1
AggiEChallenge Sustainable Electricity Genera2on with ZeroPollutant from Fuel Cells John Pia> a , Josh Newmann b , Logan Mertz b , Rebekah Taylor b , Deepak Bha2a c , Jonathan Bryant c , Taylor Chambers c and Nathan Kudlaty c a. Department of Chemical Engineering, b. Department of Mechanical Engineering, c. Department of Electrical & Computer Engineering Abstract The objec2ve was to design and build an improved fuel cell system based on the prototype currently used by Dr. Yu’s research team for the tes2ng of novel carbon nanotube (CNT) based catalyst layers. The goals included designing and building a larger fuel cell with op2mized flow field channel pa>erns; new satura2on heaters to replace the current water boiler; and op2mize a new fuel cell system as a whole that would be semiportable, more convenient to use, and deliver improved power density. Each of the three components was built into a func2oning PEM fuel cell system which was demonstrated capable of powering a small fan. The Approach The fuel cell and its adjoining system were designed primarily for the research of high performance carbon nanotube (CNT) based electrodes, to provide an improved tes2ng apparatus over the Nano energy lab’s exis2ng prototype. To meet this demand the following specifica2ons were met: Selfcontained, single unit, semi portable system housing the following components: PEM fuel cell, gas bubblers, pressure gauges, flow meters/controllers, and temperature controllers Improved bubbler design to deliver wet gas to the electrodes at 80 o C Increased membrane and electrode surface area ( 25 cm 2 ) The PEM fuel cell is constructed from two graphite bipolar plates each heated by an aluminum endplate block. A CNT based catalyst layer is placed adjacent to the channels on each of the bipolar plates. For the PEM a nafion membrane is placed between each catalyst layer. The construc2on is represented in figure 3. Bipolar Plate Design The objec2ve of the bipolar plate design was to maximize the effec2ve area, limit condensed water vapor, and provide the most consistent concentra2on profile across the catalyst layer. To meet these requirements, a mirrored set of serpen2ne channels were machined into each of the graphite plates, where three channels were machined per serpen2ne path to allow the most efficient use of the area. In theory the shortened flow paths decrease the chance of a large concentra2on drop along the graphite plates or development of water condensa2on, this should allow more hydrogen and oxygen to interact with their respec2ve catalysts to help maintain the electrochemical reac2on rate. Performance Tes9ng Aber the PEM fuel cell system was built it underwent mul2ple performance tests. The fuel cell and system were shown capable of holding the required pressure, and the controllers ran accurately. The system can be seen func2oning in Figure 4, powering a small fan. Figure 5 shows the condi2ons under which the fuel cell was operated for its power performance test. The objec2ve in con2nuing this project into the future will be to increase number of individual cells within the system for great poten2al power output and improve the portability of the system, crea2ng a system design capable of powering a small vehicle, such as a golf cart. While developing new fuel cell technologies, an important factor is to be able to quickly characterize a large number of various electrodes to accelerate research and development in fuel cell electrode development. A mul2channel impedance spectroscope is being developed to accomplish this goal. A block diagram for the “LockIn” amplifier topology used in this spectroscope is shown in Figure 6. The individual blocks of this system have already been developed and tested. Proof of concept has been shown for all of the subparts of this system. Currently integra2on and func2onality tes2ng is being worked on. This system will enhance the tes2ng and characteriza2on of electrodes for easier development for fuel cell technologies. Figure 6: Block Diagram of Impedance Spectroscope Impedance Spectroscopy

SustainableElectricityGeneraonwithZero7PollutantfromFuelCells...B AggiE%Challenge Sustainable"Electricity"Generaon"with"Zero7Pollutantfrom"Fuel"Cells" John"Pia a,Josh" Newmannb,"Logan"Mertzb,"Rebekah"Taylorb,"Deepak"Bhaa

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SustainableElectricityGeneraonwithZero7PollutantfromFuelCells...B AggiE%Challenge Sustainable"Electricity"Generaon"with"Zero7Pollutantfrom"Fuel"Cells" John"Pia a,Josh" Newmannb,"Logan"Mertzb,"Rebekah"Taylorb,"Deepak"Bhaa

B  

AggiE-­‐Challenge  Sustainable  Electricity  Genera2on  with  Zero-­‐Pollutant  from  Fuel  Cells  

John  Pia>a,  Josh  Newmannb,  Logan  Mertzb,  Rebekah  Taylorb,  Deepak  Bha2ac,  Jonathan  Bryantc,  Taylor  Chambersc  and  Nathan  Kudlatyc    

a.  Department  of  Chemical  Engineering,      b.  Department  of  Mechanical  Engineering,  c.  Department  of    Electrical  &  Computer  Engineering  

Abstract  The  objec2ve  was  to  design  and  build  an  improved  fuel  cell  system  based  on  the  prototype  currently  used  by  Dr.  Yu’s  research  team  for  the  tes2ng  of  novel  carbon  nanotube  (CNT)  based  catalyst  layers.  The  goals  included  designing  and  building  a  larger  fuel  cell  with  op2mized  flow  field  channel  pa>erns;    new  satura2on  heaters  to  replace  the  current  water  boiler;  and  op2mize  a  new  fuel  cell  system  as  a  whole  that  would  be  semi-­‐portable,  more  convenient  to  use,    and  deliver  improved  power  density.  Each  of  the  three  components  was  built  into  a  func2oning  PEM  fuel  cell  system  which  was  demonstrated  capable  of  powering  a  small  fan.    

The  Approach  The  fuel  cell  and  its  adjoining  system  were  designed  primarily  for  the  research  of  high  performance  carbon  nanotube  (CNT)  based  electrodes,  to  provide  an  improved  tes2ng  apparatus  over  the  Nano-­‐energy  lab’s  exis2ng  prototype.  To  meet  this  demand  the  following  specifica2ons  were  met:  

•  Self-­‐contained,  single  unit,  semi-­‐portable  system  housing    the  following  components:  PEM    fuel  cell,  gas  bubblers,  pressure    gauges,  flow  meters/controllers,  and  temperature  controllers    

 

•  Improved  bubbler  design  to  deliver  wet  gas  to  the  electrodes  at  80oC  

 

•  Increased  membrane  and  electrode  surface  area  (  25  cm2  )  

The  PEM  fuel  cell  is  constructed  from  two  graphite  bipolar  plates  each  heated  by  an  aluminum  endplate  block.  A  CNT  based  catalyst  layer  is  placed  adjacent  to  the  channels  on  each  of  the  bipolar  plates.  For  the  PEM  a  nafion  membrane  is  placed  between  each  catalyst  layer.  The  construc2on  is  represented  in  figure  3.  

Bipolar  Plate  Design  The  objec2ve  of  the  bipolar  plate  design  was  to  maximize  the  effec2ve  area,  limit  condensed  water  vapor,  and  provide  the  most  consistent  concentra2on  profile  across  the  catalyst  layer.      To  meet  these  requirements,  a  mirrored  set  of  serpen2ne  channels  were  machined  into  each  of  the  graphite  plates,  where  three  channels  were  machined  per  serpen2ne  path  to  allow  the  most  efficient  use  of  the  area.  In  theory  the  shortened  flow  paths  decrease  the  chance  of  a  large  concentra2on  drop  along  the  graphite  plates  or  development  of  water  condensa2on,  this  should  allow  more  hydrogen  and  oxygen  to  interact  with  their  respec2ve  catalysts  to  help  maintain  the  electrochemical  reac2on  rate.  

Performance  Tes9ng  Aber  the  PEM  fuel  cell  system  was  built  it  underwent  mul2ple  performance  tests.  The  fuel  cell  and  system  were  shown  capable  of  holding  the  required  pressure,  and  the  controllers  ran  accurately.      The  system  can  be  seen  func2oning  in  Figure  4,  powering  a  small  fan.  Figure  5  shows  the  condi2ons  under  which  the  fuel  cell  was  operated  for  its  power  performance  test.  

The  objec2ve  in  con2nuing  this  project  into  the  future  will  be  to  increase  number  of  individual  cells  within  the  system  for  great  poten2al  power  output  and  improve  the  portability  of  the  system,  crea2ng  a  system  design  capable  of  powering  a  small  vehicle,  such  as  a  golf  cart.    

While  developing  new  fuel  cell  technologies,  an  important  factor  is  to  be  able  to  quickly  characterize  a  large  number  of  various  electrodes  to  accelerate  research  and  development  in  fuel  cell  electrode  development.  A  mul2channel  impedance  spectroscope  is  being  developed  to  accomplish  this  goal.  A  block  diagram  for  the  “Lock-­‐In”  amplifier  topology  used  in  this  spectroscope  is  shown  in  Figure  6.  The  individual  blocks  of  this  system  have  already  been  developed  and  tested.  Proof  of  concept  has  been  shown  for  all  of  the  subparts  of  this  system.    Currently  integra2on  and  func2onality  tes2ng  is  being  worked  on.    This  system  will  enhance  the  tes2ng  and  characteriza2on  of  electrodes  for  easier  development  for  fuel  cell  technologies.  

       Figure  6:  Block  Diagram  of  Impedance  Spectroscope    

Impedance  Spectroscopy