79
STRUCTURAL DESIGN STRUCTURAL DESIGN OF OF LONG LONG - - LIFE ASPHALT PAVEMENTS LIFE ASPHALT PAVEMENTS Marshall R. Thompson Professor Emeritus Department of Civil Engineering University of Illinois @ U-C

STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

  • Upload
    others

  • View
    6

  • Download
    4

Embed Size (px)

Citation preview

Page 1: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

STRUCTURAL DESIGNSTRUCTURAL DESIGNOFOF

LONGLONG--LIFE ASPHALT PAVEMENTSLIFE ASPHALT PAVEMENTS

Marshall R. ThompsonProfessor Emeritus

Department of Civil EngineeringUniversity of Illinois @ U-C

Page 2: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

TAC

ASPHALT CONCRETE

SUBGRADE

DESIGN• AC FATIGUE• AC RUTTING• SUBGRADE RUTTING

Page 3: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

PHILOSOPHY* “VERY LOW” PROBABILITY OF HMA FATIGUE

* MILL & FILL REHAB

-RUTTING

-“SURFACE WEATHERING”

-“TOP-DOWN” CRACKING

Page 4: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS
Page 5: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FULL-DEPTH AC PAVEMENT

TAC

εAC

ASPHALT CONCRETE(EAC)

SUBGRADE(ERi)

Page 6: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

EXTENDED LIFE HMADESIGN CONCEPTS

RepeatedStress - Strain

Leads toRutting

Subgrade

RepeatedBending

Leads toFatigue Cracking

HMA

BaseBase

Page 7: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

NON-STRUCTURAL RUTTING

TRL

Page 8: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

M32

M32CORE

TRL

Page 9: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

Longitudinal

crack in

M1

TRL

Page 10: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

Crack (surface initiated)

WHEEL LOAD

TOP-DOWN CRACKING

TRL

Page 11: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

TRL Report 250Nunn, Brown, Weston& Nicholls

Design of Long-Life FlexiblePavements for Heavy Traffic

http:\\www.trl.co.uk

Page 12: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

High ModulusRut Resistant Material(Varies As Needed)

40-75 mm SMA, OGFC or Superpave100 mmto150 mm

ZoneOf High

Compression

Max Tensile StrainFlexible Fatigue ResistantMaterial 75 - 100 mm

Pavement Foundation

Page 13: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

AASHTO TP 8-94

Standard Test Method for Determination of the Fatigue Life of Compacted HMA

Subjected to Repeated Flexural Bending

Page 14: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FATIGUE DESIGN• Tensile Strain at Bottom of Asphalt• Tensile Strain in Flexural Beam Test

Other Configurations

Page 15: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS
Page 16: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FATIGUE TESTING

• Tensile Strain in Flexural Beam Test– Other Configurations

– 10 Hz Haversine Load, 20o C, Controlled Strain

Page 17: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

STIFFNESS CURVE

2000

3000

4000

5000

6000

7000

8000

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 35,000,000 40,000,000

Number of Load Cycles

Stiff

ness

, Mpa

Failure

Page 18: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

LABORATORY ALGORITHM

0.00001

0.0001

0.001

0.01

1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

Load Repetitions

Tens

ile S

train

K1 = InterceptK2 = Slope

Page 19: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

AC FATIGUE

LOG N

LOG

εAC

N = K (1/εAC)n

n’ > n

n’

nn

K

Page 20: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FATIGUE ALGORITHM

• Nf = K1(1/ε)K2

• Nf = K( ε)a (E*)b

• 2002 Guide Will Have an Algorithm

Page 21: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

HMA FATIGUE

N = K (1 / εAC)n

n : 3.5 - 6

Page 22: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

2003 TRB PAPERSGhuzlan - Carpenter – Shen

University of IL @ U-C

• Traditional Fatigue Analysis of Asphalt Concrete Mixtures

• A Fatigue Endurance Limit for Highway and Airport Pavements

Page 23: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

MATERIALS – 84 MIXES

• Illinois DOT– 25 mixes, 19, 12.5, 9.5 mm NMS– Production Samples

• Aggregate Interlock– Gradation Control, One Aggregate

• Dubai, U.A.E.– 4 Asphalts, 2 Aggregates, 8 gradations

• Various Others

Page 24: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ILLINOIS DOT

y = -0.3224x + 1.2471R2 = 0.9383

01234567

-16 -11 -6 -1Log(K1)

K2

Page 25: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ALL MIXTURES

y = -0.3269x + 1.1857R2 = 0.9445

01234567

-16 -12 -8Log(K1)

K2

Page 26: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

OTHER STUDIES

0

1

2

3

4

5

6

7

-16 -14 -12 -10 -8 -6 -4 -2 0

Log(K1)

K2

U of IllinoisMaupin ResultsMyreFHWAFinnLinear (U of Illinois)Linear (Maupin Results)Linear (Myre)Linear (FHWA)

Page 27: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

K – n RELATIONS

• Myre / Norway NTH (1992)LOG K = (1.332 – n) / 0.306

• U of ILGhuzlan & Carpenter (2001)LOG K = (1.186 – n) / 0.327

Page 28: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

MAUPIN WORK

• Constant Strain Conditions– Different Failure Assumptions– One-Third Modulus Reduction

• K2 = 0.0374 σ IT - 0.744

• Calculate K1

– σIT = Indirect Tensile Strength (psi) @ 72oF– Marshall Samples

Page 29: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

THERE IS

NO “UNIQUE”

HMA FATIGUE ALGORITHM !!!!

Page 30: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

LOW STRAIN HMAFATIGUE BEHAVIOR

Page 31: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

70 Micro Strain Test

4000

5000

6000

7000

8000

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07 3.5E+07 4.0E+07

Number of Load Cycles

Stiff

ness

, Mpa

University of IllinoisFailure @ Stiffness < 50%

Page 32: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FATIGUE ENDURANCE LIMIT

0.00001

0.0001

0.001

0.01

1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

Load Repetitions

Tens

ile S

train

K1 = InterceptK2 = Slope

Page 33: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FATIGUE ENDURANCE LIMIT

• Damage and Healing Concepts and Test Data Support a Strain Limit Below Which Damage Does Not Accumulate

• Different Limit for Different Mixes and Binders

Page 34: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

Significance of Fatigue Endurance Limit

“….such a limit would provide a thickness limit for the pavement..Increasing the thickness beyond the limiting thickness… would provide no increased structural resistance to fatigue damage and represent an unneeded expense.”

Prof. Carpenter

Page 35: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

HMA FATIGUE

N (LOG)

ε AC

(LO

G)

N = K (1 / εAC)n

70 µε*

ENDURANCE LIMIT

PERPETUAL PAVEMENT

*Monismith and McLean (’72 AAPT)

Page 36: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

HMA FATIGUE

N (LOG)

ε AC

(LO

G)

N = K (1 / εAC)n

FATIGUE DAMAGE

ENDURANCE LIMIT

NO FATIGUE DAMAGE

Page 37: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

( )100NN P

Ti

ii =

∑=

=n

1i

100 P: FAILURE i

Page 38: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

MINER’S

∑=

= 12

1i iN

121

Nf

Nf = “TOTAL” PAVT. LIFE

Ni = PAVT. LIFE-MONTH “i”

Page 39: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS
Page 40: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

STRUCTURAL MODELLING

Elastic Layer (ELP)

Stress Dependent Finite Element

Page 41: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

STRUCTURAL MODEL

ILLI-PAVE

Page 42: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FINE - GRAINED

σd – DEVIATOR STRESS

E R=

σ D/ ε

R

~ 6 psi

ERi

Page 43: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ERi CORRELATIONS

ERi = 0.37 Qu – 0.86

ERi(OPT M.C.) = 4.46 + 0.098 (%Clay) + 0.119 (PI)

Qu = 4.5 CBR

ERi - ksiQu - psi

Page 44: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

MODULUS CLASSESFINE-GRAINED SOILS

SOIL ERi (ksi) Qu (psi) CBR

STIFF 12.3 33 8MEDIUM 7.7 23 5SOFT 3.0 13 2VERY SOFT 1.0 6 1

ERi (ksi) = 0.42 Qu (psi) - 2

Page 45: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

GRANULAR MATERIAL

θ = σ1 + σ2 + σ3 (LOG)

E R(L

OG

) ER = K θn

Page 46: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ER = K θn

AGGREGATE CLASS K, psi n

SILTY SANDS (8) 1620 0.62SAND GRAVEL (37) 4480 0.53SAND/AGG BLENDS (78) 4350 0.59CRUSHED STONE (115) 7210 0.45

Page 47: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS
Page 48: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

WHAT IS THE MODULUS ???

ELP – CONSTANT E!!!

Page 49: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

HOT MIX ASPHALT

LINEAR ELASTIC (E)

E = f (Temp & Freq)

Page 50: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FULL-DEPTH AC

LOG εAC = 5.746–1.589 LOG TAC–0.774 LOG EAC–0.097 LOG ERi

εAC : µε TAC : in. EAC , ERi : ksi

Page 51: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS
Page 52: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS
Page 53: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

O. A. Fonesca & M. W. WitczakAAPT Proceedings – 1996

“A Prediction Methodology for the Dynamic Modulus of In-Place Aged Asphalt Mixtures”

M. W. Witczak & O. A. FonescaTRB RECORD No.1540 (1996)

“Revised Predictive Model for Dynamic (Complex) Modulus of Asphalt Mixtures”

(AASHTO – 2002 Guide)

Page 54: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ASPHALT INSTITUTE EQUATION

EAC = f (X1 , X2 , Xn)

P200 = % - # 200

VV = % AIR VOIDS

η70 F = ABSOLUTE VISCOSITY (poises x 106)

PAC = % ASPHALT (wt. of mix)

tp = TEMPERATURE (F)

f = FREQUENCY (HZ)

Page 55: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS
Page 56: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

SEASONAL EFFECTS

• HMA MODULUS VARIES !!

• HMA ε VARIES !!

• HMA FATIGUE LIFE VARIES !!

MUST CONSIDER IN M-E DESIGN

Page 57: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

PG GRADE EFFECTS

HMA MODULUS (ksi)

TEMP (oF) 64-22 70-22

70 910 116075 765 97580 640 81585 530 67590 435 550

Asphalt: 3.5 % AV: 4 %- # 200: 3 % f = 10 hz

Page 58: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

PG 70-22

HMA MODULUS (ksi)

TEMP (oF) AC-4.0 %* AC-3.5 %**

70 1195 116075 995 97580 820 81585 670 67590 540 550

* AV: 2.5 % ** AV: 4.0 %- # 200: 3 % f = 10 hz

Page 59: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ASPHALT INSTITUTE PROCEDURE

MMPT (oF) = MMAT [1 + (1 / {Z + 4})] – [34 / {Z + 4}] + 6

Z: INCHES FROM SURFACE

Page 60: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ICM/AI38.5/38.032.4DEC49.1/46.841.8NOV63.7/62.554.7OCT76.4/74.165.8SEP84.3/82.372.8AUG86.5/84.974.7JUL83.4/82.972.0JUN72.0/73.962.5MAY58.9/59.551.2APR47.8/46.640.6MAR39.1/37.933.0FEB32.5/30.427.1JAN

MMPT (oF)MMAT (oF)MONTHCHAMPAIGN, IL

Page 61: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FULL-DEPTH ACLOG σD = 2.74–1.14 LOG TAC–0.515 LOG EAC+0.29 LOG ERi

σD : psi TAC : in. EAC , ERi : ksi

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

TAC

DEV

IATO

R S

TRES

S

ERi = 5 ksiEAC = 500 ksi

Page 62: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

Pavement Design Concepts• Fatigue Resistant Asphalt Base

– Minimize Tensile Strain with Pavement Thickness

– Thin Asphalt Pavement = Higher Strain– Higher Strain = Shorter Fatigue Life

Strain

CompressiveStrain

IndefiniteFatigue

Life

Fatigue LifeTensileStrain

Page 63: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

PERPETUAL PAVEMENT(70 MICRO-STRAIN / 9 kips)

(SUBGRADE ERi - 5 ksi)

AC MODULUS AC THICKNESS(ksi) (inches)

800 10.00700 10.75600 11.50 500 12.50400 14.00300 16.00

Page 64: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

PERPETUAL PAVEMENT(70 MICRO-STRAIN / 10 kips)

(SUBGRADE ERi - 5 ksi)

AC MODULUS AC THICKNESS(ksi) (inches)

800 10.7700 11.4600 12.3 500 13.4400 15.0300 17.2

Page 65: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

CMI - IL19 mm SP mix

*AC: 4.8 % PG 64-22 *- # 200: 5 %*AV: 4.0 % *f = 10 hz

LOG EAC (ksi) = 4.33 – 0.0198 T (oF)

N = 8.2*10-8 (1/εAC)3.5

TAC = 13.5 inches ERi = 5 ksi

*NF w/o Endurance Limit: 119 MESALS

*July AC Strain: 70 µε“PERPETUAL” PAVEMENT

Page 66: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

RUBBLIZED PCCP

WITH

HMA OVERLAY

Page 67: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

THE MHB I-70 / IL

Page 68: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

THE MHB

Page 69: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

Z-GRID ROLLER

Page 70: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

PAVING OPERATION

Page 71: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

HOT-MIX ASPHALT OVERLAY DESIGN CONCEPTS FOR RUBBLIZED PORTLAND

CEMENT CONCRETE PAVEMENTS

Marshall R. ThompsonTRB Record 1684 (1999)

LOG εAC = 1.001 + 1.024 LOG(AUPP)

LOG(AUPP) = 1.865 - 0.393 LOG(EACT3 / 1000)

εAC = Micro-strain (10-6)AUPP – inchesEAC – ksiT – inches

Page 72: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

RUBBLIZED PVT SECTION

HMA SURFACE

SUBGRADE

SUBBASE

RUBBLIZED PCC

εHMA

THMA

Page 73: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

ERi = 5 ksiEAC = 500 ksi

AREA = 6*(D0 + 2*D1 + 2*D2 + D3) / D0

Original Pavement Surface

CL Load

D0 D1D2

D3

Area Under Pavement ProfileAUPP

Deflection Basin Profile

12-inch 12-inch 12-inch

AUPP = (5*D0 - 2*D1 - 2*D2 - D3) / 2

Page 74: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

PERPETUAL PAVEMENTRUBBLIZED PCCP

(70 MICRO-STRAIN)

AC MODULUS AC THICKNESS(ksi) (inches)

800 8.2700 8.6600 9.0 500 9.6400 10.4300 11.4

Page 75: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

CHAMPAIGN, ILHMA OL / RUBBLIZED PCCP

JULY MMPT = 86.5 oFEAC = 370 ksi

TAC = 11 inchesHMA ε = 67 Micro - ε

Page 76: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

Why are Perpetual Pavements Important?

• Lower Life Cycle Cost– Better Use of Resources– Low Incremental Costs for Surface Renewal

• Lower User Delay Cost– Shorter Work Zone Periods– Off-Peak Period Construction

Page 77: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

FULL-DEPTH AC

FULL QUALITY AC

Page 78: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

Foundation - Illinois

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9CBR

Req

uire

d Th

ickn

ess

Abo

veSu

bgra

de, i

nche

s

Remedial procedurerequired

No

rem

edia

l pro

cedu

re re

quire

d

Remedialprocedureoptional

Page 79: STRUCTURAL DESIGN OF LONG-LIFE ASPHALT PAVEMENTS

THANK YOU !!

???????