20
Surface dose prediction and verification for IMRT plans using line dose profiles Ronald E. Berg, Michael S. Gossman and Stephen J. Klash Erlanger Medical Center, Department of Radiation Oncology, 975 East 3 rd Street, Chattanooga, TN 37403 and SJK Physics, Radiation Oncology, 2209 Ranch Road, Sachse, TX 75048

Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Embed Size (px)

Citation preview

Page 1: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Surface dose prediction and verification for IMRT plans using line dose profiles

† Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash

†Erlanger Medical Center, Department of Radiation Oncology, 975 East 3rd Street,

Chattanooga, TN 37403 and ‡ SJK Physics, Radiation Oncology, 2209 Ranch Road, Sachse,

TX 75048

Page 2: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Abstract

MOSFETs are used to verify the entrance dose for conventional radiation therapy patient treatments. For sliding window IMRT treatments a combination of fluence patterns are used to provide an integral dose to the target tissue. This renders predicting measurements at the skin surface more difficult because of substantial dose gradients in each beam. The objective was to find a method of predicting MOSFET measured entrance dose and test its applicability in the clinic.

Page 3: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Materials

• Helios CadPlan IMRT software

• Varian 2300C/D with MLC using 6 MV and 25 MV x-rays

• Thomson-Nielson Electronics Limited standard MOSFET system

Page 4: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

This Research

• We report a planning methodology using line-dose profile for determining surface dose, operating with Helios CadPlan IMRT software

• Dose delivery to patient was confirmed, when surface dose from plan was compared to the MOSFET reading during sliding window IMRT actual treatment

• Response under energy specific bolus is indicated for 59 patients

• Both 6MV x-rays and 25MV x-rays were used in this data• Reasonable agreement from MOSFETs validate approach

to IMRT surface dose determination.

Page 5: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Other Published Research• Mutic et.al. in 2000 reported under estimation to be 15 %

in the dose to the near surface (3-6mm) during IMRT using PEACOCK 1.12 software (NOMOS Corp), x-ray energy was 6MV, TLDs used including 3mm bolus in a cylindrical phantom, serial tomotherapy delivery

• Dogan et.al. in 2003 reported that the convolution superposition algorithm in FOCUS 3.2.1 inverse planning software (CMS) overestimated dose to surface of polystyrene phantom by 25% and to the first millimeter by 5%, pp-ionization chamber and TLDs comparable, 6MV x-rays used with single field IMRT comparisons

Page 6: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Other Published Research

• Jones et.al. 2003 reported that by applying a max/min range to PTV detector structure volumes deep in a NOMOS phantom, using CORVUS software, that IMRT doses were within 7 % of that measured with MOSFETs. TLD response also compared were typically worse, IMRT plan delivery with 6MV x-rays only.

Page 7: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

References

• Mutic S and Low DA. Superficial doses from serial tomotherapy delivery. Med Phys. 2000;27(1):163-165.

• Dogan N, Glasgow GP. Surface and build-up region dosimetry for obliquely incident intensity modulated radiotherapy 6 MV x rays. Med Phys. 2003;30(12):3091-3096.

• Jones AO and Kleinman MT. Patient setup and verification for intensity-modulated radiation therapy (IMRT). Med Dos 2003;28(3):175-183.

Page 8: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Methods

• Create structure on patient surface to resemble bolus

• Calculate dose for IMRT plan

• Use tools to draw a line from isocenter through bolus for a line-dose-profile

• Determine dose from profile to the surface beneath the bolus, where the MOSFET would lie

• Treat patient with the MOSFET and bolus in place and record the MOSFET reading

• Quantify differences between MOSFET reading and plan

Page 9: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Bolus creation on plan

Page 10: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Using line-dose-profile tool

Stop point

Start point

Page 11: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Line-dose-profile from plan

Dose percentage is on Y axis

Distance from start point to stop point (in mm) is on X axis

Drastic decline

Page 12: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Extrapolation of surface dose

Helios software does not do this for you. The extrapolation shown here represents the manual operation performed on plot printouts.

Extrapolation to surface

Page 13: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

In vivo measurement

Page 14: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Data (measurements 1-18)E (MV) D Planned FDD D Expected D Measured Accuracy (%)

6 203 1.207 245.0 245 0.06 220 0.373 82.0 82 0.06 200 0.990 198.0 194 -2.06 200 0.313 62.6 60 -4.26 200 1.119 223.8 203 -9.36 200 0.921 184.2 181 -1.76 200 0.994 198.8 186 -6.46 180 1.247 224.5 234 4.36 180 0.481 86.6 84 -3.06 200 1.048 209.6 190 -9.46 200 0.936 187.2 186 -0.66 200 0.787 157.4 174 10.56 180 1.160 208.8 214 2.5

25 180 0.266 47.9 44 -8.16 200 0.392 78.4 72 -8.26 200 0.443 88.6 91 2.7

25 200 0.167 33.4 32 -4.26 180 0.443 79.7 79 -0.9

Page 15: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Data (measurements 19-40)E (MV) D Planned FDD D Expected D Measured Accuracy (%)

6 200 0.316 63.2 58 -8.225 200 0.242 48.3 52 7.725 200 0.270 54.0 48 -11.125 200 0.147 29.4 30 2.025 200 0.285 56.9 61 7.125 200 0.197 39.3 43 9.425 200 0.330 66.0 69 4.525 200 0.184 36.8 38 3.325 200 0.204 40.8 41 0.525 200 0.388 77.6 78 0.525 200 0.274 54.8 57 4.025 200 0.397 79.4 86 8.325 200 0.230 46.0 49 6.56 180 0.335 60.3 64 6.16 180 0.365 65.7 70 6.5

25 200 0.243 48.6 54 11.16 180 0.327 58.9 60 1.9

25 200 0.209 41.8 46 10.06 200 0.311 62.2 58 -6.8

25 200 0.173 34.6 37 6.925 200 0.228 45.6 45 -1.325 180 0.098 17.6 17 -3.6

Page 16: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Data (measurements 41-61)E (MV) D Planned FDD D Expected D Measured Accuracy (%)

25 200 0.087 17.4 16 -8.025 180 0.081 14.6 13 -10.825 180 0.124 22.3 25 12.025 200 0.111 22.2 21 -5.46 180 0.307 55.3 54 -2.3

25 200 0.198 39.6 38 -4.06 180 0.263 47.3 53 12.0

25 200 0.218 43.6 46 5.525 200 0.094 18.8 20 6.425 200 0.163 32.6 35 7.425 200 0.173 34.6 33 -4.625 200 0.065 13.0 13 0.06 180 0.350 63.0 64 1.6

25 200 0.335 67.0 67 0.025 200 0.230 46.0 49 6.56 200 0.385 77.0 76 -1.36 200 0.313 62.6 66 5.4

25 200 0.367 73.4 72 -1.925 200 0.207 41.4 40 -3.46 180 0.351 63.2 56 -11.46 180 0.216 38.9 37 -4.8

Page 17: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Percent Difference,100x[(Measured Dose/Expected Dose) -1]

-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

# P

oin

ts i

n e

ach

1 %

Dif

fere

nce

Bin

0

1

2

3

4

5

6

7

In Vivo MOSFET Measurements for 59 IMRT patients

Page 18: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Measured Dose - Expected Dose, cGy-22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

#

Poi

nts

in e

ach

1 cG

y D

iffe

renc

e B

in

0

1

2

3

4

5

6

7

8

9

10

11

12

In Vivo MOSFET Measurements for 59 IMRT Patients

Page 19: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Discussion

• Tabulated data was presented for 61 MOSFET measurements made on 59 IMRT patients.

• A total of 57 measurements (93%) were within 10 cGy of the predicted value.

• The remaining 4 measurements had large predicted values ranging from 157 cGy to 224 cGy, and still fell within 10 % of the expected value.

• The distribution of percentage difference between the measured values and planned values was approximately centered about zero.

Page 20: Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger

Conclusion• Previous research indicates the importance of reinterpreted

surface doses in different types of currently used software for IMRT

• We show measurements made at skin surface agree reasonably well with Helios software predictions when bolus is included at the time of measurement

• The method of extrapolating a line-dose-profile to the skin surface is a useful technique for predicting in vivo MOSFET dose measurements.

• This serves as additional verification of the IMRT plan in addition to other necessary quality assurance prior to commencement of treatment.