35
SUSY Dark Matter Loops and Precision from Particle Physics Fawzi BOUDJEMA LAPTH, CNRS, France in collaboration with Andrei Semenov and David Temes in parts with Ben Allanach, Genevi` eve B´ elanger and Sacha Pukhov RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 1/3

SUSY Dark Matter Loops and Precision from Particle Physics

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SUSY Dark Matter Loops and Precision from Particle Physics

SUSY Dark Matter

Loops and Precision

from Particle Physics

Fawzi BOUDJEMA

LAPTH, CNRS, France

in collaboration with Andrei Semenov and David Temes

in parts with Ben Allanach, Genevieve Belanger and Sacha Pukhov

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 1/35

Page 2: SUSY Dark Matter Loops and Precision from Particle Physics

Plan

Cosmology in the era of precision measurements

− Dark Matter is New Physics

− Evidence for and Precision on the matter content of the universe

− New Paradigm: can LHC/ILC match the precision of the upcoming

cosmo/astro experiments and indirectly probe the history of the early universe?

Relic density: precision annihilation cross sections (I)

− From the particle point of view: need for RADCOR (Gram determinant....)

− MSSM as a prototype: micrOMEGAs

− Precision needed on calculation in some specific SUSY scenarios

Direct and indirect detection of DM: annihilation cross sections (II)

− γ ray line

S LOOP SAutomatisation, modularity, GF, Gram’s, results and simulation

Summary

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 2/35

Page 3: SUSY Dark Matter Loops and Precision from Particle Physics

The need for Dark Matter

Newton’s law → v2rot./r = GN M(r)/r2

(tracer star at a distance r from centre of mass distribution )

We are not in the centre of the universe Dark Matter= New Physicswe are not made up of the same stuff as most of our universe

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 3/35

Page 4: SUSY Dark Matter Loops and Precision from Particle Physics

Cosmology in the era of precision measurement I: standard candles

No Big Bang

1 2 0 1 2 3

expands forever

-1

0

1

2

3

2

3

closed

recollapses eventually

Supernovae

CMB Boomerang

Maxima

Clusters

mass density

vacu

um e

nerg

y de

nsity

(cos

mol

ogica

l con

stan

t)

open

flat

SNAP Target Statistical Uncertainty observed luminosity and red-

shift exploits the different z

dependence of matter/energy

density

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 4/35

Page 5: SUSY Dark Matter Loops and Precision from Particle Physics

Cosmology in the era of precision measurement II: CMB

observed temperature

anisotropies (related

to the density

fluctuations at the

time of emission) is

10−5

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 5/35

Page 6: SUSY Dark Matter Loops and Precision from Particle Physics

Pre-WMAP and WMAP vs Pre-LEP and LEPpower spectrum of anisotropies, WMAP vs Pre-WMAP

.210

.214

.218

.222

.226

.230

.234

.238

1999

VBM (mZ)

ν - q e - q ν - e (Ellis-Fogli)

500 100 150 200 250

mt (GeV)

sin2 θ w

mW / mZ

.242

165 170 175 180mt [GeV]

50

100

200

300

sin2θeff

MW

GigaZ (1σ errors)

MH [GeV]

SM@GigaZ

now

Planck+SNAP will do even better (per-cent precision)

improvement like going from LEP to LHC+ILC

LHC, PLanck → 2007 ILC,SNAP → 2015

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 6/35

Page 7: SUSY Dark Matter Loops and Precision from Particle Physics

Matter Budget and Precision 1.

Stars23%

Baryons∼ 4%ν(Ων < 0.01)

Dark Matter

23%

73%Dark Energy

t0 = 13.7 ± 0.2 Gyr (1.5%)

Ωtot = 1.02 ± 0.02 (2%)

ΩDM = 0.23 ± 0.04 (17%)

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 7/35

Page 8: SUSY Dark Matter Loops and Precision from Particle Physics

Matter Budget and Precision 2.

Stars23%

Baryons∼ 4%ν(Ων < 0.01)

Dark Matter

23%

73%Dark Energy

t0 = 13.7 ± 0.2 Gyr (1.5%) α−1 = 10t0(10−7%)

Ωtot = 1.02 ± 0.02(2%) ρ = Ωtot(∼ 0.1%)

ΩDM = 0.23 ± 0.04(17%) sin2 θeff = ΩDM(0.08%)

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 8/35

Page 9: SUSY Dark Matter Loops and Precision from Particle Physics

Matter Budget and Precision 3. Testing the cosmology

Present measurement at 2σ 0.094 < ω = ΩDMh2 < 0.129 (10%)

future (SNAP+Planck) → 2%

Particle Physics ↔Cosmology through ω

• is wholly New Physics

• But will LHC, ILC see the “same” New Physics?

• New paradigm and new precision: change in perception about this connection

• ω used to: constrain new physics (choice of LHC susy points, benchmarks)

• Now: if New Physics is found, what precision do we require on colliders and theory to

constrain cosmology? (Allanach, Belanger, FB, Pukhov JHEP 2004)

strategy/requirements on theory and collider measurements to match the present/future

precision on ω

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 9/35

Page 10: SUSY Dark Matter Loops and Precision from Particle Physics

Relic Density: derivation

1 10 100 1000

0.0001

0.001

0.01

Freeze-out

Tf ∼ 20GeVt ∼ 10−8s

Boltzmann

Suppre

ssio

n

Exp

(-m/T

)

At first all particles in thermal equilibrium

universe cools and expands: interaction rate

too small to maintain equilibrium

(stable) particles can not find each other:

freeze out and leave a relic density

dilution due to expansion

dN/dt = −3HN− < σv > (N2 − N2eq)

χ01χ0

1 → X X → χ01χ0

1

Ωχ01

= mχ01Nχ0

1/ρcri,

ρcri = 3H20/8πGN

ρcri = h21.9 10−29gcm−3 →

Ωχ01h2 ∝ 1/σχ0

1χ01→X

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 10/35

Page 11: SUSY Dark Matter Loops and Precision from Particle Physics

Relic Density: Loopholes and Assumptions

At early times Universe is radiation dominated: H(T ) ∝ T 2

(nγeq ∼ T 3 relativistic particles are not Boltzmann suppressed)

Expansion rate can be enhanced by some scalar field (kination), extra dimension

H2 = 8πG/3 ρ(1 + ρ/ρ5 ), anisotropic cosmology,...

Entropy non-conservation, e.g., through decays(entropy increase will reduce the relic

abundance for example)

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 11/35

Page 12: SUSY Dark Matter Loops and Precision from Particle Physics

Thermal average

must calculate all annihilation, co-annihilation processes. Each annihilation can consist of

tens of cross sections...

χ0i χ

0j → XSMYSM , χ0

1f1 → XSMYSM ,...

< σv >=

P

i,jgigj

R

(mi + mj)2ds

√sK1(

√s/T ) p2

ijσij(s)

2T`

P

igim2

i K2(mi/T )´2

,

pij is the momentum of the incoming particles in their center-of-mass frame.

pij =1

2

»

(s − (mi + mj)2)(s − (mi − mj)

2)

s

12

→ v

v = 0v × σv

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 12/35

Page 13: SUSY Dark Matter Loops and Precision from Particle Physics

SUSY as an example

Will concentrate on supersymmetry, SUSY in particular the MSSM (no CP violation)

sometimes assumes the mSUGRA scenario (bring down the number of parameters to

4 + 1/2, but relies on RGE

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 13/35

Page 14: SUSY Dark Matter Loops and Precision from Particle Physics

micrOMEGAs G. Belanger, FB, A. Semenov, A. Pukhov (CPC 02, CPC 05)

given any set of parameters it can identify LSP, NLSP, generate and calculate ω

Model defined in Lanhep (more later)

Fed into CompHEP ....tree-level, some 3000 processes could be needed.

Higgs sector: improved Higgs masses/mixings (read from FeynHiggs, for example) but

interpreted in terms of an effective scalar potential (GI), following FB and A.

Semenov (PRD 02)

Effective Lagrangian also includes important RC (Higgs couplings, ∆mb effects,..)

Interfaced with Isajet, Suspect, SoftSUSY parameters at high scale run down to the ew scale

(g − 2)µ, b → sγ, Bs → µ−µ+

NMSSM done (with C. Hugonie), JHEP 05

CP violation in progress

“open source”: procedure to define your own model, soon

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 14/35

Page 15: SUSY Dark Matter Loops and Precision from Particle Physics

The mSUGRA inspired regions

100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800

mh = 114 GeV

m0 (

GeV

)

m1/2 (GeV)

tan β = 10 , µ < 0

τ1/χ01 co-annihilation strip

mτ1< m

χ01

WMAP

b→

(exc.)

Pre-WMAP (bulk)

Bulk region: bino LSP, lR exchange,

(small m0, M1/2)

τ1 co-annihilation: NLSP thermally

accessible, ratio of the two populations

exp(−∆M/Tf ) small m0,

M1/2 : 350 − 900GeV

Higgs Funnel: Large tan β,

χ01χ0

1 → A → bb, (τ τ),

M1/2 : 250 − 1100GeV,

m0 : 450 − 1000GeV

Focus region: small µ ∼ M1, important

higgsino component, requires very large

TeV m0

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 15/35

Page 16: SUSY Dark Matter Loops and Precision from Particle Physics

Relic density around Higgs Pole with and without RC

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 16/35

Page 17: SUSY Dark Matter Loops and Precision from Particle Physics

The Approach

Use micrOMEGAs+SOFTSUSY →...Softmicro..fix A0, tan β, sgn(µ) but scan on M1/2

WMAP strips imply m0 = f(M1/2): slopes

RGE also needs SM input parameters!

scale dependence of relic: default MSUSY =√

mt1mt2

: scale of EWSB conditions

theoretical uncertainty: effect of different refinements in RGE and threshold

corrections

derive accuracy within mSUGRA, relying completely on mSUGRA. accuracies on high

scale parameters and SM inputs

model independent approach: find out most relevant parameters and extract accuracy

on these (weak scale parameters)

accuracies derived in an iterative procedure and refer to the 10% WMAP precision

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 17/35

Page 18: SUSY Dark Matter Loops and Precision from Particle Physics

τ1 co-annihilation region: Theory uncertainty

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

100 150 200 250 300 350 400

Ωh

2

Mτ~ (GeV)

Ωh2

Scale variation

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

100 150 200 250 300 350 400 450Ω

h2

Mτ~ (GeV)

-1 loop tau Yukawafull calculation

-1 loop neutralino-2 loop gaugino RGEs

Scale variation: From 5% (at small mτ1) to 20% at large mτ1)

2-loop gaugino RGE’s ESSENTIAL as is 1-loop threshold correction to χ01

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 18/35

Page 19: SUSY Dark Matter Loops and Precision from Particle Physics

τ1 co-annihilation region: accuracy within mSUGRA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

100 150 200 250 300 350 400 45060

80

100

120

140

160

180

a

∆A

0- (

GeV

)

mτ~ (GeV)

a(M1/2)a(m0)

∆A0-

a(tanβ)

accuracy on m0, M1/2 demanding:

3% : 1% may be achievable at LHC

for tan β require 10percent.

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 19/35

Page 20: SUSY Dark Matter Loops and Precision from Particle Physics

τ1 co-annihilation region: Model Independent

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 150 200 250 300 350 400 4500.6

0.7

0.8

0.9

1

1.1

1.2

1.3

∆co

s2

θ τ- r

eq

uir

ed

, a(M

)

δM r

eq

uir

ed

(G

eV

)

m~τ (GeV)

∆cos2θτ- required

δM requireda(Mχ)

∆M must be measured to less than 1GeV

mixing angle accuracy should be feasible at ILC

accuracy on LSP mass not demanding but this is

because we have constrained ∆M .

other slepton masses need also be measured

in terms of physical parameters residual µ tan β

accuracies not demanding

Preliminary studies indicate these accuracies will

be met for the lowest mχ01

-0.1

-0.05

0

0.05

100 200 300 400 500

∆Ωh2 /Ω

h2

m~τ (GeV)

∆tanβ=10∆µ=µ

2

3

4

5

6

7

150 200 250 300 350 400 450

GeV

me~ (GeV)

δ-(∆M)

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 20/35

Page 21: SUSY Dark Matter Loops and Precision from Particle Physics

direct and indirectDirect and Indirect Searches

p, e+ , γ, ν, . . .

χ01

CDMS, Edelweiss, DAMA, Genuis, ..

χ

ν

χχ → νν

Amanda, Antares, Icecube, ..

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 21/35

Page 22: SUSY Dark Matter Loops and Precision from Particle Physics

Underground direct detection

W−

χ0 χ− χ0

h0, H0

(a)

χ0 χ− χ0

W− W−

q q′ q

(b)

Loops for direct detection

χm100 200 300 400 500 600 700 800 900

(pb)

S.I.

σ

-1110

-1010

-910

-810

-710

-610

-510 Edelweiss II

Zeplin II

Zeplin IV

Xenon

Genius

χm100 200 300 400 500 600 700 800 900

(pb)

S.I.

σ

-1110

-1010

-910

-810

-710

-610

-510 Edelweiss II

Zeplin II

Zeplin IV

Xenon

Genius

tan β = 10 tan β = 50

• within WMAP

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 22/35

Page 23: SUSY Dark Matter Loops and Precision from Particle Physics

Annihilation into photons

dΦγ

dΩdEγ=

i

dN iγ

dEγσiv

1

4πm2χ

︸ ︷︷ ︸

Physique des Particules

ρ2dl︸ ︷︷ ︸

Astro

γ′s: Point to the source, independent of propagation model(s)

• continuum spectrum from χ01χ0

1 → ff , . . ., hadronisa-

tion/fragmentation (→ π0 → γ ) done through isajet/herwig

• Loop induced mono energetic photons,γγ, Zγ final states

ACT: HESS,

Magic, VERITAS,

Cangoroo, ...

Space-based:

AMS, GLAST,

Egret,...RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 23/35

Page 24: SUSY Dark Matter Loops and Precision from Particle Physics

FB, A. Semenov, D. Temes

S LOOP S

Need for an automatic tool for susy calculations

handles large numbers of diagrams both for tree-level

and loop level

able to compute loop diagrams at v = 0 : dark matter, LSP, move at galactic

velocities, v = 10−3

ability to check results: UV and IR finiteness but also gauge parameter independence

for example

ability to include different models easily and switch between different renormalisation

schemes

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 24/35

Page 25: SUSY Dark Matter Loops and Precision from Particle Physics

Non-linear gauge implementation

LGF = − 1

ξW|(∂µ − ieαAµ − igcW βZµ)Wµ + + ξW

g

2(v + δhh + δHH + iκχ3)χ+|2

− 1

2ξZ(∂.Z + ξZ

g

2cW(v + ǫhh + ǫHH)χ3)

2 − 1

2ξγ(∂.A)2

• quite a handful of gauge parameters, but with ξi = 1, no “unphysical threshold”

• more important: no need for higher (than the minimal set)for higher rank tensors and

tedious algebraic manipulations

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 25/35

Page 26: SUSY Dark Matter Loops and Precision from Particle Physics

Strategy: Exploiting and interfa ing modulesfrom dierent odes

Lagrangian of the modeldened in LanHEP- parti le ontent- intera tion terms- shifts in elds and parameters- ghost terms onstru ted by BRST↓ ↓Generi Model Classes Model-kinemati al stru tures -Feynman rules, in luding CT

⇓Evaluation viaFeynArts-FormCal LoopTools modied!!tensor redu tion inappropriate for small relative velo ities(Zero Gram determinants)

⇑Renormalisation s heme- denition of renorm. onst. in the lasses modelNon-Linear gauge-xing onstraints, gauge parameter dependen e he ks

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 26/35

Page 27: SUSY Dark Matter Loops and Precision from Particle Physics

From the Lagrangian to the Feynman Rules

vector

A/A: (photon, gauge),

Z/Z:(’Z boson’, mass MZ = 91.1875, gauge),

’W+’/’W-’: (’W boson’, mass MW = MZ*CW, gauge).

scalar H/H:(Higgs, mass MH = 115).

transform A->A*(1+dZAA/2)+dZAZ*Z/2, Z->Z*(1+dZZZ/2)+dZZA*A/2,

’W+’->’W+’*(1+dZW/2),’W-’->’W-’*(1+dZW/2).

transform H->H*(1+dZH/2), ’Z.f’->’Z.f’*(1+dZZf/2),

’W+.f’->’W+.f’*(1+dZWf/2),’W-.f’->’W-.f’*(1+dZWf/2).

let pp = -i*’W+.f’, (vev(2*MW/EE*SW)+H+i*’Z.f’)/Sqrt2 ,

PP=anti(pp).

lterm -2*lambda*(pp*anti(pp)-v**2/2)**2

where

lambda=(EE*MH/MW/SW)**2/16, v=2*MW*SW/EE .

let Dpp^mu^a = (deriv^mu+i*g1/2*B0^mu)*pp^a +

i*g/2*taupm^a^b^c*WW^mu^c*pp^b.

let DPP^mu^a = (deriv^mu-i*g1/2*B0^mu)*PP^a

-i*g/2*taupm^a^b^c*’W-’^mu,W3^mu,’W+’^mu^c*PP^b.

lterm DPP*Dpp.

Gauge fixing and BRS transformation

let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*’Z.f’.

lterm -G_A**2/2 - G_Wp*G_Wm - G_Z**2/2.

lterm -’Z.C’*brst(G_Z).

RenConst[ dMHsq ] := ReTilde[SelfEnergy[prt["H"] -> prt["H"], MH]]

RenConst[ dZH ] := -ReTilde[DSelfEnergy[prt["H"] -> prt["H"], MH]]

RenConst[ dZZf ] := -ReTilde[DSelfEnergy[prt["Z.f"] -> prt["Z.f"],

MZ]] RenConst[ dZWf ] := -ReTilde[DSelfEnergy[prt["W+.f"] ->

prt["W+.f"], MW]]

Output of Feynman Rules

with Counterterms !!

M$CouplingMatrices =

(*------ H H ------*)

C[ S[3], S[3] ] == - I *

0 , dZH ,

0 , MH^2 dZH + dMHsq

,

(*------ W+.f W-.f ------*)

C[ S[2], -S[2] ] == - I *

0 , dZWf ,

0, 0

, (*------ A Z ------*)

C[ V[1], V[2] ] == 1/2 I / CW^2 MW^2 *

0, 0 ,

0 , dZZA ,

0, 0

,

(*------ H H H ------*)

C[ S[3], S[3], S[3] ] == -3/4 I EE / MW / SW *

2 MH^2 , 3 MH^2 dZH -2 MH^2 / SW dSW - MH^2 / MW^2 dMWsq

,

(*------ H W+.f W-.f ------*)

C[ S[3], S[2], -S[2] ] == -1/4 I EE / MW / SW *

2 MH^2 , MH^2 dZH + 2 MH^2 dZWf -2 MH^2 / SW dSW - MH^2 /

,

(*------ W-.C A.c W+ ------*)

C[ -U[3], U[1], V[3] ] == - I EE *

1 ,

- nla

,

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 27/35

Page 28: SUSY Dark Matter Loops and Precision from Particle Physics

Avoiding zero Gram determinants: Segmentation (FB, A. Semenov, D. Temes ,hep-ph/0507127, PRD...)

For the problems at hand:

DetG = M6χ01v2 sin2 θ

(1 − v2/4)3(1 − z2), z2 =

M2Z

4M2χ01

(1 − v2/4)

DetG(p1, p2) = −M4χ01v2 1

(1 − v2/4)2.

Segmentation

1

D0D1D2D3=

1

D0D1D2− α

1

D0D2D3− β

1

D0D1D3+ (α + β − 1)

1

D1D2D3

«

×

1

A + 2l.(s3 − αs1 − βs2)

A = (s23 − M2

3 ) − α(s21 − M2

1 ) − β(s22 − M2

2 ) − (α + β − 1)M20 .

(Di = (l + si)2 − M2

i , si =i

X

j=1

pj)

For any graph if DetG(s1, s2, s3) = 0 (or “small” ), construct all 3 sub-determinants

DetG(si, sj)and take the couple si, sj (as independent basis) that corresponds to

Max |Det(si, sj)|, then write

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 28/35

Page 29: SUSY Dark Matter Loops and Precision from Particle Physics

s3 = αs1 + βs2 + εT with s1.εT = s2.εT = 0 meaning

εT,µ = ǫµαβδsα1 sβ

2 tδ , α =s22s3.s1 − s1.s2s2.s3

DetG(s1, s2), β = α(s1 ↔ s2).

DetG(s1, s2, s3) = ε2T DetG(s1, s2).

Expanding around small v

0 2 4 6 8 100

0.5

1

1.5

2

2.5

2 [107 0 2 4 6 8 10 12 140

0.25

0.5

0.75

1

1.25

1.5

2 [107From Nans BARO, Diploma , LAPTH/ENS-Lyon

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 29/35

Page 30: SUSY Dark Matter Loops and Precision from Particle Physics

Application to χ01χ0

1 → γγ, Zγ, gg (FB, A. Semenov, D. Temes ,hep-ph/0507127, PRD...)Computing the ross-se tionsMore than a thousand diagrams in ludingχ0

1

χ01 χ+

i

χ+iW

χ+j

γ

Z χ01

χ01

γ

Z

χ+i

W

W

W χ01

χ+i

χ01

W

Z

γ

χ+i

γ

Z

χ+j

χ+i

A, H, h, Z

χ01

χ01

χ01

χ01 γ

ZW

W

χ+i

χ01

χ01

H, h

γ

ZW

W

a) b) c)

d) e) f)New ontribution found in Zγ !γ

Z

χ01

χ01

χ0i

Counterterm ontribution:- Obtained from tree-level χ01χ

01 → ZZ and δZZγ- Sin e δZZγ ∼ (1 − α) CT an be put to zero if α = 1Choosing a proper gauge simplies the omputation

1 2

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 30/35

Page 31: SUSY Dark Matter Loops and Precision from Particle Physics

SloopS, micrOMEGAs,AMS/HESSPropagation

GUT Scale Suspect micrOMEGAs PYTHIA Halo model Cosmic Ray Fluxes

charged

γ

SloopS

with AMS energy resolution [ GeV ]γE1 10 210

]-1

.s-2

[

GeV

.cm

γφ.2E

-810

-710

-610

bb

γγ

-τ+τ0Zγ

=151 GeVχm

with a typical ACT energy resolution [ GeV ]γE1 10 210

]-1

.s-2

[ G

eV.c

mγφ.2

E

-810

-710

SIMULATION:

Parameterising the halo profile:

(α, β, γ) = (1, 3, 1), a = 25kpc. (core radius), r0 = 8kpc (distance to galactic centre),

ρ0 = 0.3 GeV/cm3 (DM density), opening angle cone 1o

SUSY parameterisation

m0 = 113GeV, m1/2 = 375 GeV, A = 0, tan β = 20, µ > 0

γ lines could be distinguished from diffuse background

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 31/35

Page 32: SUSY Dark Matter Loops and Precision from Particle Physics

Summary

Precise calculations for the relic density are necessary with the foreseen precision on

some cosmological parameters

Rates for direct and direct detection also need some loop calculations, here

measurements most probably will constrain the astrophysical parameters

A general code is being developed for minimal susy, but could be extended, to provide

annihilation rates for cosmo/astro and corrected cross sections for colliders

but still much to be done and to be improved

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 32/35

Page 33: SUSY Dark Matter Loops and Precision from Particle Physics

Extra Expansion of Universe, Einstein Equations

Einstein Rµν − 1

2Rgµν = 8πG

Tµν − Λ

8πG

«

Isotropic and Homogeneous

ds2 = −dt2 + a2(t)

»

dr2

1 − kr2+ r2(dθ2 + sin2 θdφ2)

conservation H2 =

a

a

«2

=8πG

3

X

i

ρi −k

a2

→X

M

ΩM + ΩΛ + Ωk = 1 ΩM =ρM

ρcρc =

3H2

8πG

Acceleration

a

a

«

= −4πG

3

X

i

(ρi + 3pi) p = wρ

ρ(a) ∝ 1

a(t)3(1+w)wrad = 1/3 wM = 0 wΛ = −1

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 33/35

Page 34: SUSY Dark Matter Loops and Precision from Particle Physics

Application to χ01χ0

1 → γγ, Zγ, ggHiggsino and Wino limits

• σv vs. Mχ01

(v = 0)

tan β = 10, A = 0, mA = 100 TeV, mf = 4105 TeV, M1 = 2105 TeV

M2 = 2M1 (higgsino), µ = M1 (wino)

• σv vs. % higgsino/wino (v = 0)

M2 = 2M1, µ = 50 TeV (higgsino), µ = M1, M2 = 10 TeV (wino)

δM = Mχ+1− Mχ0

1Asymptoti value for large Mχ01, σv ∼ 1/M2

WLargest ross se tion for Zγ in wino aseSmooth behaviour in higgsino ase, δM ∼ m2z/M1Constant value after transition in wino ase, δM ∼ m4

z/M31Numeri al results reprodu e analyti al behaviour

RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 34/35

Page 35: SUSY Dark Matter Loops and Precision from Particle Physics

Mat hing with non-perturbative omputationHisano et al.'04In the extreme higgsino and wino limits,

• one-loop treatment breaks unitarity

• non-perturbative non-relativisti approa h...Non-perturbative omputation and one-loop resultshiggsino ase (v = 0)

mf = mA = 100 TeV, M2 = 2M1 = 50 TeV, tan β = 10, A = 0, δM = 0.1 GeVResonan es an enhan e result several orders of magnitudeMat hing will take pla e around 400 − 500 GeV RADCOR05 F. BOUDJEMA, SUSY Dark Matter: Loops and Precision from Particle Physics – p. 35/35