98
Structure of Nucleon Excitations on the Lattice Finn M. Stokes Waseem Kamleh, Derek B. Leinweber and Benjamin J. Owen Centre for the Subatomic Structure of Matter QCD Downunder 2017 Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 1 / 28

Structure of Nucleon Excitations on the Lattice · PDF fileI CrystalBall@MAMI Inafinitevolumetheseresonancesareassociatedwithatowerof stableenergylevels. Onthelattice,wecanusevariationalanalysistechniquestoaccess

  • Upload
    lyxuyen

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Structure of Nucleon Excitations on the Lattice

Finn M. Stokes

Waseem Kamleh, Derek B. Leinweber and Benjamin J. Owen

Centre for the Subatomic Structure of Matter

QCD Downunder 2017

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 1 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSAI Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSAI Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSA

I Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSAI Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSAI Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.

On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSAI Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSAI Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Introduction

In nature, observe negative-parity resonances N∗(1535) and N∗(1650)

Could investigate the structure of the N∗(1535) via

γp → γηp

I Crystal Barrel/TAPS at ELSAI Crystal Ball @ MAMI

In a finite volume these resonances are associated with a tower ofstable energy levels.On the lattice, we can use variational analysis techniques to accessthese energy levels

I Using local operators, we observe two negative parity states in theenergy region of the resonances.

I How are these finite-volume states related to the physical resonances?

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 2 / 28

Negative parity spectrum

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40m2π/GeV2

1200

1400

1600

1800

2000E/M

eVCSSM

Cyprus

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 3 / 28

Negative parity spectrum

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40m2π/GeV2

1200

1400

1600

1800

2000E/M

eV

non-int. π-N energy

non-int. η-N energy

CSSM

Cyprus

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 3 / 28

Hamiltonian Effective Field Theory (Liu et al. 2016)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40m2π/GeV2

1200

1400

1600

1800

2000E/M

eV

non-int. π-N energy

non-int. η-N energy

matrix Hamiltonian model

CSSM

Cyprus

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 4 / 28

Hamiltonian Effective Field Theory (Liu et al. 2016)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40m2π/GeV2

1200

1400

1600

1800

2000E/M

eV

matrix Hamiltonian model

1st most probable

2nd most probable

3rd most probable

CSSM

Cyprus

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 4 / 28

Lattice ensemble

Middle PACS-CS (2 + 1)-flavour full-QCD ensemble

323 × 64 latticesa = 0.0961(13) fm by Sommer parameterκu,d = 0.13754, corresponding to mπ ≈ 411MeVUse 368 configurations, with two sources on each configuration

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 5 / 28

Lattice ensemble

Middle PACS-CS (2 + 1)-flavour full-QCD ensemble323 × 64 lattices

a = 0.0961(13) fm by Sommer parameterκu,d = 0.13754, corresponding to mπ ≈ 411MeVUse 368 configurations, with two sources on each configuration

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 5 / 28

Lattice ensemble

Middle PACS-CS (2 + 1)-flavour full-QCD ensemble323 × 64 latticesa = 0.0961(13) fm by Sommer parameter

κu,d = 0.13754, corresponding to mπ ≈ 411MeVUse 368 configurations, with two sources on each configuration

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 5 / 28

Lattice ensemble

Middle PACS-CS (2 + 1)-flavour full-QCD ensemble323 × 64 latticesa = 0.0961(13) fm by Sommer parameterκu,d = 0.13754, corresponding to mπ ≈ 411MeV

Use 368 configurations, with two sources on each configuration

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 5 / 28

Lattice ensemble

Middle PACS-CS (2 + 1)-flavour full-QCD ensemble323 × 64 latticesa = 0.0961(13) fm by Sommer parameterκu,d = 0.13754, corresponding to mπ ≈ 411MeVUse 368 configurations, with two sources on each configuration

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 5 / 28

Conventional variational analysis

Start with some basis of operators χi

We use local three-quark spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 uc

Apply 16, 35, 100 and 200 sweeps of gauge invariant Gaussiansmearing

Correlation Matrix

G ijαβ(p ; t) ≡∑

xe ip·x 〈Ω|χi

α(x)χjβ(0)|Ω〉

Seek optimised operators φB that couple strongly to a single energyeigenstate

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 6 / 28

Conventional variational analysis

Start with some basis of operators χiWe use local three-quark spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 uc

Apply 16, 35, 100 and 200 sweeps of gauge invariant Gaussiansmearing

Correlation Matrix

G ijαβ(p ; t) ≡∑

xe ip·x 〈Ω|χi

α(x)χjβ(0)|Ω〉

Seek optimised operators φB that couple strongly to a single energyeigenstate

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 6 / 28

Conventional variational analysis

Start with some basis of operators χiWe use local three-quark spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 uc

Apply 16, 35, 100 and 200 sweeps of gauge invariant Gaussiansmearing

Correlation Matrix

G ijαβ(p ; t) ≡∑

xe ip·x 〈Ω|χi

α(x)χjβ(0)|Ω〉

Seek optimised operators φB that couple strongly to a single energyeigenstate

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 6 / 28

Conventional variational analysis

Start with some basis of operators χiWe use local three-quark spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 uc

Apply 16, 35, 100 and 200 sweeps of gauge invariant Gaussiansmearing

Correlation Matrix

G ijαβ(p ; t) ≡∑

xe ip·x 〈Ω|χi

α(x)χjβ(0)|Ω〉

Seek optimised operators φB that couple strongly to a single energyeigenstate

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 6 / 28

Conventional variational analysis

Start with some basis of operators χiWe use local three-quark spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 uc

Apply 16, 35, 100 and 200 sweeps of gauge invariant Gaussiansmearing

Correlation Matrix

G ijαβ(p ; t) ≡∑

xe ip·x 〈Ω|χi

α(x)χjβ(0)|Ω〉

Seek optimised operators φB that couple strongly to a single energyeigenstate

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 6 / 28

Conventional variational analysis

Start with some basis of operators χiWe use local three-quark spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 uc

Apply 16, 35, 100 and 200 sweeps of gauge invariant Gaussiansmearing

Correlation Matrix

G ijαβ(p ; t) ≡∑

xe ip·x 〈Ω|χi

α(x)χjβ(0)|Ω〉

Seek optimised operators φB that couple strongly to a single energyeigenstate

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 6 / 28

Conventional variational analysis

Start with some basis of operators χiWe use local three-quark spin-1/2 nucleon operators

χ1 = εabc [ua>(Cγ5) db] uc

χ2 = εabc [ua>(C ) db] γ5 uc

Apply 16, 35, 100 and 200 sweeps of gauge invariant Gaussiansmearing

Correlation Matrix

G ijαβ(p ; t) ≡∑

xe ip·x 〈Ω|χi

α(x)χjβ(0)|Ω〉

Seek optimised operators φB that couple strongly to a single energyeigenstate

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 6 / 28

Effective mass

Projected correlation function

GB(p ; t ; Γ−) ≡ Tr Γ−∑

xe ip·x 〈Ω|φB(x)φB(0)|Ω〉

Has an exponential time dependence

GB(p ; t ; Γ−) ≈ zBp zBp e−EB(p) t

Effective energy

EBeff(p, t) ≡ 1

δtln

GB(p ; t ; Γ−)

GB(p ; t + δt ; Γ−)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 7 / 28

Effective mass

Projected correlation function

GB(p ; t ; Γ−) ≡ Tr Γ−∑

xe ip·x 〈Ω|φB(x)φB(0)|Ω〉

Has an exponential time dependence

GB(p ; t ; Γ−) ≈ zBp zBp e−EB(p) t

Effective energy

EBeff(p, t) ≡ 1

δtln

GB(p ; t ; Γ−)

GB(p ; t + δt ; Γ−)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 7 / 28

Effective mass

Projected correlation function

GB(p ; t ; Γ−) ≡ Tr Γ−∑

xe ip·x 〈Ω|φB(x)φB(0)|Ω〉

Has an exponential time dependence

GB(p ; t ; Γ−) ≈ zBp zBp e−EB(p) t

Effective energy

EBeff(p, t) ≡ 1

δtln

GB(p ; t ; Γ−)

GB(p ; t + δt ; Γ−)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 7 / 28

Effective mass

Projected correlation function

GB(p ; t ; Γ−) ≡ Tr Γ−∑

xe ip·x 〈Ω|φB(x)φB(0)|Ω〉

Has an exponential time dependence

GB(p ; t ; Γ−) ≈ zBp zBp e−EB(p) t

Effective energy

EBeff(p, t) ≡ 1

δtln

GB(p ; t ; Γ−)

GB(p ; t + δt ; Γ−)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 7 / 28

Effective mass

Projected correlation function

GB(p ; t ; Γ−) ≡ Tr Γ−∑

xe ip·x 〈Ω|φB(x)φB(0)|Ω〉

Has an exponential time dependence

GB(p ; t ; Γ−) ≈ zBp zBp e−EB(p) t

Effective energy

EBeff(p, t) ≡ 1

δtln

GB(p ; t ; Γ−)

GB(p ; t + δt ; Γ−)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 7 / 28

Effective mass

Projected correlation function

GB(p ; t ; Γ−) ≡ Tr Γ−∑

xe ip·x 〈Ω|φB(x)φB(0)|Ω〉

Has an exponential time dependence

GB(p ; t ; Γ−) ≈ zBp zBp e−EB(p) t

Effective energy

EBeff(p, t) ≡ 1

δtln

GB(p ; t ; Γ−)

GB(p ; t + δt ; Γ−)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 7 / 28

Effective mass

Projected correlation function

GB(p ; t ; Γ−) ≡ Tr Γ−∑

xe ip·x 〈Ω|φB(x)φB(0)|Ω〉

Has an exponential time dependence

GB(p ; t ; Γ−) ≈ zBp zBp e−EB(p) t

Effective energy

EBeff(p, t) ≡ 1

δtln

GB(p ; t ; Γ−)

GB(p ; t + δt ; Γ−)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 7 / 28

First negative parity excitation at p = (0, 0, 0)

16 18 20 22 24 26

t/a

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(t)/

GeV

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 8 / 28

First negative parity excitation at p = (0, 0, 0)

16 18 20 22 24 26

t/a

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(t)/

GeV

χ2/dof = 1.142

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 8 / 28

Electromagnetic Structure

0

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

Electromagnetic Structure

0

t1

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

Electromagnetic Structure

0

t1

t2

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

Electromagnetic Structure

0

t1

t2

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

Electromagnetic Structure

0

t1

t2

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

Electromagnetic Structure

p

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

Electromagnetic Structure

p

q

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

Electromagnetic Structure

p

q

p′

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 9 / 28

First negative parity excitation at p = (0, 0, 0)

16 18 20 22 24 26

t/a

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(t)/

GeV

χ2/dof = 1.142

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 10 / 28

First negative parity excitation at p = (1, 0, 0)

16 18 20 22 24 26

t/a

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(t)/

GeV

χ2/dof = 5.845

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 11 / 28

First negative parity excitation at p = (2, 0, 0)

16 18 20 22 24 26

t/a

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(t)/

GeV

χ2/dof = 3.683

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 12 / 28

Dispersion Relation

0.0 0.2 0.4 0.6 0.8

p2 /GeV2

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(p)/

GeV

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 13 / 28

Dispersion Relation

0.0 0.2 0.4 0.6 0.8

p2 /GeV2

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(p)/

GeV

√m2

eff + p2

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 13 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both parities

Terms in unprojected correlation matrix have Dirac structure(

EB±(p)±mB± − σkpkσkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both paritiesTerms in unprojected correlation matrix have Dirac structure

(EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both paritiesTerms in unprojected correlation matrix have Dirac structure

(EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both paritiesTerms in unprojected correlation matrix have Dirac structure

(EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both paritiesTerms in unprojected correlation matrix have Dirac structure

(EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both paritiesTerms in unprojected correlation matrix have Dirac structure

(EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both paritiesTerms in unprojected correlation matrix have Dirac structure

(EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

Parity-Expanded Variational Analysis (PEVA)

Expand basis to simultaneously isolate finite momentum energyeigenstates of both paritiesTerms in unprojected correlation matrix have Dirac structure

(EB±(p)±mB± − σkpk

σkpk − (EB±(p)∓mB±)

)

Define PEVA projector

Γp =14

(I + γ4)(I− iγ5γk pk)

χip ≡ Γpχ

i couples to positive parity states at zero momentum

χi ′p ≡ Γpγ5χ

i couples to negative parity states at zero momentum

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 14 / 28

First negative parity excitation at p = (2, 0, 0)

16 18 20 22 24 26

t/a

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(t)/

GeV

χ2/dof = 3.683

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 15 / 28

First negative parity excitation at p = (2, 0, 0)

16 18 20 22 24 26

t/a

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(t)/

GeV

χ2/dof = 0.490

χ2/dof = 3.683

N∗1 (PEVA)

N∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 15 / 28

Dispersion Relation

0.0 0.2 0.4 0.6 0.8

p2 /GeV2

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(p)/

GeV

√m2

eff + p2

N∗1 (Conv.)

0.0 0.2 0.4 0.6 0.8

p2 /GeV2

0.0

0.5

1.0

1.5

2.0

2.5

EB eff

(p)/

GeV

√m2

eff + p2

N∗1 (Conv.)

N∗1 (PEVA)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 16 / 28

Dispersion Relation

0.0 0.2 0.4 0.6 0.8

p2 /GeV2

0.0

0.5

1.0

1.5

2.0

2.5EB eff

(p)/

GeV

√m2

eff + p2

N∗1 (Conv.)

N∗1 (PEVA)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 16 / 28

Electromagnetic Structure

p

q

p′

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 17 / 28

Electromagnetic Structure

p

q

p′

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 17 / 28

GE (Q2 ≈ 0.16 GeV2) for first negative parity excitation

16 18 20 22 24 26 28 30

t/a

0.0

0.2

0.4

0.6

0.8

1.0GE

up∗1 (PEVA) up∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 18 / 28

GE for first negative parity excitation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Q2 /GeV2

0.0

0.2

0.4

0.6

0.8

1.0GE

up∗1 (PEVA) up∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 19 / 28

Charge radius

Dipole ansatz

Gdipole(Q2) =

G0

1 + Q2/Λ2

State Radius

N (Ground state) 0.68(2) fmN∗1 (First negative) 0.68(4) fmN∗2 (Second negative) 0.89(11) fm

Table: Charge radius extracted from dipole fit

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 20 / 28

Charge radius

Dipole ansatz

Gdipole(Q2) =

G0

1 + Q2/Λ2

State Radius

N (Ground state) 0.68(2) fmN∗1 (First negative) 0.68(4) fmN∗2 (Second negative) 0.89(11) fm

Table: Charge radius extracted from dipole fit

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 20 / 28

Charge radius

Dipole ansatz

Gdipole(Q2) =

G0

1 + Q2/Λ2

State Radius

N (Ground state) 0.68(2) fm

N∗1 (First negative) 0.68(4) fmN∗2 (Second negative) 0.89(11) fm

Table: Charge radius extracted from dipole fit

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 20 / 28

Charge radius

Dipole ansatz

Gdipole(Q2) =

G0

1 + Q2/Λ2

State Radius

N (Ground state) 0.68(2) fmN∗1 (First negative) 0.68(4) fm

N∗2 (Second negative) 0.89(11) fm

Table: Charge radius extracted from dipole fit

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 20 / 28

Charge radius

Dipole ansatz

Gdipole(Q2) =

G0

1 + Q2/Λ2

State Radius

N (Ground state) 0.68(2) fmN∗1 (First negative) 0.68(4) fmN∗2 (Second negative) 0.89(11) fm

Table: Charge radius extracted from dipole fit

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 20 / 28

Electromagnetic Structure

p

q

p′

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 21 / 28

Electromagnetic Structure

p

q

p′

Matrix element

〈B ; p′ ; s ′| jµ|B ; p ; s〉 =

uB

(γµF1(Q2)− σµνqν

2mBF2(Q2)

)uB

Sachs form factors

GE (Q2) = F1(Q2)− Q2

2mBF2(Q2)

GM(Q2) = F1(Q2) + F2(Q2)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 21 / 28

GM(Q2 ≈ 0.16 GeV2) for first negative parity excitation

16 18 20 22 24 26 28

t/a

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5GM/µN

up∗1 (PEVA)

dp∗1 (PEVA)

up∗1 (Conv.)

dp∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 22 / 28

GM(0) estimate

Find that GM(Q2) and GE (Q2) have similar Q2 dependence

Consider GM(Q2)/GE (Q2) as estimate for GM(0)

Combine these estimates from each quark sector

+23 +2

3

−13

Proton*

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 23 / 28

GM(0) estimate

Find that GM(Q2) and GE (Q2) have similar Q2 dependenceConsider GM(Q2)/GE (Q2) as estimate for GM(0)

Combine these estimates from each quark sector

+23 +2

3

−13

Proton*

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 23 / 28

GM(0) estimate

Find that GM(Q2) and GE (Q2) have similar Q2 dependenceConsider GM(Q2)/GE (Q2) as estimate for GM(0)

Combine these estimates from each quark sector

+23 +2

3

−13

Proton*

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 23 / 28

GM(0) estimate

Find that GM(Q2) and GE (Q2) have similar Q2 dependenceConsider GM(Q2)/GE (Q2) as estimate for GM(0)

Combine these estimates from each quark sector

+23 +2

3

−13

Proton*

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 23 / 28

GM(0) estimate

Find that GM(Q2) and GE (Q2) have similar Q2 dependenceConsider GM(Q2)/GE (Q2) as estimate for GM(0)

Combine these estimates from each quark sector

+23 +2

3

−13

Proton*

+23

−13 −1

3

Neutron*

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 23 / 28

GM(0) estimate for first negative parity excitation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Q2 /GeV2

−2

−1

0

1

2

GM

(0)/µN

p∗1 (PEVA)

n∗1 (PEVA)

p∗1 (Conv.)

n∗1 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 24 / 28

GM(0) estimate for second negative parity excitation

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Q2 /GeV2

−2

−1

0

1

2

GM

(0)/µN

p∗2 (PEVA)

n∗2 (PEVA)

p∗2 (Conv.)

n∗2 (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 25 / 28

Magnetic moments

−2

−1

0

1

2

µ/µN

p∗1n∗1

p∗2n∗2

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 26 / 28

Magnetic moments

CQ

M(2

003)

CQ

M(2

005)

χC

QM

(200

5)

χC

QM

(201

3)

EH

(201

4)

−2

−1

0

1

2

µ/µN

p∗1n∗1

p∗2n∗2

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 26 / 28

Magnetic moments

CQ

M(2

003)

CQ

M(2

005)

χC

QM

(200

5)

χC

QM

(201

3)

EH

(201

4)

Con

v.L

atti

ce

−2

−1

0

1

2

µ/µN

p∗1n∗1

p∗2n∗2

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 26 / 28

Conclusion

The PEVA technique is critical to correctly extracting

I Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitions

I Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitations

I Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitions

I Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitions

I Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitions

I Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitions

I Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitions

I Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitions

I Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitionsI Enables a comparison with experimental results

I This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitionsI Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

Conclusion

The PEVA technique is critical to correctly extractingI Form factors of nucleon excitationsI Precision matrix elements of ground state nucleon (∼ 10% effect)

Two low-lying localised 12− nucleon excitations on the lattice

I Are seen to have magnetic moments consistent with quark modelexpectations for the N∗(1535) and N∗(1650)

I Suggests that the Hamiltonian Effective Field Theory study should berepeated with the inclusion of a second bare state

The PEVA technique can be extended to nucleon transitionsI Enables a comparison with experimental resultsI This extension is almost complete

Inclusion of multi-particle scattering operators is important

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 27 / 28

More information

“Parity-expanded variational analysis for nonzero momentum”F. M. Stokes, W. Kamleh, D. B. Leinweber, M. S. Mahbub, B. J. Menadue,B. J. OwenPhys. Rev. D 92 (2015) 11, 114506doi:10.1103/PhysRevD.92.114506arXiv:1302.4152 (hep-lat).“Electromagnetic Form Factors of Excited Nucleons via Parity-ExpandedVariational Analysis”F. M. Stokes, W. Kamleh, D. B. Leinweber, B. J. OwenPoS LATTICE2016 (2016) 161arXiv:1701.07177 (hep-lat).“Hamiltonian effective field theory study of the N∗(1535) resonance inlattice QCD”Z.-W. Liu, W. Kamleh, D. .B. Leinweber, F. M. Stokes, A. W. Thomas,J.-J. WuPhys. Rev. Lett. 116 (2016) 8, 082004doi:10.1103/PhysRevLett.116.082004arXiv:1512.00140 (hep-lat).

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 28 / 28

GE (Q2 ≈ 0.16 GeV2) for ground state

16 18 20 22 24 26 28 30 32

t/a

0.0

0.2

0.4

0.6

0.8

1.0GE

up (PEVA) up (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 29 / 28

GE for ground state

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Q2 /GeV2

0.0

0.2

0.4

0.6

0.8

1.0GE

up (PEVA)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 30 / 28

GM(Q2 ≈ 0.16 GeV2) for ground state

16 18 20 22 24 26 28 30 32

t/a

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5GM/µN

up (PEVA)

dp (PEVA)

up (Conv.)

dp (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 31 / 28

GM(Q2 ≈ 0.16 GeV2) for ground state

16 18 20 22 24 26

t/a

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0GM/µN

dp (PEVA) dp (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 31 / 28

Error in GM for ground state

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Q2 /GeV2

0.6

0.7

0.8

0.9

1.0

1.1G

Con

v.

M(Q

2)/G

PE

VA

M(Q

2)

dp (Conv.)

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 32 / 28

Scattering state contaminations

0 1 2 3 4 50 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0N * ( 1 / 2 - )

| < m 0 | E 2 > | 2 = 6 7 . 1 %| < m 0 | E 4 > | 2 = 1 6 . 4 % (G

(t) - Σ

jG j(t))/G

(t)

t ( f m )

mπ = 4 1 1 M e V

j = 2 , 4

0 . 0 0 . 5 1 . 0 1 . 5 2 . 00 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

Finn M. Stokes (CSSM) Nucleon Excitations on the Lattice QCD Downunder 2017 33 / 28