Sui Ser Fonc

Embed Size (px)

Citation preview

  • 8/19/2019 Sui Ser Fonc

    1/14

    I R (f n )n

    f n : I −→ Rx −→ f n (x) ∀n∈IN.

    f n f f n+ ∞

    −→ f f I

    I = [0, 1] f n (x) = xn ∀x∈I ∀n∈ IN

    (f n )n I f n (x) n x

    (f n )n I (f n )n f I x∈I

    (f n (x))n f (x)

    ∀x∈I, ∀ε > 0, ∃n ε,x ∈IN / ∀n∈IN, n ≥n ε,x =⇒ |f n (x) −f (x)| ≤ε f (f n )n I

    f nCV S

    −→f I.

  • 8/19/2019 Sui Ser Fonc

    2/14

    I = [0, 1] f n (x) = xn x

    [0, 1]

    x∈[0, 1[ xn −→0

    x = 1 1n = 1 ∀n∈IN

    f nCV S

    −→f I

    f (x) = 0 x∈[0, 1[1 x = 1.

    f n [0, 1] f [0, 1[

    I = [−1, 1] f n (x) = xn

    n x∈I

    xn

    n ≤ 1n ∀x∈I, ∀n∈IN

    ∗.

    limn → + ∞

    f n (x) = 0 f nCV S

    −→0 I I = R f n (x) =

    xn

    x R f nCV S

    −→0 R

    I =]0, 1] f n (x) =

    1x

    1n ≤x ≤1

    n 0 < x ≤ 1n

    f nCV S

    −→ f I f (x) = 1 /x x ∈]0, 1] n0 x ≥

    1n ∀n ≥n0 =⇒f n (x) = 1 /x, ∀n ≥n0

    (f n )n I (f n )n f I

    supx∈I |f n (x) −f (x)| −→ 0 n +∞

    ∀ε > 0, ∃nε ∈IN / ∀n∈IN, ∀x∈I, n ≥n ε =⇒ |f n (x) −f (x)| ≤ε f n

    CV U

    −→f I

  • 8/19/2019 Sui Ser Fonc

    3/14

  • 8/19/2019 Sui Ser Fonc

    4/14

    (f n )n (gn )n f g I (f n gn )n fg I

    α β ∈R f n

    CV U

    −→ f I gnCV U

    −→ g I

    supx∈I |(αf n (x) + βgn (x)) −(αf (x) + βg(x))| ≤ |α|supx∈I |f n (x) −f (x)|

    + |β |supx∈I |gn (x) −g(x)|.

    f nCV U

    −→f I =⇒supx∈I |f n (x) −f (x)| −→0 n −→+ ∞gn

    CV U

    −→g I =⇒supx∈I |gn (x) −g(x)| −→0 n −→+ ∞.

    f nCV S

    −→f I gnCV S

    −→g I x∈I lim

    n → + ∞(αf n (x) + βgn (x)) = α lim

    n → + ∞f n (x) + β lim

    n → + ∞gn (x) = αf (x) + βg(x).

    f nCV S

    −→f I gnCV S

    −→g I x∈I limn → + ∞ (f n (x) gn (x)) = limn → + ∞ f n (x) limn → + ∞ gn (x) = f (x) g(x).

    I = R f n (x) = x + 1n

    x ∈ I limn → + ∞ f n (x) = x f n

    CV S

    −→f I f (x) = x supx∈R |f n (x) −f (x)| =

    1n −→0 n −→+ ∞,

    f nCV U

    −→f I (gn )n gn = f n ×f n = f 2n

    gnCV S

    −→ g = f 2 I |gn (n) −g(n)| = 2 +

    1n2 ≥2, ∀n∈IN

    ∗ supx∈I |gn (x) −g(x)| > 2

    (gn )n g

    (f n )n I (f n )n f I (un )n

    I limn → + ∞ |f n (un ) −f (un )| = 0

  • 8/19/2019 Sui Ser Fonc

    5/14

    f nCV U

    −→f I (un )n I |f n (un ) −f (un )| ≤supx∈I |f n (x) −f (x)| −→0 n −→+ ∞.

    limn → + ∞ |f n (un ) −f (un )| = 0 , ∀(un )n I .

    (f n )n f I

    ∃ε > 0, ∀n ε ∈IN / ∃nk > n ε supx∈I |f n (x) −f (x)| > ε > ε − 1k

    .

    sup

    (un k )n k

    I

    |f n k (un k ) −f (un k )| ≥ε − 1k

    .

    k +∞ ε ≤0

    I = [0, 1] f n (x) = xn f nCV S

    −→f I

    f (x) = 0 x∈[0, 1[1 x = 1.

    (f n )n

    f

    I

    (un )n

    un = 1 − 1n

    .

    un ∈I, ∀n∈IN∗ f n (un ) = 1 −

    1n

    n

    −→ 1e

    f (un ) = 0 , ∀n∈IN∗,

    |f n (un ) −f (un )| −→ 1e = 0 .

    f n f I

    (f n )n I (f n )n lim

    n → + ∞supx∈I |f n + p(x) −

    f n (x)| = 0 , ∀ p∈IN ∀ε > 0, ∃n ε ∈IN / ∀(n, p)∈IN2, n ≥n ε =⇒supx∈I |f n + p(x) −f n (x)| ≤ε.

  • 8/19/2019 Sui Ser Fonc

    6/14

    (f n )n I f n CV U −→f I

    f n I =⇒ f I

    f n I =⇒ f I

    f n I n M n > 0

    |f n (x)| ≤M n , ∀x∈I. x∈I

    |f (x)| ≤ |f (x) −f n (x)|+ |f n (x)| ≤supx∈I |f n (x) −f (x)|+ M n , ∀n∈IN n∈IN

    n = 0

    |f (x)| ≤supx∈I |f 0(x) −f (x)|+ M 0, ∀x∈I. f I

    x0 ∈I f x0 n∈IN |f (x) −f (x0)| ≤ |f (x) −f n (x)|+ |f n (x) −f n (x0)|+ |f n (x0) −f (x0)|

    ≤ 2supx∈I |f n (x) −f (x)|+ |f n (x) −f n (x0)|.

    ε > 0

    f nCV U

    −→f I =⇒ limn → + ∞ supx∈I |f n (x) −f (x)| = 0=⇒ ∃n0 ∈IN, ∀n ≥n0 ⇒supx∈I |f n (x) −f (x)| ≤

    ε4

    .

    n = n0 supx∈I |f n 0 (x)−f (x)| ≤

    ε4

    n = n0

    |f (x) −f (x0)| ≤ ε2 + |f n 0 (x) −f n 0 (x0)|.

    f n 0 I x0

    ∃η > 0, ∀x∈I / |x −x0| ≤η ⇒ |f n 0 (x) −f n 0 (x0)| ≤ ε2

    .

    ∃η > 0, ∀x∈I / |x −x0| ≤η ⇒ |f (x) −f (x0)| ≤ε. f x0

  • 8/19/2019 Sui Ser Fonc

    7/14

    f n (x) = sin nx

    n

    R f n (x) = cos nx, ∀n ∈ IN∗

    f n (x) = xn

    f (x) = 0 x∈[0, 1[1 x = 1.

    f [0, 1] f n [0, 1] f n f [0, 1]

    (f n )n I = [a, b] f I [α, β ]⊂[a, b]

    limn → + ∞

    β

    αf n (x) dx =

    β

    αlim

    n → + ∞f n (x) dx =

    β

    αf (x) dx.

    n

    β

    αf n (x) dx −

    β

    αf (x) dx =

    β

    α(f n (x) −f (x)) dx

    ≤ β

    α |f n (x) −f (x)|dx ≤ (β −α)supx∈I |f n (x) −f (x)|.

    limn → + ∞

    β

    αf n (x) dx =

    β

    αf (x) dx.

    (f n )n I = [a, b] f I x∈I

    F n (x) = x

    af n (t) dt F (x) =

    x

    af (t) dt.

    F nCV U

    −→F I. (f n )n C 1

    I = [a, b]

    f nCV S

    −→f I. f n

    CV S

    −→g I.

  • 8/19/2019 Sui Ser Fonc

    8/14

    f nCV U

    −→f I f I f = g

    f n (x) = f n (a) + x

    a f n (t) dt

    I = [−1, 1] f n (x) = x2 + 1 /n f n I f n f n f I f (x) = |x| f n f I

    x2 + 1n − |x| = x2 + 1n −√ x2 = 1/n x2 + 1 /n + √ x2 ≤ 1/n1/ √ n =

    1√ n −→0

    f (x) =

    |x

    | 0

    I R (f n )n R

    n

    S n =

    n

    k=0f k .

    f n (S n )n

    n∈IN

    f n n ≥ 0

    f n

    n f n n f n (x) = an xn an ∈ R x ∈ R

    n∈IN

    an xn

  • 8/19/2019 Sui Ser Fonc

    9/14

    n∈IN

    f n

    I I

    n∈IN

    f n S I

    x∈I

    n∈IN

    f n (x) S (x)

    n∈IN

    f n x∈I

    n∈IN

    f n (x)

    n∈IN

    xn S ]−1, 1[

    S (x) = 11 −x

    x ]−1, 1[

    S n (x) =n

    k=0

    xk = xn +1

    1 −x+ ∞

    −→+ ∞

    n =0

    xn = S (x) = 11 −x

    .

    |x| ≥1 n∈IN

    xn 0

    n +∞

    n∈IN

    f n I

    (f n )n 0 I

    x ∈ I n∈IN

    f n I

    n∈IN

    f n (x)

    limn → + ∞

    f n (x) = 0

    n∈IN

    xn |x| ≥ 1 x ∈]−∞, −1]∪[1, + ∞[

    limn → + ∞

    xn = 0 .

    n∈IN

    f n

    S I S I

    limn → + ∞

    supx∈I |S n (x) −S (x)| = 0 .

  • 8/19/2019 Sui Ser Fonc

    10/14

    n∈IN xn

    S (x) = 11 −x

    [−r, r ]

    |r | < 1

    |S n (x) −S (x)| =1 −xn +1

    1 −x − 11 −x

    = |x|n +11 −x ≤

    rn +1

    1 −r, ∀x∈[−r, r ].

    supx∈[− r,r ] |S n (x) −S (x)| ≤

    rn +1

    1 −r+ ∞

    −→0, ∀ |r | < 1.

    ]−1, 1[

    f n (x) = sin(nx )

    n2 , ∀n∈IN∗, ∀x∈R .

    n x

    |f n (x)| ≤ 1n2

    .

    n∈IN

    f n (x)

    n∈IN

    f n (x)

    R

    n∈IN

    f n

    I

    ∀ε > 0, ∃n ε ∈IN / ∀(n, p)∈IN, n ≥nε ⇒supx∈I n + p

    k= n +1f k(x) ≤ε.

    n∈IN

    f n I

    (S n )n

    S n + p −S n =n + p

    k= n +1

    f k

  • 8/19/2019 Sui Ser Fonc

    11/14

    n∈IN

    un f n

    un ∈R , ∀n∈IN

    (f n )n

    I

    (un )n 0

    (n

    k=0

    f k)n I n∈IN

    ∃M > 0 / ∀x∈I, ∀n∈IN, |Bn (x)| =n

    k=0

    f k(x) ≤M.

    n∈IN

    un f n I

    n ≥ 1

    sin nxn

    [r, π −r ] ∀r∈]0, π[

    un = 1n

    f n (x) = sin nx, ∀n∈IN∗

    . (un )n

    Bn (x) =n

    k=1

    sin kx = sinnx2

    sin (n +1) x2sin(x/ 2)

    |Bn (x)| ≤ 1sin( x/ 2) x ∈ [r, π −r ] x2 ∈ [r2 , π2 − r2 ] r∈]0, π[

    0 < sin(r/ 2) ≤sin(x/ 2) ≤1

    |Bn (x)| ≤ 1

    sin(r/ 2) , ∀x∈[r, π −r ].

    n ≥ 1

    sin nxn

    n∈IN

    f n

    n∈IN|f n | I

  • 8/19/2019 Sui Ser Fonc

    12/14

    n ≥ 1

    xn2

    R

    x R

    n ≥ 1

    xn2

    α = 2

    n∈IN

    f n

    (un )n |f n (x)| ≤un ∀x∈I ∀n∈IN

    n∈IN

    un

    n ≥ 1

    sin nxn2

    R

    sin nxn2 ≤

    1n2

    , ∀x∈R , ∀n∈IN∗

    n ≥ 1

    1n2

    n∈IN

    e− n2 x

    [r, + ∞[ r > 0

    e− n2 x ≤e− n

    2 r , ∀x∈[r, + ∞[, ∀n∈IN∗. un = e− n

    2 r un

    limn → + ∞

    un +1un

    = limn → + ∞

    e− (2n +1) r = 0 < 1.

    n∈IN

    un

    n∈INe

    − n 2 x

    =⇒ =⇒

    =⇒ =⇒

  • 8/19/2019 Sui Ser Fonc

    13/14

    n ≥ 1

    (−1)nn + x

    R +

    x ∈ R + n∈IN

    (−1)nn + x

    |Rn (x)| =+ ∞

    k= n +1

    (−1)kk + x ≤

    1n + 1 + x

    .

    x ≥0

    supx∈R + |S n (x) −S (x)| ≤ 1n + 1 + ∞−→0 S (x) =

    + ∞

    n =0(−1)

    n

    n + x .

    (−1)nn + x

    = 1n + x

    n∈IN

    (−1)nn + x

    R +

    (f n )n I

    n∈IN

    f n I + ∞

    n =0

    f n I

    (f n )n I = [a, b]

    n∈IN f n

    I

    + ∞

    n =0 f n

    I

    [α, β ]⊂[a, b]

    + ∞

    n =0 β

    αf n (x) dx =

    β

    α

    + ∞

    n =0

    f n (x) dx.

  • 8/19/2019 Sui Ser Fonc

    14/14

    (f n )n I = [a, b]

    n∈IN

    f n I x∈I

    F n (x) = x

    af n (t) dt.

    n∈IN

    F nCV U

    −→F I

    F (x) = x

    a

    + ∞

    n =0

    f n (t) dt, ∀x∈I.

    (f n )n

    C 1

    I = [a, b]

    n∈IN

    f n I

    n∈IN

    f n I

    n∈IN

    f n I C 1

    + ∞

    n =0 f n (x) =

    + ∞

    n =0 f n (x).