarchtoMay).ThesnowpackgrowsfromNovembertoAprilandmeltsinApril-May.Thelastdayofthesnowmelttypicallyfallsinmid-May.The soil freezesusually inOctoberand thaws in mid-May. The groundwater levelmaximumsoccurinspringduetospringmeltandfallduetoprecipitationandlowevapotranspira-tion.Thewaterlevelminimumsoccurinsummerdue tohighevapotranspirationandwinterduetosnowcoverandtherebylackofpercolation.

Oneapproachtounderstandingthepossibleim-pactsofchangesinprecipitationandtemperatureongroundwatercanbeanalyzinggroundwaterrecharge (OkkonenandKløve,2010).Tempera-tureandprecipitationareappliedinhydrological

Coupling of Soil Frost to Surface Water-groundwaterFlow Model to Estimate the Effects of Climate Variability on Groundwater Levels in Cold Snow Dominated Region in Central Finland

modelstoestimategroundwaterrechargewhichis then applied in groundwater flow models, such as MODLFOW (Harbaugh, 1990), to estimatechangesingroundwaterlevels(e.g.,Allenetal.,2004).Recentstudieshavebeenmainlycentredin the regionswhere snowcoverand soil frostdo not play a key role in the aquifer recharge(e.g., Vaccaro, 1992; Bouraoui, 1999; Eckhardtand Ulbrich, 2003). Considerably less attentionhasbeenpaidtotheimpactsofclimatevariabil-ity to snowmelt and soil frost and their effectsonrecharge(e.g.,JyrkamaandSykes,2007),theimpacts of soil frost on water infiltration (e.g., Sutinenetal.,2008)andtheimpactsofclimatevariability on groundwater levels in cold snowdominated regions (Okkonen and Kløve 2010;Mäkinenetal.2008).

Coupling of soil frost to surface water-groundwater flow model to estimate the effects of climate variability on ground- water levels

Theimpactsofclimatevariabilityonthedynam-icsofagroundwatersystemincold,snow-domi-natedregionscanbeunderstoodonlythroughatransient high resolution approach.To simulatethegroundwater and surfacewater interactionwould be an application of physically-basedmodels.Models,suchasHydroGeoSphere(Ther-rienetal.,2005),havetheabilitytosimulatethesurface runoff, the flow in the unsaturated and saturated zones and surface runoff. Howeverthelackofsub-modelssuchasfreezeandthawmodels and water infiltration through a partially frozen soil, make it difficult for physically based models to simulate the timing of the rechargeand the minimum and maximum groundwa-ter levels and the surface runoff. In this study,methodologyispresentedtoassesstheimpactsof climate variability on groundwater levels in

Page 36: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

3� ClimateChangeChallengesinRiverBasinManagement

Session4:Groundwater

cold snow dominated region. The methodol-ogy was tested on an unconfined esker aquifer incentralFinland.A1Dcoupledheatandmasstransfermodelforsoil-plant-atmospheresystemsi.e. CoupModel (Jansson and Karlberg, 2004)wasusedtosimulatesnowcover,snowmeltandsoil frost. The impact of soil frost on hydraulicconductivityontopsoillayerswasestimatedandlinkedtoa3Dintegratedsurfacewater-ground-water flow model, HydroGeoSphere, which was usedtosimulatetheimpactsofclimatevariabilityongroundwaterlevels.

References

Allen, D.M., Mackie, D.C. & Wei, M. 2004.Groundwater and climate change: a sensitivityanalysis for the Grand Forks aquifer, southernBritishColumbia,Canada,HydrogeologyJournal12(3):270-290.

Bouraoui, F.G., Vachaud, L.Z.X., Le Treut, H. &ChenT.1999.Evaluationoftheimpactofclimatechangesonwaterstorageandgroundwaterre-chargeatthewatershedscale.ClimateDynamics15(2):153-161.

EckhardtK.&UlbrichU.2003.Potentialimpactsofclimatechangeongroundwaterrechargeandstreamflow in a central European low mountain range.JournalofHydrology284(1-4):244-252.

Harbaugh,A.W.1990.Acomputerprogramforcalculatingsubregionalwaterbudgetsusingre-sults from USGS MODFLOW model, U.S. Geol.Surv.OpenFileRep.,90-392,46pp.

Jansson,P.-E.&KarlbergL.2004.Coupledheatand mass transfer model for soil-plant-atmos-pheresystems,435pp.,RoyalInstituteofTech-nology,Stockholm.

Jyrkama, I.M. & Sykes J.F. 2007.The impact ofclimatechangeonspatiallyvaryinggroundwaterrechargeinthegrandriverwatershed,JournalofHydrology,338(3/4),237-250.

Korkka-Niemi,K.&SalonenV-P.1996.Maanalaisetvedet pohjavesigeologian perusteet (Soil waterandhydrogeology),181pp.,Vammala:Vamma-lanKirjapainoOy.

Mäkinen R., Orvomaa, M., Veijalainen, N. &Huttunen I. 2008. The climate change andgroundwater regimes in Finland, Proceeding11th International Specialized Conference onWatershed&RiverBasinManagement,Budapest,Hungary.

Okkonen,J.&Kløve,B.2010.Aconceptualandstatisticalapproachfortheanalysisofclimateim-pact on ground water table fluctuation patterns incoldconditions,JournalofHydrology(2010),doi:10.1016/j.jhydrol.2010.02.015

SutinenR.,Hänninen,P.&Venäläinen,A.2008.Effectofmildwintereventsonsoilwatercontentbeneath snowpack. Cold Regions Science andTechnology,51,56-67

TherrienR.,McLaren,R.G.,Sudicky,E.A.&Pan-day, S.M. 2007. HydroGeoSphere – A three-di-mensionalnumericalmodeldescribingfully-inte-grated subsurface and surface flow and solute transport, Users’s Guide, Universite´ Laval andUniversityofWaterloo,Canada,379pp.

Vaccaro J.J. 1992. Sensitivity of groundwaterrecharge estimates to climate variability andchange, Columbia Plateu, Washington. JournalofGeophysicalResearch97(D3):2827-2833.

Page 37: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

3�ClimateChangeChallengesinRiverBasinManagement

Session4:Groundwater

Studying Groundwater-River Water Interaction at theCatchment of the River Vantaa and Its Tributaries, South Finland

A.-L.Kivimäki1,K.Korkka-Niemi2,K.Lahti1,M.Nygård1,P.Pellikka2,A.Rautio2&V.-P.Salonen2

1) WaterProtectionAssociationoftheRiver VantaaandHelsinkiRegion,Helsinki,Finland2) UniversityofHelsinki,Departmentof GeosciencesandGeography,Helsinki,Finland

Introduction

Management of water resources in Finland has

traditionally focused on either surface water or

groundwater.However,nearlyallsurfacewaterfea-

tures interactwithgroundwater. InFinland, this is

the first attempt to study groundwater and stream

water interactions in detail. This research was fo-

cusedonRiverVantaaanditstributaries.TheRiver

Vantaaisoneofthereserverawwatersourcesfor

thecapitalareaofFinland.Intheriverbasin,there

are also several significant aquifers used by the local

municipalitiesorwatercompanies.RiverVantaaand

itstributariesarewidelyusedforrecreationalactivi-

ties,too.ThequalityoftheRiverVantaaanditstrib-

utarieshasbeenmonitoredregularlysince1970’sto

identify the incoming loadandcontaminants.The

maintargetof thestudy is to increasetheknowl-

edge about aquifer-river interaction in the study

area. The research gives valid information to the

watermanagementoftheareaaswellasimportant

datatoevaluatepossibleeffectsofclimatechange

totheriverbasinanditswatermanagement.

Field studies

Field studies were performed at Rivers Vantaa,

Herajoki,Palojoki,KeravanjokiandTuusulanjoki in

July2010.Thetotallengthoftheriversisapprox-

imately 220 km. The aim of the first field period

was to define the best research methods to study

groundwater-riverwaterinteractionandtoidentify

thegroundwaterrechargeanddischargezonesin

theriversystem.Themethodsused involvedaeri-

al infrared photography, thermal profiling of river

sediments,waterqualitymeasurements (electrical

conductivity,pH,mainionicconcentration,18Oiso-

topiccomposition),riverwatertemperaturemeas-

urementsandmeasurementswithseepagemeters

andmini-piezometers(Korkka-Niemietal.2010).

Aerialinfraredphotographydatawascollectedus-

inghelicopterequippedwithhighresolutioninfra-

red imagery system (ThermaCAM) along with air-

craftnavigationanddigitalcamera.Thermalinfrared

imagerywasusedtodelineateareasofdiscreteand

diffusedischargeofgroundwatertostreamwater.

AISAEagleHyperspectralsensorprovidedbySPEC-

IMSpectralImagingLtdwasusedtodetectchanges

bothintheshorelinevegetationandqualityofriver

water. Field measurements with multiparameter

probe(YSI600XLM-V2-M)andmultilevelsediment

temperature probe (TP62_S, Umwelt Elektronik

GmbH) were done at selected river sections con-

currently with the aerial photography. Moreover,

automaticYSI600sensorswere installedat three

watersupplysites.Exceptionallyaridandwarmpe-

riod preceded the time of the field activities result-

inginthehighdifferencebetweenthetemperature

ofriverwater(+20–+24°C)andgroundwater(+4

– +8 °C). Thermal profiling with temperature probe

revealedzonesofgroundwaterdischargeandpro-

vided reference data for aerial photography data.

Seepagemetersandmini-piezometersweretested

at selected locations in order to quantify the ob-

served flux of groundwater into the stream. Prelimi-

nary results of the field studies and feasibility of ap-

pliedmethodswillbepresented.

References

Korkka-Niemi, K., Rautio. A. & Wiebe, A. 2009.

Methods for investigating groundwater surface

waterinteractionatLakePyhäjärvi,SWFinland.In:

6th National Geological Colloquium 4.-6.3.2009,

[Helsinki] :programandabstracts.Publicationsof

the Department of Geology. Series A 3. Helsinki:

UniversityofHelsinki,28.

Page 38: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

3� ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

Session 5: Socio-economical and Institutional

Issues of the WFD

Page 39: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

3�ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

H.Valve&M.Kaljonen

FinnishEnvironmentInstitute,EnvironmentalPolicyCentre,Helsinki,Finland

TheWaterFrameworkDirectiveoftheEUstipu-lates that river basin districts should constitutebasicunitsofwatermanagementplanning.Ac-cordingtooneofthepreambles,‘theobjectiveofachievinggoodwaterstatusshouldbepursuedforeachriverbasin,sothatmeasuresinrespectofsurfacewaterandgroundwatersbelongingtothesameecological,hydrologicalandhydrogeo-logicalsystemarecoordinated’.Hence,thenewplanninginstrumentistorecognisetheintercon-nectednessofwatershedsandallowthemtobetreatedasoperationsentities.Thisshifthasbeenwarmly welcomed by both natural and socialscientists. Finally, it appears, planning of watermanagement measures might coincide with anaturalecosystemandanecologicalscale.

The risk with such an ecosystems-focused ap-proach isthatbothresearchersandadministra-torsendupequatingcomplexandopensystemswithplaces.FollowingJessopetal. (2008:391),wemightclaimthatriverbasinmanagementfallsintothe‘place-centristtrap’inwhichriverbasins(orsometimessub-units)appearasdiscrete,moreorlessself-contained,‘moreorlessselfidenticalensembles of socio-ecological interactions’. Inotherwords,sinceitisgeographicallycoherent,abasin isassumedtoprovideanunambiguousunit–andunambiguousboundaries–forman-agement.However,socialandeconomicprocess-es influential for the development of water status easilyextendbeyondtheterritoryofariverbasindistrict.Moreover,thatsomethingaffectsawa-terbodydoesnotbyanymeansguaranteethatthe processes would interact in any systematicfashion,orthattheywouldberesponsivetosim-ilar moves or fluctuations. Even things that are closespatiallymaynotbesointermsoftemporalsequences.Therefore,therhythmsofplanningof

River Basins as Planning Institutions: How to Avoid thePlace-centrist Trap

thevarious regionalpublicbodiesmaybehardto synchronise.Whenotheractivitiesare takeninto consideration, the situation is complicatedstillfurther.

Boththeory-basedargumentsandempiricalevi-denceindicatethatavoidanceoftheplacecentristtrapiscrucialforeffectiveriverbasinplanning.InFinland, our paper argues, river basin planninghasbeeneffectivelytakenoverbytraditionalsec-toral thinking and administrative practice. This‘sectoralcapture’tendstoreproducesimplehier-archicalthinking,failingtoserveanalysisofnon-linear relationships. In South-west Finland, theplanshavebeenunabletomakevisiblethetra-jectoriesuniquetotheriverbasins,todealwithpressuresemerginginabottom-upfashion,andto analyse eco-social heterogeneity. Therefore,in thebasinof the riverPaimionjoki, forexam-ple,theplanningprocesscannotsensitisetotheapparentbifurcationtakingplace inagriculturalproductionintheregionandseriouslyaffectingtheconditionsofwaterprotection.Neitherhastheabstractadministrativeunitoftheriverbasinofferedmeaningfulattractantstoactivatecitizeninvolvement.Infact,thecircumstancesinwhichpeoplearetoparticipateinadoptionandmodifytheiractivitiesaremulti-scalar.Accordingly,itmaybecome surprisingly difficult to decide on com-monstartingpointsforplanning.Someprelimi-nary definitions are needed as a starting point, butwithouttheabilitytocontestdemarcations–torethinkwhicharetherelevantprocessesandscalesofactionandhowtheyaddup–planningisunlikelytoreachitsobjectives.

References

Jessop,B.,Brenner,N.&Jones,M.2008.Theo-rizing sociospatial relations. Environment andPlanningD:SocietyandSpace26:389-401.

Page 40: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

40 ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

H.ØrstedNielsen1,A.BranthPedersen1,P.Frederiksen1,H.Saarikoski2&A.Rytkönen3

1) DepartmentofPolicyAnalysis,National EnvironmentalResearchInstitute,Aarhus University,Roskilde,Denmark2) FinnishEnvironmentInstitute,Environmental PolicyCentre,Helsinki,Finland3) FinnishEnvironmentInstitute,Freshwater Centre,Oulu,Finland

Introduction

Theeco-systembasedapproachthat isembod-iedintheWaterFrameworkDirectivebreakswithtraditional approaches in many countries andthereforetheactualimplementationofthedirec-tiverequiresconsiderableadaptationinrelationto spatial fit of management units and manage-ment institutions, and poses challenges relatedtoinstitutionalinterplay(Moss,2004;Galazetal.2008).Theriverbasindistricts(RBDs)conceptu-allysitinthehubofintersectinginstitutionalar-rangements,requiringintegrationacrossvertical,horizontal and national administrative bounda-ries.Coordinationproblemsmaythusarisealongthesedimensionspossiblyleadingtoimplemen-tationgaps(Miller2000;Scharpf1997;Mickwitzetal,2009).

A comparative study of institutional performance in WFD implementation

The paper presents first results from a compara-tiveanalysisofthewaystheseinstitutionalchal-lengeshavebeenapproached in theBaltic Seacountries, the solutions being sought and thebarriersmet.

Thecomparative studyseeks to identify factorsthat affect institutional performance, based ontheoreticallyderivedcriteriaincludinginstitution-alset-upandcapacity,distributionofauthority,andformalandinformaldecisions-makingproc-

Institutional Approaches to the Implementation of theWater Framework Directive around the Baltic Sea

esses.Mostcountrieshavenotyetconsideredcli-matechangeadaptationintheirRiverBasinMan-agementPlans,butthiswillprobablybeamajorissueinthenextroundofpreparingRBMPs.Ashort discussion on institutional aspects of thisfuturechallengewillbepresented.

References

Galaz,V.etal.2008.TheProblemofFitamongBiophysicalSystems,EnvironmentalandResourceRegimes and Broader Governance Systems: In-sightsandemergingchallengespp.147-186. InYoungO.,KingL.andSchroederH.(eds).Institu-tionsandEnvironmentalChange.Boston:Mas-sachusettsInstituteofTechnology.

Mickwitz,P.,Aix,F.,Beck,S.,Carss,D.,Ferrand,N.,Görg,C.,Jensen,A.,Kivimaa,P.,Kuhlicke,C.,Kuindersma,W.,Máñez,M.,Melanen,M.,Monni,S.,Pedersen,A.B.,Reinert,H.&vanBommel,S.2009.ClimatePolicyIntegration,CoherenceandGovernance,PEERreportnb2–PartnershipforEuropeanEnvironmentalResearch,Helsinki.

Miller,G.2000.AbovePolitics:CredibleCommit-ment and Efficiency in the Design of Public Agen-cies.JournalofPublicAdministrationResearch&Theory10:289-327.

Moss,T.2004.TheGovernanceoflanduseinriv-erbasins:prospectsforovercomingproblemsofinstitutional interplaywith theEUwater frame-workdirective.LandUsePolicy21,pp85-94.

Scharpf,F.W.1997.GamesRealActorsPlay.Ac-tor-Centered Institutionalism inPolicyResearch.Boulder,Col:WestviewPress.

Page 41: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

41ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

M.Kaljonen

FinnishEnvironmentInstitute,EnvironmentalPolicyCentre,Helsinki,Finland

TheinstitutionalisationoftheWaterFrameworkDirectiveisaimedatestablishinganewfashionandnewmeanstomaintainawarenessandre-spond tochanges inwaterecosystems. Itaimstocreatebetterunderstandingoftheecologicalstateofthewaters,pressuresaffectingthem,andactions needed for achieving good ecologicalstatus.Watermanagementplansformthebasicunitfortheco-ordinationofthisunderstanding.

Crucial foralertand responsivewatermanage-mentishowtheecologicalstatusofawatersys-temismadevisibleandbecomespartofmean-ingful human activities. Hinchliffe (2008) hasemphasisedtheimportinsuchaprocessofwhatis entangled, what is disentangled, and how.Watermanagementplanningnot justpresents,butalsoactivelycreatesunderstandingofwhatwateranditsmanagementare.Theoutcomeofplanningisacontestedunderstandingofthede-mandsandmeansofpublicco-ordination.Plan-ningactively contributes to the creationof thepublicsubjectintherealmofwaterprotection.

This paper examines the challenges of respon-sive water management through an engage-ment with practice. In the water managementplan of South-west Finland, diffuse pollution israisedas amajor issue tobehandled (Salmi&Kipinä-Salokannel2010).Theplan,however,hasmanifested difficulty in offering any new means orapproachesforaddressingthisissue.Theso-lutionofferedbytheplanismorecost-effectiveassignmentofthecurrentpolicymeasures.

Thissolutionisclearlysomethingthatallowssafewatersforallpartiesandenablestheirpeacefulco-existence. It also follows the legal mandate

of the plan. Engagement with practice shows,furthermore, that there exist particular knowl-edge technologies that actively keep apart thespheresofwaterandpolitics inwatermanage-ment. For example, the way in which nutrientreductiontargetsarederivedfromtheecologicalreferenceconditionsdemarcates the target-set-tingoutofpoliticaldeliberation.Environmentalscienceisgiventheroleofan‘orderingdevice’,and the linkage between human activities andwaterbecomessimplyarelationshipofpressure.On the other hand, the identification of actions is assigned to thepolitical sphere,wherein thevariousintereststrytosafeguardtheirpositions.With these spheres of water and politics keptseparate,theinstitutionalcontinuaofwaterpro-tectionareincorporatedintopolicy.Thisdivisionenables safewatersbutmakes thepolicy inca-pable of capturing the complex eco-social dy-namicsthatareuniquetoaparticularriverbasinandofbecomingmoreresponsivetothese.Fordevelopmentofmoreresponsivewatermanage-ment, how institutional continua are enactedandmaintainedbyparticularplanningtechnolo-giesandpracticesneedscriticalattention.

ReferencesHinchliffe, S. 2008. Reconstituting nature con-servation: Towards a careful political ecology.Geoforum39(1):88-97.

Salmi, P. & Kipinä-Salokannel, S. (eds.). 2010.Varsinais-Suomen pintavesien toimenpideohjel-mavuoteen2015.

Planning in Safe Waters – Institutional Continua of Water Management Planning and the Challenge of Responsiveness

Page 42: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

42 ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

B.Hasler,M.T.HedegaardKonrad&S.L.Brodersen

NationalEnvironmentalResearchInstitute,AarhusUniversity,Roskilde,Denmark

Introduction

ThedischargeofnutrientstotheBalticSeacaus-esseriouswaterqualityproblemswithrespecttoeutrophication and oxygen deficits. Several plans anddirectivesarerelevantfortheachievementofimprovedwaterquality intheBalticsearegion;andthemostimportantaretheBalticSeaActionPlan (BSAP) (HELCOM2007), theWaterFrame-workDirective(WFD)(TheEuropeanParliamentandthecounciloftheEuropeanunion2000)andtheMarineStrategyFrameworkDirective(MSFD)(The European Parliament and the council oftheEuropeanunion2008).WhiletheWFDandMSFD-implementationsaremattersbetweentheEUcommissionandthememberstated(i.e.notRussia),theBSAParenegotiatedbetweenalltheriparian countries around the Baltic Sea, facili-tatedbyHELCOM.

A non-linear cost-minimisation model for theBaltic Sea BALTCOST (Konrad et al. 2010), em-bracing all 7 sea regions of the Baltic Sea andtheripariancountriesaroundthesea.Themodelisusedtoprescribeabatementmeasurestoob-taindifferentreductiontargetsinall9countriesaroundtheseaaswellastargetsforthediffer-ent sea regions. The BALTCOST-model extendsformer models for the Baltic Sea (Schou et al2006; Gren 2008) by updating the cost-func-tionsanddatabehindthese,aswellasthemodelstructure.Themodel integratescostmodelling,land-usemodelling andmarinemodels, andaspart of the model development a distinction ismade between groundwater/soil retention andsurface water retention. The change from anoverall applied retention coefficient (as in Schou etal2006)totwodifferentsetsofretentionco-

Integrated Modelling of Cost-effective Reductions ofNutrients to the Baltic Sea

efficients changes the comparative advantages of themeasures appliedby changing land-use,to measures which have a direct effect on thesurface water system. Also, the surface waterretentiondiffersacrossdrainagebasinscontrib-uting todifferentiationof the relative effect oflocationofmeasures.

Modelling scenarios and spatial heterogeneity

Inthepresentapplicationtheeffectsofincludingground-andsurfacewaterretentionareevaluat-edtogetherwithscenariosofdifferenttargetingapproacheswheredifferencesinthetotalcosts,distributionofcostsbetweencountriesanden-vironmental quality are examined in scenarioswhere the environmental quality targets aremeasuredatthecoastlineofeachcountryversusenvironmental targetsforthesea-region.Thesescenariostakeintoaccountthespatialtransferofpollutantsinsoil,ground-andfreshwateraswellasbetweensearegions.

The research illustrates the importance of ac-countingforbotheconomicandenvironmentalheterogeneityinpolicyevaluations,andthistypeofintegratedresearchandmodellinghasimpor-tantimplicationsforpolicyevaluationsrelatedtotheWaterFrameworkDirectiveandtheMarineStrategyDirective.

References

Gren,I.-M.etal.2008.Costsofnutrientreduc-tionstotheBalticSea–technicalreport.Swed-ish University ofAgricultural Sciences,WorkingPaperSeries2008:1.

HELCOM.2007.HELCOMBalticSeaActionPlan.HELCOMMinisterialMeeting,Poland2007.

Konrad M., Brodersen, S.L. & Hasler, B. (forth-coming).TheBaltcostmodel.NERIworkingpaper.

Page 43: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

43Climate Change Challenges in River Basin Management

Session 5: Socio-economical and Institutional Issues of the WFD

Schou, J.S., Neye, S.T., Lundhede, T., Martinsen, L. & Hasler, B. 2006. Modelling Cost-Efficient Re-ductions of Nutrient Loads to the Baltic Sea, Na-tional Environmental Research Institute.

The European Parliament and the Council of the European Union. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.

The European Parliament and the Council of the European Union. 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for commu-nity action in the field of marine environmental policy (Marine Strategy Framework Directive).

Page 44: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

44 ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

H.I.Heikkinen

ThuleInstitute,UniversityofOulu,Oulu,Finland

Introduction

TheVulnerabilityAssessmentofEcosystemServ-icesforClimateChangeImpactsandAdaptation(VACCIA,LIFE07ENV/FIN/000141)-project2009–2011 isaccomplishedbytheFinnishLong-TermSocio-Ecological Research Network (FinLTSER).TheVACCIA–projectisbasedontheMillenniumEcosystemAssessmentReports2001–2005andbuildsforwardfromthebasicassumptionthatcli-matechangecannotbeavoided,buttheempha-sisshouldbeputondevelopingmethodologiesforvulnerabilityassessment,knowledgetransferand theoverallbuildingofadaptationcapabili-ties(cf.IPCC2007).VACCIA-projectaimstode-velopadaptationmeasuresthatarebasedontheunderstandingof(i)thelikelihoodofchange,(ii)the vulnerability of specific sectors to predicted change,and(iii)theknowledgeproductionoflo-calscalepossibilitiesforadaptation.

TheUniversityofOuluisresponsiblefortwoAc-tions in the VACCIA-project. This paper is partoftheVACCIAAction12(shortname:Tourism),whichaimsattheassessmentofecological,so-cial and health impacts of climate change anddeveloping potential adaptation measures fornaturebasedtourismrelatedcommunitiesintwonortherntownsinFinland;thetownofKuusamoandthemunicipalityofSotkamo.

Participatory future studies

Theaimofthispaperistooutlineandcriticallyreviewthevulnerabilityassessmentmodeldevel-opedandappliedforthecasestudyofAction12:Tourism.Thepaperbeginsbyframingthestart-ing points and the research setting of VACCIAproject andparticularly theAction12:Tourism.Thentheprimarytheoreticalandmethodological

Vulnerability Assessment Model for Local Tourism inTerms of Climate Change Challenges

conceptsconsideredwillbepresentedwiththeemphasisonappliedmethodologiesofparticipa-tory futurestudies,suchasthenarrativefuturescenario development (cf. story lines) and theirfurther developing in a set of arranged futureworkshops. The paper will end to the lessonslearned discussion and suggestions for furtherdevelopingofvulnerabilityassessmentmethod-ologiesandenhancingoflocaladaptationmeas-ures(Heikkinenetal.2010).

References

Heikkinen,H.I. (ed.),Suopajärvi,T.,Huusko,A.,Karjalainen,T.P.,Kauppila,P.,Koskela,A.,Mus-tonen, V., Ponnikas, J., Rantala, S., Rautio, A.,Saarinen, J., Savela, H., Siikamäki, P. & Tervo-Kankare,K.2010. Ilmastonmuutos jamatkailunhaasteetKuusamossajaSotkamossa–Matkailunhaavoittuvuudenjasopeutumisenarviointiosal-listavan tulevaisuudentutkimuksen menetelmäl-lä. (Summary in English: Climate change andchallengestotourisminKuusamoandSotkamo–Assessingthevulnerabilityandadaptabilityoftourismbyparticipatoryfuturestudies).TheUni-Press,Oulu.

IPCC.2007.Synthesishttp://www.ipcc.ch/publi-cations_and_data/ar4/syr/en/spms4.html

MillenniumEcosystemAssessment(MA).2005.http://www.millenniumassessment.org/en/index.aspx

VACCIA homepage http://www.environment.fi/syke/vaccia,Action11and12homepageshttp://thule.oulu.fi/vaccia/

Page 45: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

45ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

T.P.Karjalainen1,M.Marttunen2,A.Rytkönen3&O.Autti1

1) ThuleInstitute,UniversityofOulu,Oulu, Finland2) FinnishEnvironmentInstitute,Freshwater Centre,WaterResourcesManagementUnit, Helsinki,Finland3) FinnishEnvironmentInstitute,Freshwater Centre,RiverBasinManagementUnit,Oulu, Finland

Restorationofriversandstreamsisnowadaysatrend that reflects a growing awareness of river degradation; river and stream restoration hasbecome a world-wide phenomenon as well asa booming enterprise (see Palmer et al. 2007).However,restorationplanningoftensuffersfrompoorly defined objectives, the confusion of ob-jectivesandmeans,andlackofconsiderationoftheimpactsofsuggestedalternativesandmeas-ures.Decisionmakinginrestorationprojectscanbe complex and seemingly intractable, mostlybecauseofthe inherenttrade-offsbetweenso-ciopolitical, ecological, and economic factors.For example, there are concurrently policy ini-tiatives(suchastheEUWaterFrameworkDirec-tive)torestorethemulti-functionalityofriverineecosystems and landscapes (Pahl-Wostl, 2006;Sigeletal.,2010),andelaborateplansaimingtoincreasetheuseofEuropeanandnorthernriversforhydro-electricpowerproductiontomeettheobligations of international climate agreementsand to gain profit thereof (Karjalainen & Järviko-ski2010).

ThelowercourseoftheRiverIijokiwasconstruct-ed for hydropower production in 1961–1971.Fivehydropowerdamsinthelowercoursehaveblocked the passage of migratory fish to their re-productionareasforseveraldecades.Thereare

The Interactive Use of Multicriteria Decision Analysis toSupport the Evaluation of Restoration Alternatives – the Case Study Related to the Enhancement of Migratory Fish Stocks in the River Iijoki

hundredsofhectaresofareassuitableforsalmo-nidsupstreamofthedammedriversection.Mostoftheseareashavebeenrestoredaftertheceas-ing of the timber floating.

The main objective of the project migratory fish returnintotheRiverIijoki(2008-2010)istocre-atea concreteprogram for restoringmigratoryfish. In order to support this objective, we applied interactivemulticriteriadecisionanalysis(MCDA)in a collaborative process which aimed at find-ingtoanecologically,socially,andeconomicallysustainable way to return migratory fish stocks intotheRiverIijoki.Fourdifferentrestorational-ternativeswere assessed. In thepaperwealsoevaluatethegeneralapplicabilityofthemethodinmulti-stakeholderprocesses.

MulticriteriaDecisionAnalysishelpsthestructur-ingofdecisionsituationsbyexpressingandana-lysing systematically stakeholders’ preferences,comparingalternativeshavingincommensurableimpactsandidentifyingkeytrade-offs.Keytasksfor all MCDA methods are the identification of keyobjectivesandattributes,assessingtheirper-formancesand importance in thedecisionsitu-ation,calculatingpriorityvaluesforthealterna-tives and reaching a consensus within a groupof decision makers for these elements. In thisproject MCDA also provided a framework andtooltocollect,organizeandanalyzeinformationfromstakeholders,expertsandscientists.

We used decision analysis interview approach(MarttunenandHämäläinen2008)whichmeansthatkeystakeholdergroups,e.g.ahydropowercompany, fishermen, fisheries and environmen-talauthoritiesandmunicipalities,areactivelyin-volved in thedifferentphasesof theworkandtheweightelicitationandanalysisoftheresultsarerealizedface-to-facebetweentheanalystand

Page 46: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

4� ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

theparticipants.ThemainadvantagesofMCDAinthisprojectwereenhancedindividualandso-ciallearningamongstakeholders,reframingtheplanning situation and shared understandingaboutthedecisionsituation.MCDAalsohelpedtoidentifyissuesofagreementanddisagreementand toevaluatealternatives fromdifferentper-spectives.TheresultscanbeutilizedintheIijokiprojecttoidentifythemostacceptableandfeasi-ble alternatives for restoring migratory fish runs.

References

Karjalainen,T.P.&Järvikoski,T.2010.Negotiatingriver ecosystems: Impact assessment and conflict mediationinthecasesofhydro-powerconstruc-tion.Environmental ImpactAssessmentReview,30:319-327.

Marttunen,M.&Hämäläinen,R.P.2008.Decisionanalysis interviews in supporting collaborativemanagementofalargeregulatedwatercourse.EnvironmentalManagement,42:1026-1042.

Pahl-Wostl, C. 2006. The importance of sociallearninginrestoringthemultifunctionalityofriv-ers and floodplains. Ecol Soc 2006, 11

Palmer,M.,DavidAllan,J.,MeyerJ.&Bernhardt,E.M.2007.RiverRestorationintheTwenty-FirstCentury:DataandExperientialKnowledgetoIn-formFutureEfforts.RestorationEcology15:471-482.

Sigel, K., Klauera, B. & Pahl-Wostl, C. 2010.Conceptualising uncertainty in environmentaldecision-making: the example of the EU waterframeworkdirective.EcolEcon69:502-10.

Page 47: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

4�ClimateChangeChallengesinRiverBasinManagement

Session5:Socio-economicalandInstitutionalIssuesoftheWFD

M.Dufva1,K.Martinmäki2&M.Marttunen1

1) FinnishEnvironmentInstitute,Freshwater Centre,WaterResourcesManagementUnit, Helsinki,Finland2) FinnishEnvironmentInstitute,Freshwater Centre,RiverBasinManagementUnit,Oulu, Finland

The European Water Framework Directive pre-scribesaseriesoftasksforproperlyassessingandmanaging riverbasinswith theultimateaimofprotectingandrestoringtheoverallqualitystatusofEuropeansurfacewaters.Thereisagreatneedtoprovidewatermanagersanddecisionmakerstoolswhichenableintegrationofenvironmentalandsocioeconomicfactors,systematiccompari-sonofmanagementalternatives,andimprovingstakeholder involvement, and to communicateandvisualiseresultsinatransparentandsimpleway. However, due to the tight time scheduleandlackofappropriatetools,theuseofdifferentkind of models was fairly limited in the first plan-ningperiod,andtheProgrammesofMeasuresaswellasevaluationofthedevelopmentofwatercourses‘statuswereoftenbasedonexpertjudg-mentsinFinland.

Participatory River Basin Management Supported withthe Complementary Use of Models

Inthispresentationweshowhowdifferentmod-elshavebeenusedinacomplementarywaytosupport participatory river basin planning. Weuseddifferentmodels inacontinuumtoassessthe current nutrient load to water course, toidentify cost-efficient measures to achieve good ecologicalstatus,andtoevaluatethemonetaryand other benefits to recreational use. Different futurescenarioswithdifferentlanduseassump-tionsandclimatechangehypothesisweredevel-opedandtheirimpactswereassessed.Thesce-nariosweredevelopedandtheresultsdiscussedandevaluatedinamulti-stakeholdergroup.Weanalyse the challenges and benefits of multi-modelapproachanddiscusstheapplicabilityofmulti-model approach in the second planningperiod of the Water Framework Directive. TheresultsandexperiencesarebasedontheprojectcarriedoutintheKarvianjokiwatershed(area3400km²)inWesternFinland.

Page 48: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

4� ClimateChangeChallengesinRiverBasinManagement

PosterSession

Poster Session

Page 49: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

4�ClimateChangeChallengesinRiverBasinManagement

PosterSession

Towards Plural and Conditional Water Management – a Challenge for Knowledge Production

M.Kaljonen&R.Varjopuro

FinnishEnvironmentInstitute,EnvironmentalPolicyCentreHelsinki,Finland

River basin management concerns a widespectrum of actors and crosses strict sectoralboundaries.Differentactorshavedivergentcom-mitmentstowardswater,itsutilisationandman-agement.Recognisingandacknowledgingthesecommitmentsrequirespluralandconditionalwa-termanagement(Stirling2008).

Inthisposterwepresentaframeworkforana-lysingoneexperiment,wherepluralandcondi-tional knowledge for water management wasseekedfor(Kaljonen&Varjopurosubmitted).IntheexperimentacomprehensivesetofscenariosforEurope‘sfreshwatersupto2050werebuiltusinghighlyparticipatoryscenario-makingmeth-ods(SCENES)(Kämärietal.2008).Inthisposterwearguethatweneedtotakeadynamicviewon knowledge production if we are to under-standhowparticipatoryscenario-makingmeth-odscanassistinformingsocialchoicesformoreresponsivewatermanagement.Wepresentanddiscusscriteriacomposedofsocial,cognitiveandmobilizationlinkages.

Webelievethatcomparativeanalysisofthepar-ticipatoryscenario-makingexperiments,astheywereconducted inSCENES,canprovidemean-ingful empirical insights on the tensions thatarisewhenplural and conditional policy advicefor water management is seeked for. Develop-ingmoreresponsivewatermanagemententailsengaginginexperimentsaswellasmechanismswhichenableotherstolearnfromthoseexperi-ments.

References

Kaljonen,M.&Varjopuro,R.(submitted).Open-ing up water management – A framework foranalysing participatory scenario-making experi-ments. Submitted to Journal of Water and Cli-mate.

Kämäri,J.,Alcamo,J.,Bärlund,I.,Duel,H.,Far-quharson,F.,Flörke,M.,Fry,M.,Houghton-Carr,H.,Kabat,P.,Kaljonen,M.,Kok,K.,Meijer,K.S.,Rekolainen,S.,Sendzimir,J.,Varjopuro,R.&Vil-lars,N.2008.EnvisioningthefutureofwaterinEurope–theSCENESproject.E-water,2008/3.

Stirling, A. 2008. “Opening Up“ and “ClosingDown“.PowerParticipationandPluralismintheSocialAppraisalofTechnology.Science,Technol-ogy&HumanValues33:262-294.

Page 50: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

50 ClimateChangeChallengesinRiverBasinManagement

PosterSession

Density Functional Studies of the initial Stage of Aluminium Oxide Dissociation in Clean Water

G.Lanzani1,2,A.Sarpola1,3,J.Saukkoriipi4,K.Laasonen2,J.Rämö1&S.O.Pehkonen1

1) CentreofExpertiseintheWaterIndustry Cluster(CEWIC),Thule-Institute,Universityof Oulu,Oulu,Finland2) DepartmentofChemistry,UniversityofOulu, Oulu,Finland3) DepartmentofProcessandEnvironmental Engineering,UniversityofOulu,Oulu,Finland4) FinnishEnvironmentInstitute,Freshwater Centre,RiverBasinManagementUnit,Oulu, Finland

Aluminium is the most abundant metal in theEarth´s crust,and the thirdmostabundantele-ment,afteroxygenandsilicon.Itistooreactivechemicallytooccurinnatureasafreemetal.In-stead,itisfoundcombinedinover270differentminerals [1]. Despite this considerable naturalabundance,aluminiummaynegativelyaffectter-restrialandaquaticlifeindifferentways.Regularaluminium concentrations in groundwater areabout0.2ppm[2],butatpHvaluesbelow4.5thesolubility rapidly increases,causingalumini-umconcentrationstoriseabove5ppm[2].ThismayalsooccuratveryhighpHvalues.DissolvedAl3+-ions are toxic to plants; these affect rootsanddecreasephosphateintake[3].Traditionallysocalled labilemonomericaluminiumincludingAl3+, [Al(OH)]2+and [Al(OH)2]+ is considered themost toxic, however theoligomeric formsmaystiften cell membranes and cross link biomole-culesintoxicwayfortheplantmetabolism.Af-ter dissolution of the minerals in soils, the flow originated from the precipitations, transportsthesetowatersources.Thismaycauseitscon-centrationsinriversandlakestorise[4].Alumin-iumnaturallyoccurs inwaters invery lowcon-centrations.Higherconcentrationsderivedfrommining waste and other human activities maynegativelyaffectaquaticbiocoenosis. It is toxicto fish in acidic, low alkalinity waters starting at concentrationsof0.1mg/l.Terrestrialorganisms

also contain some aluminium. The mechanismoftoxicityismainlybasedonenzymeinhibition.Large aluminium intake may negatively influence humanhealth[5,6].

Thechemistryofaluminiuminsolutionsisquiteuncharted even it is widely used in several ap-plications likeacoagulationagent inwaterpu-rification processes. Establishing the complete speciation of aluminium in water is difficult due tothedynamicequilibriumbetweencomplexesandversatilityof thepolynuclearcomplexes. Inthestudyherepresented,severalstate-of-the-artmethodsareintegratedinanovelwaytoinvesti-gatetheaquaticchemistryofaluminiumclusters,inordertogiveadditionalinsightsusefultotheunderstandingof thedissolutionmechanismofaluminiumoxide.Ingeneral,theprevailingviewofaqueousaluminiumchemistry is far fromre-vealed. Here in, computational methods basedon quantum mechanics have been combinedwith electrospray mass spectrometry (ESI MS)and potentiometric techniques, to investigatedirectlythehydrolysisproductsofaluminiuminaquatic environments. The major goal of thisstudy is to elucidate the progress of hydrolysisandpolymerisationofaluminiumcomplexesandstudythekineticsof thesereactions.Computa-tional study can provide additional informationonthestructures,stabilityandchemistryofalu-minium compounds in aquatic environments[7,8]. Car-Parrinello molecular dynamics (CP2K[9])hasbeenused,togetherwithstaticquantumchemicalcalculations,toinvestigatetheaqueousstructuresandchemistryof trimericandpenta-mericaluminiumcomplexesoriginatedfromthedissolutionofsimilarfragmentsofaluminiumox-ide.Thevalidityoftheresultsobtainedcompu-tationally has been verified comparing structural informationtotheresultsoftheESIMSexperi-ments.

Page 51: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

51ClimateChangeChallengesinRiverBasinManagement

PosterSession

References (1) Lide,D.R.2000.HandbookofChemistryand

Physics81stedition,CRCpress.

(2) Sollarsa, C.J., Bragga, S., Simpson A.M. &PerryaR.1989.AluminiuminEuropeandrink-ingwater.Env.Tech.10(2):131-150.

(3) Horst,W.J.1995.Theroleoftheapoplastinaluminium toxicity and resistance of higherplants: A review. Zeitschrift für Pflanzener-nährungundBodenkunde158(5):419-428.

(4) Turner,R.C.&Clark, J.S.1966.Limepoten-tial inacidclayandsoil suspensions.Trans.Comm.II&IVInt.Soc.SoilScience:208-215.

(5) Gitelman,H.J.1988.Physiologyofaluminiumin man. Aluminum and Health, CRC Press,ISBN0824780264.

(6) Ferreira,P.C.,PiaiKde,A.,Takayanagui,A.M.& Segura-Muñoz, S.I. 2008.Aluminum as ariskfactorforAlzheimerdisease.RevLatAmEnfermagem16(1):151-7.

(7) Saukkoriipi,J.2010.Theoreticalstudyofthehydrolysis of Aluminum complexes. ActaUniv.Oul.A554,ISBN9789514261831.

(8) Sarpola,A.2007.Thehydrolysisofalumini-um,amass spectrometric study.ActaUniv.Oul.C279,ISBN9789514285578.

(9) CP2Kproject.Moreinformationavailableat http://cp2k.berlios.de/.

Page 52: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

52 ClimateChangeChallengesinRiverBasinManagement

PosterSession

Climate Variability Effects on the Groundwater TableFluctuations and Nitrate Nitrogen Concentrations in Agricultural Lands

A.Veinbergs,A.Liepa,Z.Dimanta,K.Abramenko,V.Vircavs,D.Lauva,I.Mailite&I.Anisimova.

LatviaUniversityofAgriculture,FacultyofRuralEngineering,DepartmentofEnvironmentalEngineeringandWaterManagement,Latvia

Introduction

One of the most important ground resourcesin Latvia is groundwater. Intensive agricultureand inappropriate animal husbandry are themainconcernsfordecreasedwaterquality.Highratesofmineralandorganicfertilizersusecouldlead to increased concentrations of nitrogenand phosphorus into headwaters and shallowgroundwater.

The objective of the presented study is to in-vestigatethe impactsofclimatechangeonthegroundwater table and fluctuations of nitrate nitrogenconcentrationscausedbythenutrientsfromagriculturalareas.

In order to monitor the agricultural runoff theDepartment of Environmental Engineering andWater Management has set three monitoringstationsAuce,Berze,Mellupite.Necessarydataareobservedgroundwater table,waterquality,andsubsurfacedrainagerunoff.

Groundwater table modelling

According tometeorologicaldata (air tempera-ture, vapour pressure deficit and precipitation) it ispossibletomodelthegroundwatertable.Us-ingthemathematicalmodelMETUL[1]itisdone.Modeliscalibratedfor2006–2009timeperiod.Correlation between observed and modelledgroundwatertablesare–fortheBerzeR²=0.88,Auce R²=0.65 and Mellupite R²=0.63. By us-ing11futureclimatescenariosfromtheregional

Ensembles models [2] groundwater table ismodeled for the reference period (1961–1990)andforthefuturetimeperiod(2071–2100).Formodeling purposes data sets from Latvian En-vironment, Geology and Meteorology Centre(LEGMC),Ensembles[2]andClimateChangeIm-pactonWaterEnvironmentinLatvia(KALME)[3]wereused.

Results

Therearedifferences in changesofgroundwa-ter table fluctuations for the future time period compared to reference period.To estimate thedifferencesbetweengroundwater tables in ref-erenceandfuturetimeperiodsthestatistical(t-test,F-test)methodwasapplied.Allobservationwellsshowsimilarcharacteristicsforthechangesof groundwater table fluctuations within seasons (wintersandsummersetc.).However,therearedifferences how relevant the changes are. Themost significant statistical (P(T<=t) two-tail < 0.05)changesareexpectedinwinterseason.Inthefu-tureduringthewinterandspringseasonground-watertablecouldincrease,butinautumnseasonmightbeanoppositesituation.Duringsummerclimatechangemayincreasegroundwatertablefluctuation amplitudes, but the average water ta-blecoulddecrease.

Trends of the groundwater table fluctuation over 30 years forboth referenceand futureperiodsshowthesimilarcharacteristics formostof thewells.

Regarding climate changes water table couldreachthelevelclosertoearthsurface(minimumdepth)withapositivetrendaswellaswaterta-blecouldbe sodeep likeneverbefore further-more with rather negative trend (for the maxi-mum depth). However main changes could beexpectedforminimumdepth.

Page 53: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

53ClimateChangeChallengesinRiverBasinManagement

PosterSession

Thedrainagesystemrunoffdependsonground-watertable.Itstartsafterthegroundwatertablereachesdepthofthetiledrainpipe.Inthefutureexpectedhighgroundwatertablecouldprolongsubsurface drainage runoff and possibly fastennutrientleaching.Drainagerunofffortheentiredrainage field is estimated according to ground-waterdepth.InmonitoringstationBerzecorrela-tionbetweengroundwatertableandsubsurfacedrainagerunoffisR²=0.83.Subsurfacedrainagerunoff from drainage field starts if the groundwa-ter table is above ≈ 2.15 m below earth surface.

According to climate changes probability ofgroundwaterdepthabove2.15m thedrainagerunoffcouldincreasefrom62%(226days/year)inreferenceperiodto65%(237days/year)infu-turetimeperiod.InthemonitoringstationMel-lupiteincreasingofgroundwatertablecouldpro-longdrainagerunoffwithprobabilityfrom40%(146days/year)to48%(175days/year).

Possible changesofnitratenitrogenconcentra-tions (observed data for 2006–2009) regard-ing groundwater table fluctuations in a climate variability conditions are considered.To classifywatersamplingdepth(0.7–7.5m)averagevaluebetweenbottommarkofobservationwellperfo-ration andgroundwater tablewasdetermined.Itisestimatedthatvariabilityofnitratenitrogenconcentrationsishigherifthegroundwatersam-ple is taken closer to earth surface and nitratenitrogenconcentrationscanreachhighervalues.One of the highest nitrate nitrogen concentra-tionsfromalltheanalyseddata,areobservedinsubsurfacedrainagerunoff.Forexampleaveragenitrate nitrogen concentration is ≈ 0.1 mg/l in a depth 7 m and ≈ 12.5 mg/l in a depth 1.2 m (drainagedepth)belowearthsurface.

Conclusion

The changes of groundwater fluctuation season-alitycouldaffecttheleachingofnitratenitrogenbecause of retention processes. As the conse-quence of groundwater table high fluctuation amplitude in the summer, itwill causepossibleleaching of the nutrients from the soil located

closertoearthsurfaceaswellasincreaseofwa-ter depth will cause the water deficit for the root zone.Increaseofthegroundwaterdepthinau-tumncouldbeapositiveaspectfortheleachingof nitrate nitrogen (it could decrease) and alsothe field condition will be suitable for the harvest andlandcultivation.

Acknowledgement

ThisworkhassupportedbytheEuropeanSocialFundwithintheframeworkoftheproject“Estab-lishmentofinterdisciplinaryscientistsgroupandmodelingsystemforgroundwaterresearch”.

References

(1) Krams,M.&Ziverts,A.1993.Experimentsofconceptual mathematical groundwater dy-namicsandrunoffmodellinginLatvia.Nor-dicHydrology,24:243-262.

(2) Hewitt,C.D.&Griggs,D.J.2004.Ensembles-based Predictions of Climate Changes andtheirImpacts.Eos,85,p566.

(3) Sennikovs, J. & Bethers, U. 2009. Statisti-caldownscalingmethodofregionalclimatemodel results for hydrological modelling.18th World IMACS/MODSIM, Cairns, Aus-tralia.

Page 54: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

54 ClimateChangeChallengesinRiverBasinManagement

PosterSession

Comparison of Climate Change Scenarios and GCM Models for Kashafrood Basin of Iran

N.Sayari1,M.Bannayan2,A.Alizadeh1,M.R.HessamiKermani3&A.Farid1

1) FerdowsiUniversityofMashhad,Facultyof Agriculture,DepartmentofWater Engineering,Mashhad,Iran2) FerdowsiUniversityofMashhad,Facultyof Agriculture,Mashhad,Iran3) ShahidBahonarUniversityofKerman, DepartmentofCivilEngineering,Kerman,Iran

Increasing ingreenhousegases suchas carbondioxide in the atmosphere could cause globalwarming and changes in air temperature andtemporalandspatialscatterofprecipitation(Mc-Cabe and Wolock, 2002; Moula, 2006). Meanair temperature of the earth was increasingsincethe1850sbyabout0.5°C(Nichollsetal.,1996).Thesechangesofprecipitationandtem-perature can have significant effects on various sections such as agriculture, energy utilization,and human welfare (Watson et al., 1996). Ac-cording to the IPCC climate change scenariosshowedthatthetemperatureisoftenincreasedand precipitation totals have increased in highnorthern latitudesanddecreased in lowermid-latituderegions(IPCC,2001).Thesechangesim-pactthegrowthanddevelopmentofcropsinanumberofways.Temperature isakeyelementofevaporativeandtranspirativedemand,partic-ularlyfortropicalregions(Challinoretal.,2007).Waterdemandinagricultureandurbansectorsmaychangeinfutureduetoclimatechange,soclimate prediction in coming years will providean insightofwater requirement in various sec-tors.Thelarge-scaleGeneralCirculationModels(GCMs)areappropriateandprimarytoolforpre-dictingandinvestigatingthechangesofclimaticparameters.Thesemodelsarenotapplicable inthestudiesofspatialandtemporalchangesforclimaticparametersat regionaland local scalesbecauseoftheircoarseresolution.Iranislocatedinaridandsemiaridregionoftheworld.Duetolow rainfall and high potential evapotranspira-

tion,Iranhasanaverageannualprecipitationof242mm,whichislessthanonethirdoftheworldaverage.Thisprecipitationisunderconditionsinwhich179mmofrainfallisdirectlyevaporated.Inotherwords,71%oftheprecipitationislostduetoevaporation,whileannualpotentialevap-orationofthecountryisbetween1500and2000mm(ShoaeiandHeidari,2006).PrecipitationinIran isoccurredmostly fromOctober toMarch(Nazemosadat et al., 2006). The main goal ofthisresearchwastoestimatethechangeofpre-cipitationandtemperatureforKashafroodbasinunderpossiblefutureglobalwarming.Thefuturemonthly precipitation, maximum and minimumtemperatureswereestimatedfromtheoutputofCGCM2 and HAdCM3 for two socio-economicscenarios (A2 and B2) using statistical downs-calingmethod(ASDmodel).Thisprocedurewasrepeatedforthreefuturetimeperiodsincluding2010–2039, 2040–2069, and 2070–2099. Theusefulnessofdownscalingmethoddependsonthe ability of capturing the impacts of climatevariability. It was found that theASD model isausefultoolfordownscalinglarge-scaleclimatemodelintotheregionalclimaticparameters.TheASDmodelperformedthemostsimilarscenariosthatvariedwithseasons.Ontheaveragediffer-encebetween two scenarios (A2 andB2),wasthesame,whilethedifferencesamongfoursea-sons were significant. The comparison of down-scaleddatasetunderB2scenarioforminimumand maximum temperatures for basin showedthatthedownscalingmodelproducedlesswarm-ingoverthenearly100-yearsimulationthanA2by using both GCMs models. The downscaledminimum and maximum temperatures frombothGCMsmodels indicated theglobalwarm-ingforallcaseswasconsistentwiththerecentobservationandincreasedwithconcentrationofgreenhousegases.Throughincreasingthetem-peratureandchangingprecipitationpattern,andsubsequently evapotranspiration, the climatechange will influence the agricultural section. The reliability of precipitation at critical phases

Page 55: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

55ClimateChangeChallengesinRiverBasinManagement

PosterSession

of cropdevelopment, counts for variationagri-cultural potential. Interannual or interseasonalprecipitationwasmajorchallengetorainfedag-riculturalprocedures(FeddemaandFreire,2001;Nicholson, 2001).TheASD model was capableofsimulatingcurrentclimatetostudythefutureclimate changedue to theatmosphericprojec-tions.

References

Challinor,A.J.,Wheeler,T.R.,Craufurd,P.Q.,Fer-ro,C.A.T.&Stephenson,D.B.2007.Adaptationofcropstoclimatechangethroughgenotypicre-sponsestomeanandextremetemperatures.AgrEcosystEnviron.119:190-204.

Feddema,J.J.&FrireS.2001.Soildegradation,global warming and climate impacts. ClimateRes.17:209-216.

IPCC. 2001. Climate change. 2001. The scientific basis.IPCCThirdAssessmentReport.Cambridge:CambridgeUniversityPress.

McCabe,G.J.&Wolock,D.M.2002.Trendsandtemperature sensitivity of moisture conditionsin theconterminousunitedstates.ClimateRes.20(1):19-29.

Moula, E.L. 2006. Climate trends in Cameron:Implications for agricultural management. Cli-mateRes.30(2):255-262.

Nazemosadat, M.J., Samani, N., Barry, D.A. &MolaiiNiko,M.2006. Enso Forcingon climatechange in Iran: precipitation analysis. Iran J SciTechnol.TransactionB:Engineering.30(B4):555-565.

Nicholls,N.,Gruza,G.V.,Jouzel,J.,Karl,T.,Ogallo,L.A.&Parker,D.E.1996.Observedclimatevari-abilityandchange.In:Houghton,J.,MerioFilho,L.G.,Callendar,B.A.,Kattenberg,A.&Maskell,K. (Eds.), Climate change 1995:The Science ofClimate Change, Cambridge University Press,Cambridge.

Nicholson,S.E.2001.Climateandenvironmentalchange inAfrica during the last two centuries.ClimateRes.17:123-144.

Shoaei, Z.&Heidari,N. 2006.CountryReport,ECO-IDB-FAO. Workshop on Water DemandManagement. Islamabad. Pakistan. AgriculturalResearch and Education Organization. MinistryofJihad-e-Agriculture.

Watson, R., Zinyowera, M. & Moss, R. 1996.Climatechange1995–Impacts,AdoptionsandMitigation of climate change: Scientific Techni-calAnalysis.IntergovernmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge,861p.

Page 56: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

5� ClimateChangeChallengesinRiverBasinManagement

PosterSession

K.Rankinen1,K.Sippel1,K.Granlund1,P.Ekholm1,P.Valkama2,L.Pietola3,J.Helenius4&M.Forsius1

1) FinnishEnvironmentInstitute,Helsinki,Finland2) TheWaterProtectionAssociationoftheRiver VantaaandHelsinkiRegion,Helsinki,Finland3) YaraInternationalASA,Finland4) UniversityofHelsinki,Departmentof AgriculturalSciences,Helsinki,Finland

Introduction

InSouthernFinlandtheclimatechangemodelspredict10–24%increaseinannualprecipitationand2.8–4.9°Cincreaseinmeantemperaturefor2070–2100.Inthisareaclimatechangewillalsomeanwarmerandwetterwinterswhicharelike-lytoincreasenutrientloadingtosurfacewaters.IntheVACCIA(VulnerabilityAssessmentofeco-systemservicesforClimateChangeImpactsandAdaptation) project one aim is to demonstratehowclimatechangemayaffectagriculturalpro-ductionandenvironment, including impactsonnutrientloadingtothewaterways.Theideahereis of the stakeholders for bottom-up action tomitigate and adapt to the change. The actionaimstobringstate-of-the-artresultsandsimula-tionmodelscenariosoftheseimpactsatreachoflayman, public servants, private entrepreneurs,and politicians at local municipal scale. Thereis thus the need for developing the methodol-ogyandtoolsforconnectingtheglobal/regionalscaleclimate/globalchangescenariostothelo-cal/regionalscalewheretherealisticadaptationmeasuresareplannedandconducted.

Effectivenes of adaptation measures

ThecasedemonstrationareaLepsämänjokiagr-oecosystemisamedium-sizedagriculturalwater-shedwithadrainageareaof213km².Theareabelongstothesouthernborealzone,andiseco-logicallyaswellassocio-culturallyrepresentative

Assessment of Impacts and Adaptation Measures of Climate Change for Water Quality in Agricultural Area

ofanagroecological zone reachingacrossFen-no-Scandia. Nitrogen and sediment loads fromthecatchmentaresimulatedbytheINCA-familymodels INCA-N (Wade et al., 2002) and INCA-SED (JarrittandLawrence,2006).Theeffectofclimatechangeindischargesismodeledwiththehydrological model Watershed Simulation andForecastingSystem(WSFS),whichisusedtopro-duce the inputdata for thenutrientmodel.Aspossiblemitigationoptionswestudiedtheeffectofnewmethods (gypsum),cultivationmethods(no-till)andeffectivenutrientuse(nitrogenbal-ance).ResultsoftheuseofgypsumarederivedfromtheTraP(Novelgypsum-basedproductsforfarmscalephosphorustrapping)project.

ReferencesWade,A.,Durand,P.,Beaujoan,V.,Wessels,W.,Raat, K., Whitehead, P.G., Butterfield, D., Rank-inen,K.&Lepistö,A.2002.Towardsagenericnitrogen model of European ecosystems: Newmodel structure and equations. HESS 6: 559-582.

Jarritt,N.P.&LawrenceD.S.L.2006.Simulatingfine sediment delivery in lowland catchments: modeldevelopmentandapplicationofINCA-Sedin Soil ErosionandSedimentRedistribution. In:Owens,P.N.&Collins,A.J.(Editors)CABInterna-tional,2006,pp.207-214.

Page 57: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

5�ClimateChangeChallengesinRiverBasinManagement

PosterSession

K.Krogerus

FinnishEnvironmentInstitute,FreshwaterCentre,ModellingandAssessmentunit,Jyväskylä,Finland

InSyria,water resourcesvaryagreatdeal spa-tially:fromlessthan200mmperyearinthedryBadiaregiontoover1000mmperyearonthemountains. The figures they all speak volumes about water scarcity (Barnes 2009). In recentyears, as a result of a negative water balance,groundwaterlevelshavereceded,severalspringshavedriedupandalargenumberofrivershavebecomeseasonalorconvertedtowastewaterca-nals. In many areas, especially near Damascus,the groundwater is polluted, and fields lie aban-donedasaconsequenceofwatershortages. Itisestimated thatdue toclimatechange,waterrequirementsforagriculturewillfurtherincreasewhile productivity decreases (Meslmani &War-deh2010).

LebanonisrichinwaterwhencomparedtoSyria.The mean annual rainfall varies significantly, from 200–600mminthenorthernpartoftheBekaaValleyto1000–1400mminthemountains(Seneetal.2001).Lebanesewaterresourcesareunderincreasingstress,andinmostcasesalreadypol-luted (Jaber 2010). Climate change is expectedto increase temperatures and reduce rainfall.Areductionintheamountofwaterandincreasedexploitation would have an influence on the groundwater in particular. Undesirable met-alsandcontaminants inspringswouldbecomemore concentrated and an increase in salinitywouldspoilthecoastalgroundwaters.

In both Syria and Lebanon, population growthandrisingstandardsof livingarealreadymajorfactors influencing water scarcity and security. Themismanagementofwaterresources,namelyillegalpumpingand lackofproperwastewater

Water Scarcity and the Management of Water Resourcesin Syria and Lebanon

disposalandrecycling,nottomentionthethreatofclimatechange,arelikelytoworsenthesitua-tion(Krogerus2010).

References

Barnes,J.2009.ManagingtheWatersofBa‘thCountry:ThepoliticsofWaterScarcity inSyria.Geopolitics14:510-530.ISSN:1465-0045print/1557-3028online.DOI:10.1080/14650040802694117.

Bou-Zeid, E. & El-Fadel, M. 2002. ClimateChange and Water Resources in Lebanon andthe Middle East. J. Water Resour. Plan. Man-age., 128: 343-355.DOI: 10.1061/~ASCE!0733-9496~2002!128:5~343!

Jaber,B.2010.WaterpollutioninLebanon:pro-posedsolutionsandcasestudies.Regionalcon-ferenceonwaterdemandmanagement,conser-vationandcontrol.WaterpollutioninLebanon:proposed solutions and case studies 5. June2010.Beirut,LebanonProceedings26:218-227.

Krogerus.K.2010.Themanagementofwaterre-sourcesinSyriaandLebanon:shortcomingsandchallenges.FIIAReport.Inpress.

Meslmani,Y.,Wardeh,M.F.2010.StrategyandActionPlanforAdaptationtoClimateChangeinSyria.2010.(INC-SY_Strategy&NAAP-Ar).Minis-tryofStateforEnvironmentAffairs(MSEA)/Unit-ed Nations Development Programme (UNDP).Damascus,Syria.55p.

Sene,K.J.,Houghton-Carr,H.A.&Hachache,A.2001. Preliminary flood frequency estimates for Lebanon.Hydrol.Sci.J.46(5):659-676.

Page 58: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

5� ClimateChangeChallengesinRiverBasinManagement

PosterSession

A.Moszczynska,I.Cattani,M.Zanetti,C.Bertonazzi,M.Balderacchi&M.Trevisan

UniversitaCattolicadelSacroCuore,FacultyofAgriculturalSciences,AgriculturalandEnviron-mentalChemistryInstitute

Introduction

TheresearchisrealizedinthescopeofGENESISprojectworkpackage–GroundwaterDepend-ent Ecosystems (GDE). The general objectiveof this work package is to better understandhow groundwater (GW) flow and water qual-ity affect GDE. The generated knowledge willserve to develop tools and methods to assessthevulnerabilityofGDE toanthropogenic fac-tors.ThestudiesareperformedatselectedGDEcalled fontanili which are semi-natural springslocalizedintheLombardyregioninNorthItaly.Fontanili arehistoricalman-made installations,whereGWispushedtothesurfaceformingarti-ficial springs. They were created for the purpose of agricultural field irrigations and over the ages became an integral part of the regional land-scape forming ecosystems typical for North-ern Italian agricultural land. In this region thenumerous semi-natural springs create habitatsthat sustain local biodiversity. As most of theanthropogenic pressure in the studied regioncomesfromagriculture,theresearchisfocusedontheagriculturalcontaminantssuchaspesti-cidesandnitratesandtheirimpactontheGDE.The planned work includes identification, ap-plication and development of bioindicators aspollutionindicatorsinGDE.

ThebioindicatorappliedinthepresentedstudywasaninsituGammarussp.feedingbioassay.TheGammaridaefamilycomprisesthemajorityof known marine and freshwater amphipods.TheGammarusgenusareamongthemostfre-quentlyusedorganismsinecotoxicologicaltest-ingbecauseoftheirhighabundance,widedis-

Assessing the Effects of Agricultural Contaminants onFontanili Ecosystems in North Italy

tribution,veryimportantroleinthefoodchainsandprovedsensitivitytoavarietyofpollutants.

Results

The feeding bioassay was applied to selectedfontanili localized in the vicinity of maize culti-vation fields to see the effects of contaminants arriving from the surrounding fields with surface run-off.The resultsobtained from thebioassayandparallelchemicalanalysisofwater,sedimentand soil samples suggest that run-off from thefields causes a temporary contamination that af-fectsthetestanimalsinthefontaniliwatersandthereforehasaneffectonthestudiedGDE.

References

Maltby,L.,Clayton,S.A.,Wood,R.M.&McLough-lin,N.2002.EvaluationoftheGammaruspulexin situ feeding assay as a biomonitor of waterquality: Robustness, responsiveness, and rele-vance.Environ.Toxicol.Chem.21:361-368.

Matthiesen,P.,Sheahan,D.,Harrison,R.,Kirby,M., Rycroft, R.,Turnbull,A.,Volkner, C. &Wil-liams, R. 1995. Use of a Gammarus pulex bio-assay to measure the effects of transient car-bofuran runoff fromfarmland.Ecotox.Environ.Safety30:111-119.

SchulzR.2003.Usingafreshwateramphipodinsitubioassayasasensitivetooltodetectpesti-cide effects in the field. Environmental Toxicol-ogyandChemistry22:1172-1176.

Schulz,R.2005.Aquaticinsitubioassaystode-tectagriculturalnon-pointsourcepesticidepol-lution: a link between laboratory and field. Tech-niques in Aquatic Toxicology. G. K. Ostrander.BocaRaton,CRCPressLLC.Vol.2:427-448.

Page 59: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity
Page 60: Symposium on Climate Change Challenges in River …profdoc.um.ac.ir/articles/a/1019779.pdfThe Symposium on Climate Change Challenges in River Basin Management was held in the Uni-versity

Symposium hosts

FinnishEnvironmentInstituteSYKEP.O.Box413FI-90014UniversityofOulu,Finlandwww.environment.fi

In co-operation with

HamburgUniversityofAppliedSciencesResearchandTransferCentre“ApplicationsofLifeSciences“LohbrüggerKirchstrasse65DE-21033Hamburg,Germanywww.haw-hamburg.de/ftz-als.html

Organisers

• WATERPRAXIS – From Theory and Plans to Eco-effi cient and Sustainable PracticestoImprovetheStatusoftheBalticSea–www.waterpraxis.net• VACCIA–VulnerabilityAssessmentofEcosystemServicesforClimate Change Impacts and Adaptation – www.environment.fi /syke/vaccia• GENESIS – Groundwater and Dependent Ecosystems: New Scientifi c andTechnicalBasisforAssessingClimateChangeandLand-useImpacts onGroundwaterSystems–www.thegenesisproject.eu• CEWIC – Centre of Expertise in the Water Industry Cluster – www.cewic.fi • GISBLOOM–ParticipatoryMonitoring,Forecasting,Controland Socio-EconomicImpactsofEutrophicationandAlgalBloomsin River Basins Districts – www.environment.fi /syke/gisbloom• VALUE – DoctoralPrograminIntegratedCatchmentandWaterResources Management – http://value.oulu.fi • Human-Environment Relations in the North:ResourceDevelopment, Climate Change and Resilience (Fidipro, Finnish Academy) – www.fi dipro.fi /en

LUEVDOCTORAL PROGRAM

ThuleInstituteResearchCentreUniversityofOuluP.O.Box7300FIN-90014UniversityofOulu,Finlandwww.thule.oulu.fi