19
Surface Nanobubbles James R. T. Seddon

Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Embed Size (px)

Citation preview

Page 1: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Surface Nanobubbles

James R. T. Seddon

Page 2: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

“Nanobubble”• Height approx. 20-50nm• Width approx. 50-200nm

“Micropancake”• Height approx. 1-2nm• Width approx. 1-3μm

NOTE: These are not results of hydrophobicity

0nm

5nm

An immersed surface, at the nanoscale

Page 3: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Why are nanobubbles interesting?

Fundamental Interest:• Complete bulk diffusion should take place in microseconds.• Nanobubbles last for at least 10-11 orders of magnitude longer

than this!• Understanding surface wetting?• As a precursor to several catalytic reactions?• As a precursor to boiling?

Possible applications:• Controlling slip in microfluidic devices?

Page 4: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

A possible explanation

Page 5: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

“Superstability”

Page 6: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Patterning(?) substrates

Page 7: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Clearly we need to understand creation mechanisms for nanobubbles

Page 8: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Alcohol-water exchange

Page 9: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Liquid heating

Page 10: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Liquid heating(1K/min for 15 minutes,

from 25°C to 40°C)

Page 11: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Oversaturation through rapid heating

Page 12: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Nanobubbles form when the system is oversaturated with gas...

...but, all the studies in the literature vary gas and temperature. Can we distinguish between

the two effects?

Page 13: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Experiments

We will control the system during deposition of the liquid on the substrate.

1.Hold the substrate at 25°C; vary the liquid temperature; ensure the liquid is 100% saturated with air.

2.Hold the substrate at 25°C; vary the concentration of saturated air in the liquid; ensure the liquid is held at 30°C.

Page 14: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Substrate

1μm

• PFDTS-coated Si substrate – isotropic roughness (rms=0.4nm) – hydrophobic (θ≈110°)

Page 15: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Experimental system

• Water is Millipore purified.• Gas concentration measured with an oximeter.• Water temperature controlled/measured.• Substrate is at 298K during deposition.

Page 16: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Results 1: Effect of temperature(100.0% ± 0.2% gas saturation)

Page 17: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Results 2: Effect of gas concentration (30.0°C ± 0.2°C liquid temperature)

Page 18: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Conclusions

• Liquid temperature and gas concentration both play important roles in nanobubble formation.

• A very small zone exists in phase space, where nanobubbles preferentially form.

Page 19: Surface Nanobubbles James R. T. Seddon. “Nanobubble” Height approx. 20-50nm Width approx. 50-200nm “Micropancake” Height approx. 1-2nm Width approx. 1-3μm

Acknowledgements

University of TwenteSezer CaynakStefan KooijHarold ZandvlietBene PoelsemaDetlef Lohse

Support