9
STT-RAM Circuit Design Column Circuitry Simulation (IBM 65nm) Fengbo

STT-RAM Circuit Design

  • Upload
    jeneva

  • View
    35

  • Download
    0

Embed Size (px)

DESCRIPTION

STT-RAM Circuit Design. Column Circuitry Simulation (IBM 65nm) Fengbo. Design Constraints. MTJ Char. (From Jianping’s group) R P ≈ 744 Ω TMR ≈ 136% Max writing current 1.5 mA for P->AP 630 uA for AP->P Min writing current Reading - PowerPoint PPT Presentation

Citation preview

Page 1: STT-RAM  Circuit Design

Click to edit Master title style

STT-RAM Circuit Design

Column Circuitry Simulation(IBM 65nm)

Fengbo

Page 2: STT-RAM  Circuit Design

Design Constraints

MTJ Char. (From Jianping’s group)– RP ≈ 744Ω

– TMR ≈ 136% Max writing current

– 1.5 mA for P->AP – 630 uA for AP->P

Min writing current

Reading– [220 uA,1 ns] current has 1% probability of disturbance. – Short pulse read (<300 ps) is needed

2

0 2 4 6 8 10

0

20

40

60

80

100

V=0.39 V V=0.49 V V=0.58 V V=0.68 V V=0.78 V

Sw

itch

ing

Pro

bab

ility

(%

)

Pulse Width (ns)

(Breakdown voltage =

1.1V)

Switching time (ns)

Min Current for 100% Switching Probability (uA)

AP-P P-AP

5 330 6603 387 774

Page 3: STT-RAM  Circuit Design

MTJ Sub-array

64x512, 32 kb sub-array– 64 WL

– 4 128-bit words on each WL

– 4 columns share 1 sense amp& write driver through 4-1 mux

– 40F2 cell size used.

3

Page 4: STT-RAM  Circuit Design

Column Circuitry

4

Page 5: STT-RAM  Circuit Design

Write

P->AP– Vgs_P = VWL - Vdrop ≈ VDDW

– Vds_P = VDDW – Vdrop – Vmtj_P

AP->P– Vgs_AP = VWL – Vdrop – Vmtj_AP

– Vds_AP = VDDW - Vdrop – Vmtj_AP

Boosting VWL

– Limited by Vgs_P (0.1 V margin)

Boosting VDDW

– Limited by Vds_AP (0.5-0.6 V margin)

– Have to use thicker oxide devices in the write driver circuit (in red) 5

Page 6: STT-RAM  Circuit Design

Write Current Comparison

6

Compare 3 cases of boosting voltage

Constraints – VDDW < VDD

max

– Vgs, Vds < VDDmax

● For all devices

Rp = 744 Ω Ref Case 1 Case 2 Case 3

FET in arrayThin Oxide

LvtThin Oxide

LvtThin Oxide Lvt Thin Oxide Lvt

FET in write driver

Thin Oxide Rvt

Thin Oxide Rvt

Medium Oxide 1.5V high-speed

IO

Thick Oxide 1.8V regular IO

VDDmax (V) 1.1 1.1 1.65 1.98

VDDW (V) 1 1.1 1.65 ABAPVWL (V) 1 ABAP ABAP ABAP

Page 7: STT-RAM  Circuit Design

Write Current Comparison Result

7

Boost up VDDW to 1.1V, VWL to max - 21-22% gain

Boost up VDDW to 1.5V, VWL to max - 30-33% gain– Medium oxide device used, 2.2x bigger write driver

Boost up VDDW to 1.9V, VWL to max - 35-37% gain– Thick oxide device used, 7.6x bigger write driver

Rp = 744 Ω Ref Case 1 Case 2 Case 3

VWL (V) 1 1.17 1.23 1.3

VDDW (V) 1 1.1 1.65 1.9

Vds (V)P->AP 0.42 0.38 0.66 0.78

AP->P 0.57 0.55 0.95 1.1

Vgs (V)P->AP 0.93 1.09 1.09 1.1

AP->P 0.6 0.66 0.63 0.63

Iw (uA)P->AP 585 739 868 925

AP->P 210 270 301 325

Area Overhead   1x 2.2x 7.6x

I Gain v.s. Ref

P->AP   21% 33% 37%

AP->P   22% 30% 35%

Page 8: STT-RAM  Circuit Design

Read

Short pulse reading

8

Page 9: STT-RAM  Circuit Design

Read simulation result

270 ps only read current pulse– 150 ps pulse of control signal– 270 ps pulse current through MTJ– Read time:157 ps for Rp,167 ps for Rap

9