Student Handout 12 2014

  • Upload
    kietni

  • View
    92

  • Download
    0

Embed Size (px)

Citation preview

  • Macroscopic energy balance 2: Bernoulli equation

    CHEE 3363Spring 2014Handout 12

    Reading: Fox 4.4 (Bernoulli section)

  • Learning objectives for lecture

    1. State the Bernoulli equation and give the conditions under which it can be used.

    2. Apply the Bernoulli equation to solve problems.

    2

  • Particularly simple case: streamline CVFluid is steady, incompressible, frictionless077;-;8-+1)4+7674=5-*7=6,-,*AE7?;
  • t

    CV

    dV +

    CS

    v dA = 0

    VsA+ ((Vs + ds)(A+ dA)) = 0

    (Vs + ds)(A+ dA) = VsA

    VsdA+AdVs + dAdVs = 0

    VsdA+AdVs = 0

    Continuity equation

    dsVs + dVs

    A+ dA

    Vs

    p

    p+ dp

    x

    y

    z

    g

    streamline

    !64AE7?1;

  • Momentum equation along s 1

    dsVs + dVs

    A+ dA

    Vs

    p

    p+ dp

    x

    y

    z

    g

    streamline

    Equation:

    Surface force:

    5

    Fsurf,s + Fbody,s =

    t

    CV

    us dV +

    CS

    usv dA

    Fsurf,s = pA (p+ dp)(A+ dA) +

    (p+

    dp

    2

    )dA

    = Adp1

    2dpdA

    pressure forces on end faces

    pressure force acting in s direction on surface

  • Momentum equation along s 2Body force:

    75-6

  • Momentum equation along s 3

    7

    Divide by A and neglect 2nd order terms:

    dp

    g dz = Vs dVs = d

    (V

    2s

    2

    )

    d

    (V

    2s

    2

    )+

    dp

    + g dz = 0

    integrate

    Adp1

    2dp dA gAdz

    1

    2g dAdz = VsAdVs

    Put terms together:

  • v2

    2+

    p

    + gz = const

    Bernoulli equation

    $01;-9=)

  • @)584-
  • @)584-
  • @)584-5)675-
  • @)584-5)675-
  • @)584-2-
  • @)584-2-
  • @)584-2-