49
1 Stochastic Structural Dynamics Lecture-19 Dr C S Manohar Department of Civil Engineering Professor of Structural Engineering Indian Institute of Science Bangalore 560 012 India [email protected] Failure of randomly vibrating systems-3

Stochastic Structural Dynamics Lecture-19nptel.ac.in/courses/105108080/module5/Lecture19.pdfStochastic Structural Dynamics Lecture-19 Dr C S Manohar ... nnr r nr r n ttt ... Simi ab

  • Upload
    hoangtu

  • View
    217

  • Download
    2

Embed Size (px)

Citation preview

111

Stochastic Structural Dynamics

Lecture-19

Dr C S ManoharDepartment of Civil Engineering

Professor of Structural EngineeringIndian Institute of ScienceBangalore 560 012 India

[email protected]

Failure of randomly vibrating systems-3

2

0 0

(0, , ) ( ) ,

,

T T

N T N T X t X t dt n t dt

n t X t X t

0 0

,0, 0 ,

, 0

T T

M T X t X t U X t dt m t dt

m t X t X t U X t

12 2 2

22 2 211 1 1

1exp 1

22 2 2 1 2 1pp erf

0

1, 12

T

x

y t erf dtT t

Level crossing

Number of peaks

pdf of peaks

Fractional occupation time

Recall

3

2

0 0

22 10 00

0

Recall0

0 ; 0

cos

; tan

x xx x x x

x t R t

x xR xx

R x t t

20 0

0 00

0 00

2 0; 0 ; 0

exp( ) cos sin

cos ; sin

exp( ) cos

d dd

d

d

x x x x x x x

x xx t t x t t

x xx R R

x t t R t

2

0 0

2 22

2 cos

0 ; 0

lim ( )cos

1;1 2

st dt

st

Px x x tm

x x x x

x t X DMF t

PX DMFk r r

Envelope and phaseprocesses

4

2

0

0

0

0

2

0 0; 0 0; 1

1 exp sin ( )

1 exp sin cos cos sin ( )

sin ( ) cos

1 exp cos ( )

1( ) exp sin

t

dd

t

d d d dd

d d

t

dd

t

d

x x x f t

x x

x t t t f d

t t t f d

A t t B t t

A t t f d

B t t

( )d f d

5

2 2

1

( ) cos

cos

sin

tan

dx t R t t t

A t R t t

B t R t t

R t A t B t

B tt

A t

6

22 2

2

22

2

22

2 222 2

KE+PE

d

n

x tR t x t

x tx t

mx tx t

kkx mx

k

Energy interpretation

7

whenever 0

( ) passes through extrema of ( ).If ( ) is a sample of a narrow band process,

( ) passes through all the peaks.Therefore one can expect similarities in theproperties of envelo

R t x t x t

R t x tx t

R t

pe and peaks of ( ).

x t

8

0

1 cos cos

( ) cos( ) 1 cos

m

m

m

m

x t A t t

E t A tE t A t

0 5 10 15 20 25-1.5

-1

-0.5

0

0.5

1

1.5

time t

x(t)

1 cos cosmx t A t t

( ) cos mE t A t

0 ( ) 1 cos mE t A t

0 ( ) 1 cos mE t A t

9

0 5 10 15 20 25-5

-4

-3

-2

-1

0

1

2

3

4

5

time t

x(t)

How do we generalize the notion of envelopeand phase to describe random processes?

10

-5 -4 -3 -2 -1 0 1 2 3 4 5-30

-20

-10

0

10

20

30

x(t)

xdot

(t)

1111

01

Let be a zero mean, stationary, Gaussian random process defined as

cos sin ;

Here ~ 0, , ~ 0, ,

0

n n n n nn

n n n n

n k

X t

X t a t b t n

a N b N

a a n

Fourier representation of a Gaussian random process

Assumptions

Recall

1

, 0 ,

0 , 1,2, ,

cos sin 0

n k

n k

n n n nn

k b b n k

a b n k

X t a t b t

1212

1 1

1 1

2

1

cos sin cos sin

cos sin cos sin

cos

n n n n n n n nn n

n n n n n n n nn m

XX n nn

X t X t a t b t a t b t

a t b t a t b t

R

is a WSS random process.

is Gaussian.

is a SSS process.

X t

X t

X t

1313

1

1

1

2

Consider the psd function

1 cos2

1 cos2

Compare this with

cos

XX n n nn

XX n n nn

XX n n nn

XX n

S S

R S

R S

R

Fourier representation of a Gaussian random process (continued)

1

2By choosing , we see that the two ACF-s2

coincide.

nn

n nn

S

1414

0 5 10 15 20 25 30 35 40 45 500

0.005

0.01

0.015

frequency rad/s

psd

1n n

2Area 2n n nS

01

By discretizing the psd function as shown we can simulatesamples of ( ) using the Fourier representation

cos sin ; n n n n nn

X t

X t a t b t n

15

1

1 1

Let be a zero mean, stationary, random process defined as

cos

Here are deterministic constants and form

an iid sequence of random variables with

n n nn

n nn n

X t

X t A t

A

Alternative representation

1

12 2

1 0 0

a common PDFthat is uniformly distributed in 0 to 2 .

cos

cos cos sin sin

1 1cos cos sin sin2 2

0

n n nn

n n n n nn

n n n n n n nn

X t A t

A t t

A t d t d

16

1

1 1

2 2 2

1

2

1

cos cos sin sin

cos cos sin sin

cos cos sin sin

cos cos cos sin sin sin

cos

n n n n nn

n m n n n nn m

n n n n

n n n n n n nn

n nn

X t A t t

X t X t A A t t

t t

A t t t t

A

is a WSS random process.

is Gaussian (apply central limit theorem).

is a SSS process.

X t

X t

X t

17

01

1

cos sin ;

~ 0, , ~ 0, ,

0 , 0 ,

0 , 1,2, ,

cos sin

cos c

n n n n nn

n n n n

n k n k

n k

n n r r n n r rn

n n r

X t a t b t n

a N b N

a a n k b b n k

a b n k

X t a t t b t t

a t

Rice's definition of envelope and phase processes

1

1

os sin sin

sin cos cos sin

r n r rn

n n r r n r rn

t t t

b t t t t

Central frequencyr

18

1

1

1

1

cos cos sin sin

sin cos cos sin

cos sin cos

sin cos sin

cos sin

n n r r n r rn

n n r r n r rn

n n r n n r rn

n n r n n r rn

c r s r

c

X t a t t t t

b t t t t

a t b t t

a t b t t

I t t I t t

I

1

1

cos sin

sin cos

n n r n n rn

s n n r n n rn

t a t b t

I t a t b t

19

1

2 2 2

1

1

2 2 2

1

cos sin

sin cos

c n n r n n rn

c nn

s n n r n n rn

s nn

I t a t b t

I t X t

I t a t b t

I t X t

20

2 2 2

1

cos sin

cos ; sin

tan

cos

( ) Envelope process associated with ( )Phase process associated with ( )

Central frequency as

c r s r

c s

c s

s

c

r

r

X t I t t I t t

I t a t t I t a t t

a t I t I t

I tt

I t

X t a t t t

a t X tt X t

sociated with ( )X t

21

1

1 1

cos

Here are deterministic constants and form

an iid sequence of random variables with a common PDFthat is uniformly distributed in 0 to 2 .

c

n n nn

n nn n

n

X t A t

A

X t A

Alternative representation

1

1

1

1

os

cos cos sin sin

cos sin

cos

sin

n r n rn

n n r n r n r n rn

c r s r

c n n r nn

s n n r nn

t t

A t t t t

E t t E t t

E t A t

E t A t

22

2 2

1

cos sin

cos

sin

cos

tan

( ) Envelope process associated with ( )Phase process associated with ( )

Central frequency ass

c r s r

c

s

r

c s

s

c

r

X t E t t E t t

E t a t t

E t a t t

X t a t t t

a t E t E t

E tt

E t

a t X tt X t

ociated with ( )X t

23

2 2

1

Let ( ) and ( ) be two random processes.Define

( ) ( ) cos ( )sinLet A cos & sin

( ) ( ) cos

tan

A t B t

X t A t t B t tt R t t B t R t t

X t R t t t

R t A t B t

B tt

A t

Probability distributions of Envelope and phase processes

By definition( )=amplitude process, envelope, or amplitude modulation of ( )

phase process, or phase modulation of ( )carrier frequency or central frequency

R t X tt X t

24

1

cossin

2 2

2 222

ProblemGiven , ; to find , ; .

cossincos sinsin cos

, ,

Let and be jointly Gaussian

21 1, exp2 12 1

AB R

a rR ABb r

abAB

a b a baba b ab

p a b t p r tA RB R

RJ R

R

p r rp a b

A B

r aba bp a brr

25

cossin

2

22 2 2 2

2 22

2

0

0

, ,

,2 1

2 sin cos1 cos sinexp2 1

0 ;0 2

, ;0

, ;0 2

a rR ABb r

R

a b ab

ab

a b a bab

R R

R

p r rp a b

rp rr

r rr rr

r

p r p r d r

p p r dr

26

22 22

2 22 2

02 2 2 22

0

2

2 2

2

2exp

4 1 2 11

0 .Bessel's function of the first kind

1

cos sin2

a bab

a ba bR

a b ab a b aba b ab

ab

a bb

rrp r r I r

r rr

rI

rp

2

;0 2sin cosab

a a b

r

is generalized Rayleigh random variable is a generalized random variable.

R

27

2

00

0

exp cos 2

modified Bessel's function of argument and order 0.

b d I b

I b b

Note

28

2 2 2 2

2 2 2

2

2 2

2 2 2

2 20 0

2

2 2

0,

1 cos sin, exp2 2

exp ;0 ;0 22 2

, exp2 2

ex [Rayleigh RV]p ;0 2 2

Simi

ab a b

R

R R

R

r

r r rp r

r r r

r rp r p r d d

r rp r r

Special case

[Un1lar iforly we ge m RVt ;0 ]2 2

,R R

p

p r p r p R

29

Envelope and peaks share common properties.This is not surprising since the envelope passes throughall the peaks.The heuristic approach based on which we derived

Rayleigh model for the peak di

Remarks

stribution stands justifiedsince using a more rigorous arguement we have arrivedat Rayleigh model for the envelope.

and are independent of the central frequency R rp r p

30

1 2 1 2

1 1 1 1 1

2 2 2 2 2

1 1 1

1 1 1

2 2 2

2 2 2

1 1 1

1 1 1

2 2 2

2 2 2

, , ,&

cos sin

cos sin

cos

sin

cos

sin

cossincossin

R t R t t t

X t A t t B t t

X t A t t B t t

A t R t t

B t R t t

A t R t t

B t R t t

A RB RA RB R

Joint pdf of1 1 1

1 1 11

2 1 2

2 2 2

1 1

1 2 1 2

2 2 2

1

1 1 2 1 2

2 2 2

1 2

cos sin 0 0sin cos

0 0 cos sin0 0 sin cos

cos 0 0cos 0 cos sin

0 sin cos

sin 0 0sin 0 cos sin

0 sin cos

RR

JR

R

RR

R

R RR

R R

31

1 1 12 2 21 2 1 2 1 1 2 21 1 12 2 2

1 2 1 1 2 2

coscos1 2 1 2 1 2 1 2 1 2

sinsin

2 2

1 2 1 2 1 1 1 1 2 2 2 2 1 20 0

, , , , , ,

, cos , sin , cos , sin

If ( ) is a stationary Gaussian random proces

a ra rR R A B A Bb rb r

R R A B A B

p r r r r p a a b b

p r r r r p r r r r d d

X t

1 2

22 2 2 21 2 1 2

1 2 0 13 14 1 2

2 2 2 2

13

14

4 2 213 14

s with zero mean it can beshown that (exercise)

, exp2R R

r r r rp r r I r r

A B X t

A t A t B t B t

A t B t B t A t

32

1

&

cos

sin

cos sin

sin cos

cos sin 0 0sin cos 0 0

sin sin cos cos sincos cos sin sin cos

cos 0 0cos sin cos c

A t A t

A t R t t

B t R t t

A t R t t R t t t

B t R t t R t t t

RR

JR R R R

R R R

RR R

Joint pdf of

2 2 2 2 2

sin 0 0os sin sin sin cos sin

cos sin sin cos cos sin cos

cos sin

R R R RR R R R

R R R

33

2 cossincos sinsin cos

, , , ; , , , ;

0

0 2

a rb rRR AABBa r rb r r

p r r t r p a a b b t

rr

34

2 2 2 2

2 2 21

Let and be zero mean, Gaussian, stationary random processes

, , , are independent

( ) ( ) cos ( )sin

( ) sin ( )cos ( ) cos ( )sin

X

A t B t

A t B t X t

A t A t B t B t

A t B t

X t A t t B t t

X t A t t A t t B t t B t t

B

2 2 2 2 21

sin cos

XX

A t A B t

X t

35

2 2 2 2 2

2 2 22 211

2

0

2 2

1 2 22 12

, , , ; exp22

0 ; ;0 2 ;

, ; , , , ;

exp ; 0 ;22

RRXX

RR RR

XX

r r r rp r r t

r r

p r r t p r r t d d

r r r r r

Exercise: verify if the following are true.

R S Langley, 1986, On various definitions of the envelope of arandom process, Journal of Sound and Vibration, 105(3), 503-512.

Determine p , ;t

36

0

21

1 222

Knowing , ; the number of crossing of level by the envelope process ( ) can be characterized.

, , ;

exp22

Average rate of crossing of the level

RR

R RR

XX

p r r tR t

n t rp r t dr

Remarks

with positive slope by ( )

: ( ) is non-Gaussian Crossing of a level for narrow band processes

occur in clumps

R tR t

Note

37

0 5 10 15 20 25-1.5

-1

-0.5

0

0.5

1

1.5

time t

x(t)

Clumping

38

1

Average clump size

, 1, 2

X X X

R

n tcs

n t

Poisson model for number of level crossing is more appropriate for ( ) than for ( )R t X t

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

0

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

0

10

x(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

0

10

time s

Time required by ( ) to reach level for the first timeX t

40

The time required by ( ) to cross level for the first timeA real valued random variable taking values in 0 to Given the complete description of ( ),

can we characterize ?

This is known a

f

f

T

X t

X tT

s the First passage problem Barrier crossing problem Outcrossing problem

41

•The threshold level is high (so that crossing is a rare event)•Crossing times are mutually independent• ( ,0, )is a Poisson random variable

,0, x

,

p

0,

e!

k

N T

N

TP N T

T

kk

AssumptionsPoisson model for

2

2

rate of crossing of level ,

If ( ) is a stationary gaussian random process with zero mean

1, exp2

x

x x

T

n t

X t

n t

42

2

2

2

2 2

2

,0, exp!

1, exp2

1exp2 1,0, exp exp ;

! 2

0,1, 2, ,

k

x

x x

k

x

x x x

x x

TP N T k T

k

n t

TTP N T k

k

k

43

2

2

2

2

2 2

2

no points in 0 to

,0, 0

1exp exp2 2

1

11 exp exp2 2

1 1exp exp exp2 2 2 2

f

f

f

f

x

x x

T f

x

x x

TT

x x

x x x x

P T t P t

P N T

t

P t P T t

t

dP tp t

dtt

2

0 t

44

2

2

0

1 exp

exp 0

1exp2 2

1exp

f

f

T

T

x

x x

f

P t t

p t t t

T t t dt

is exponentially distributedfT

45

1 2

Let ( ) be a nonstationary, zero mean, Gaussian random processwith autocovariance function , .Determine the average rate of crossing of level bythe process ( ).

XX

X tR t t

X t

Example

2 2

2 222

, , ;

We need the jpdf of and .

1 1 2, ; exp2 12 1

,

XX

x x x xx x

n t X t X t x p x t dx

X t X t

x x rxxp x x trr

x x

46

22

2 2

2

2 2

1, 1 [exp2 2 1

exp 1 ]2 2 1

The quantities , ,& are time varying.If 0 and ,& are time invariant, the

above express

x

x x

x x x

x x

x x

n t rr

r rerfr

rr

Note

ion reduces to the expression forthe case when ( ) is stationary.This is what is expected.

X t

47

0

1 exp ,f

t

T XP t n d

48

21

1 220 2

21

1 222

( )

, , ; exp22

1 exp exp22

f

R RRX

X

TX

X

R t

n t rp r t dr

tP t

First passage time for envelope process Recall

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

0

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

0

10

x(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

0

10

time s

The maximum value of ( ) in interval 0 toX t T