Stochastic Modelling 2000-2004

Embed Size (px)

Citation preview

  • 8/17/2019 Stochastic Modelling 2000-2004

    1/189

    Faculty of Actuaries Institute of Actuaries

    EXAMINATIONS

    10 April 2000 (pm)

    Subject 103 — Stochastic Modelling

    Time allowed: Three hours

    INSTRUCTIONS TO THE CANDIDATE 

    1. Write your surname in full, the initials of your other names and your

    Candidate’s Number on the front of the answer booklet.

    2. Mark allocations are shown in brackets.

    3. Attempt all 11 questions, beginning your answer to each question on a

    separate sheet.

    Graph paper is not required for this paper.

     AT THE END OF THE EXAMINATION 

    Hand in BOTH your answer booklet and this question paper.

    In addition to this paper you should have available

     Actuarial Tables and an electronic calculator.

     Faculty of Actuaries103—A2000    Institute of Actuaries

  • 8/17/2019 Stochastic Modelling 2000-2004

    2/189

    103—2

    1 Let X n = Y 1 + Y 2 + ... + Y n be a simple random walk with step distribution

    P[Y  j = 1] = p = 1 − P[Y  j = −1].

    Derive an expression, for each λ > 0, for the two values of γ  such thatM n = e

    n X n− +λ γ   is a martingale with respect to the natural filtration of X n. [4]

    2 Let X  and Y  be jointly normal random variables with means µ X  , µY  , variances

    σ σ X Y 2 2,  and correlation coefficient ρ. Derive an expression for the values of 

    the coefficients α and β, given that the conditional expectation E[ X Y ] is of theform α + βY .

    [5]

    3 The total number of claims received by an insurance company is described byan inhomogeneous Poisson process with rate λ(t).

    Write down the Kolmogorov forward equations for this process and show that,

    as in the homogeneous case, the solution is of the form

     P 0 j (s, t) =( ( , ))

    !

    ( , )m s t e

     j

     j m s t−

    where m(s, t) = z st λ(x )dx . [5]

    4  According to a model used in econometrics, three economic time series, X , Y and Z , are related to one another by the equations

     X n = X n−1 + θ X  Z n−1 + e1,n

    Y n = Y n−1 +   θY  Z n−1 + e2,n

    Z n =   θZ  Z n−1 + e3,n

    where each of θ X  , θY   and θZ  lies in the interval (−1, +1) and the randomvariables {ei,n : n ≥ 1, i = 1, 2, 3} may be assumed to be uncorrelated and to havemean zero.

    State, giving your reasons:

    (a) whether X , Y  and Z  are I (0) or I (1)

    (b) whether each of X , Y  and Z  individually satisfies the Markov property

    (c) whether the vector-valued process {( X n , Y n , Z n) : n ≥ 1} satisfies theMarkov property

    (d) whether X  and Y  are cointegrated [5]

  • 8/17/2019 Stochastic Modelling 2000-2004

    3/189

    103—3 PLEASE TURN OVER

    5 Let Bt be a standard Brownian motion, and let Ft = σ( Bs , 0 ≤ s ≤ t) be its naturalfiltration.

    (i) Derive the conditional expectations E[ ] Bt s2F  and E[ ] Bt s

    4F , where s ≤ t.

     You may assume that the fourth moment of a random variable with

    distribution N (0, σ2) is 3σ4. [4]

    (ii) Hence construct a martingale out of  Bt4. [3]

    [Total 7]

    6 (i) Apply the inverse transform method to generate an observation fromthe density

     f 1(x ) =1

    1 2( )+ x (x  > 0)

    using a pseudo-random number u in the range 0 < u < 1. Explain how

    this can be extended to generate an observation from the symmetrised

    form of the same density

     f 2(x ) =1

    2 12

    ( )+ x (x  ∈ R) [3]

    (ii) The Cauchy distribution has density function

     f (x θ) = θπ θ( )x 2 2+ (x  ∈ R)

    where θ is a positive parameter.

    Show that

     f (x θ) ≤ Cf 2(x ) for all x  ∈ R

    as long as C  ≥  2π

     (θ + θ−1). Hence devise a method based on Acceptance-

    Rejection sampling for generating observations from the Cauchy

    distribution. [4]

    [Total 7]

  • 8/17/2019 Stochastic Modelling 2000-2004

    4/189

    103—4

    7 (i) (a) Calculate the autocovariance function {γ k : k ≥ 0} andautocorrelation function {ρk : k ≥ 0} of a first-order Moving

     Average process

     X t = µ + et + β1 et−1 ,

    where {et : t ≥ 0} is a sequence of uncorrelated, zero-mean random

    variables with common variance σe2.

    (b) State the conditions on the values of the parameters such that

    the process is invertible. [5]

    (ii) A sequence of observations x 1 , x 2 , ..., x n has sample variance $γ 0  = 14.5,sample lag-1 autocovariance $γ 1  = 5.0. Show that there is more than onefirst-order moving average process which can be fitted to these data,

    but verify that only one of the fitted processes is invertible. [4]

    [Total 9]

    8 The members of a health insurance scheme are classified as contributors orbeneficiaries; a member who is a contributor in one period becomes a

    beneficiary in the next period if he or she becomes seriously ill, and this

    happens with probability 0.1. The probability of a serious illness continuing

    into the next period is 0.2. The rules of the scheme specify that any member

    who is a beneficiary for three successive periods must become a contributor for

    the next period; if the illness still persists the member may thereafter revert

    to being a beneficiary.

    (i) (a) Construct a discrete time Markov chain to model this health

    scheme, introducing if necessary various classes of beneficiaries

    and contributors (a five state model is suggested).

    (b) Draw the transition graph.

    (c) Write down the transition matrix of the chain. [6]

    (ii) Explain whether the above Markov chain is irreducible, periodic or

    both. [2]

    (iii) (a) Calculate the stationary probability distribution of the chain.

    (b) Determine the proportion of beneficiaries among the

    membership in the stationary régime. [4]

    (iv) Let b be the average gross payout per beneficiary and c the average

    gross payout per contributor per period; this means that the nett

    payments are b −  f  and c −  f  respectively, where f  is the membership feeper period (assumed to be uniform over members and over time).

    (a) Explain how b, c and f  should be related if the scheme is to be

    viable.

    (b) Calculate the average profit per period per member in the

    stationary régime if b = 600, c = 150 and f  = 300. [3][Total 15]

  • 8/17/2019 Stochastic Modelling 2000-2004

    5/189

    103—5 PLEASE TURN OVER

    9  A stationary second-order autoregressive process X , which may be assumed tobe in equilibrium at time 0, is defined by

     X t = µ + α1( X t−1 − µ) + α2 ( X t−2 − µ) + et ,

    where {et : t ≥ 1} is a sequence of independent, zero-mean Normal random

    variables, each with variance σe2.

    (i) (a) Obtain an equation for γ 1 in terms of γ 0 and γ 2 by substituting for X t in the equation γ 1 = Cov( X t , X t−1).

    (b) Derive similar equations for γ 2 and γ 0.

    (c) State the autocorrelation function ρk of X  for k = 0, 1, 2. [5]

    (ii) Suppose that the equations derived in (i) for ρ1 and ρ2 are used as thebasis of an estimation procedure: estimates $α

    1

     and $α2

     are defined to be

    the solutions of those equations when ρ is replaced by a suitably-defined sample autocorrelation function r.

    Solve these equations. [3]

    [Total 8]

    10 (i) (a) Define standard Brownian motion Bt , t ≥ 0 and give its transitionprobability density.

    (b) Write down the transition probability density of general

    Brownian motion W t = σ Bt + µt. [4]

    Let S t defined represent a share price at time t.

    (ii) Solve the stochastic differential equation

    dS t = µS tdt + σS tdBt . [5]

    (iii) Calculate, given the parameters µ = 25% p.a., σ = 20% on an annualbasis, the probability that the share price will exceed 45 in four months’

    time given that its current price is 38. [4]

    (iv) Calculate the probability that the share price will exceed 45 at any

    stage during the next four months given that its current value is 38.

    [You may use the formula

    P[max( ) ]0≤ ≤

      + >s t

    s B s yλ  = Gt y

    te G

     y t

    t

     yλ λλ−F H G

      I K J  +

      − −F H G

      I K J 

    2,

    where y ≥ 0 and G denotes the normalised Gaussian probabilitydistribution function.] [4]

    [Total 17]

  • 8/17/2019 Stochastic Modelling 2000-2004

    6/189

    103—6

    11 Patients arriving at the Accident and Emergency department (state A) wait foran average of one hour before being classified by a junior doctor as requiring

    in-patient treatment (I), out-patient treatment (O) or further investigation (F).

    Only one new arrival in ten is classified as an in-patient, five in ten as out-

    patients.

    If needed, further investigation takes an average of 3 hours, after which 50% of 

    cases are discharged (D), 25% are sent to receive out-patient treatment and

    25% admitted as in-patients.

    Out-patient treatment takes an average of 2 hours to complete, in-patient

    treatment an average of 60 hours. Both result in discharge.

    It is suggested that a time-homogeneous Markov process with states A, F, I, O

    and D could be used to model the progress of patients through the system,

    with the ultimate aim of reducing the average time spent in the hospital.

    (i) Write down the matrix of transition rates, {σij : i, j = A, F , I , O, D}, of 

    such a model. [2]

    (ii) Calculate the proportion of patients who eventually receive in-patient

    treatment. [1]

    (iii) Derive expressions for the probability that a patient arriving at time

    t = 0 is:

    (a) yet to be classified by the junior doctor at time t, and

    (b) undergoing further investigation at time t [4]

    (iv) Let mi denote the expectation of the time until discharge for a patient

    currently in state i.

    (a) Explain in words why mi satisfies the following equation:

    mi =1

    λ

    σ

    λi

    ij

    i

     j

     j i D

    m+∉∑{ , }

    where λi = ij j

    σ∑ .

    (b) Hence calculate the expectation of the total time until discharge

    for a newly-arrived patient. [4]

    (v) State the distribution of the time spent in each state visited according

    to this model. [1]

    The average times listed above may be assumed to be the sample mean waiting

    times derived from tracking a large sample of patients through the system.

    (vi) Describe briefly what additional feature of the data might be used tocheck that this simple model matches the situation being modelled. [2]

  • 8/17/2019 Stochastic Modelling 2000-2004

    7/189

    103—7

    (vii) The hospital management committee believes that replacing the junior

    doctor with a more senior doctor will save resources by reducing the

    proportion of cases sent for further investigation. Alternatively, the

    same resources could go towards reducing out-patient treatment time.

    (a) Outline briefly the calculations that would need to be performed

    to compare the options.

    (b) Discuss whether the current model is suitable as a basis for

    making decisions of this nature. [4]

    [Total 18]

  • 8/17/2019 Stochastic Modelling 2000-2004

    8/189

    Faculty of Actuaries Institute of Actuaries

    EXAMINATIONS

    April 2000

    Subject 103 — Stochastic Modelling

    EXAMINERS’ REPORT

     Faculty of Actuaries Institute of Actuaries

  • 8/17/2019 Stochastic Modelling 2000-2004

    9/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’ Report 

    Page 2

    1   E[ M n+1F

    n]= E F[ ]( )e   n X 

    nn

    1   1

    = e en   X Y n

    n n  

      ( )   ( )[ ]1   1E F  = 1( 1) [ ]n n X Y nn

    e e e  

      E F

    = e M enY 

    n

       

    E[ ]1

     = e M pe p en  

     

    ( ( ) ).1

    Hence the condition for martingale:

     pe + (1   p)e = e .

    Multiply by e and solve quadratic equation in unknown e:

    e =e e p p

     p

    2 4 1

    2

    ( ).

    2 Assume E[ X Y ] =  + Y  and determine ,  using:

    (i) orthogonality condition E{( X   E[ X Y ])Y } = 0.

    (ii)   E{E[ X Y ]} = E[ X ].

    (i) gives E[ XY ]  E[Y ] E[Y 2] = 0;

    Since the correlation coefficient  is

     =E E E[ ] [ ] [ ]

    , XY X Y 

     X Y 

    we have E[ XY ] =  X  Y  +  X  Y  and (i) yields

    Y Y Y 

    ( )2 2  =  XY  +  X  Y  .

    (ii) gives  + Y  =  X  .

    Solve the two simultaneous equations to get

     =

     X 

    ,    =  X   

     X 

  • 8/17/2019 Stochastic Modelling 2000-2004

    10/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’ Report 

    Page 3

    3   0 1 2 3 ( ) ( ) ( )

    .t t t

     A(t) =

    GG

    GG

    J J 

    J J 

    ( ) ( )

    ( ) ( )

    ( )

    .

    t t

    t t

    t  

    Forward equations:

    t P (s, t) = P (s, t) A(t), t  s.

    tP 

    00(s, t) = (t) P 

    00(s, t) and P 

    00(s, s) = 1 imply that P 

    00(s, t) = exp( z 

    s

    t (u)du) =

    e

    m(s,t)

    .

    For j > 0, we have

    t P 

    0 j(s, t) = (t) P 

    0, j1(s, t)  (t) P 

    0 j(s, t) with initial

    condition P 0 j(s, s) = 0.

    Verify that the form of P 0 j(s, t) given in the question satisfies this equation:

    LHS = ( jm(s, t) j1  m(s, t) j)e

     j tm s t

    m s t   ( , )

    !( , ) ,

    RHS = (t)m s t e

     jt

      m s t e

     j

     j m s t j m s t( , )

    ( )!( )

      ( , )

    !

    ( , ) ( , )

    1

    1

    The observation that

    tm s t( , )  = (t) is sufficient to finish the verification.

    4 (a)   Z  is stationary, i.e. I (0), as it is a first-order autoregression;

     X  is not stationary but  X  is just a linear combination of Z  and e1, so is

    stationary; this implies that X  is I (1). The same goes for Y .

    (b)   Z  satisfies the Markov property on its own; X  and Y  do not, since theydepend on values of Z .

    (c) ( X , Y , Z ) is Markov; indeed, it is a vector autoregression.

    (d)   X  and Y  are not cointegrated. Although both are I (1), any linearcombination W  =aX  + bY  satisfies W 

    n = W 

    n1 + W  Z n1 + e3,n  which does notdefine a stationary process.

  • 8/17/2019 Stochastic Modelling 2000-2004

    11/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’  Report 

    Page 4

    5 (i)   E[ ] Bt s

    2F = E[( Bt   Bs + Bs)2Fs]

    = E[( Bt   Bs)2 + 2( Bt  Bs) Bs +  Bs s

    2F ]

    = E[( Bt   Bs)2

    Fs] + 2 BsE[ Bt  BsFs] +  Bs

    2,

     by the property of conditional expectations which allows one to “take outwhat is known”. Moreover, by independence of the increments, the above is

    E[( Bt   Bs)2] +  B

    s

    2  = t  s +  Bs

    2 .

    Similarly,

    E[ ] Bt s

    4F = E[( Bt   Bs + Bs)4Fs]

    = E[( Bt   Bs)4

     + 4( Bt   Bs)3

     + 6( Bt   Bs)2

     Bs

    2

     + 4( Bt   Bs)  s B

     Bs

    3

    +  Bs s4

    F ]

    = E[( Bt   Bs)4] + 6   2 B

    s E[( Bt   Bs)

    2] +  Bs

    4 ,

    where we used the independence of increments property as well as the fact

    that moments of odd order of N (0, 2) vanish. Finally

    E[ ] Bt s

    4F  =  Bs

    4 + 6(t  s) Bs

    2 + 3(t  s)2.

    (ii) From above

    E[ ] B tBt t s

    4 26 F =  Bs

    4 + 6(t  s)  Bs

    2 + 3(t  s)2  6t(t  s +  Bs

    2 )

    =  Bs

    4 + 6   2sBs

     + 3(t  s)2  6t(t  s) =  Bs

    4  6   2sBs

    + 3(s2  t2)

      B tB tt t

    4 2 26 3 is a martingale.

    6 (i)   u = F 1(x) =

    x

    x1  is solved by x =  F u

    1

    1 ( ) =u

    u1 .

    For the symmetrised version, the simplest thing is to multiply x by a

    variable y which takes 1 depending on whether another pseudo-randomuniform number v is in the range (0, 0.5) or (0.5, 1).

    (ii) By symmetry we only need consider x > 0, so we find maxx>0 2 1   2

    2 2

    ( )

    ( ).

    x

    x

    Differentiating the logarithm of this fraction and setting equal to 0, we get2

    1   x =

    22 2

    x

    x , with solution x = 2. Substituting this value in, we obtain

    the required value of C .

  • 8/17/2019 Stochastic Modelling 2000-2004

    12/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’ Report 

    Page 5

    Let g(x) = f x

    Cf x

    ( )

    ( )

    2

    , which we observe is less than or equal to 1 everywhere.

    The method of Acceptance-Rejection sampling goes as follows: use (i) togenerate a variable y from density f 

    2. We accept y as a valid observation

    from f (x) with probability g( y), otherwise reject it. (Generate a uniformvariable u, and reject if u > g( y).) If we reject it, go back and generateanother y from f 

    2 , and continue to do the same until eventual acceptance.

    7 (i) (a)   0 = Var(et + 1 et1) = ( )1 1

    2 2 e and

    1 = Cov(et + 1 et1 , et1+ 1et2)

    = 1 e

    2, with k = 0 for k > 1.

    This gives 0 = 1,

    1 =

    1 / (1 +

    1

    2 ),  k = 0 otherwise.

    (b) Invertibility requires that 1 < 1, so that the sum X t  1  X t1 +

    1

    2

    2 X 

    t   ... converges.  and e are irrelevant.

    (ii) We need to solve ( )11

    2 2 e = 14.5,

    1

    e

    2  = 5.0. Eliminating e

    2 , we

    have 11

    2  = 2.91 , or

    1 = ½(2.9 2 9 42. ) = 2.5 or 0.4.

    1 = 2.5 corresponds to

    e

    2  = 2, whereas 1 = 0.4 corresponds to

    e

    2 =

    12.5.

    For invertibility, solve 1 + 1z = 0. In the first case, z = 0.4 (no

    good); in the second, z = 2.5 (OK).

    8 (i) (a) States:

    C : healthy contributor

    C  : contributor but ill B

    1, B

    2, B

    3: beneficiary, with index giving duration of illness

    (b) Transition

    graph:

     B1

      B2

      B3

    0.1 0.8 0.8 0.8

    0.8

    0.2 0.2

    0.9

    0.2

    0.2

  • 8/17/2019 Stochastic Modelling 2000-2004

    13/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’  Report 

    Page 6

    (c) Transition matrix (states ordered C , C  , B

    1, B

    2, B

    3):

    P  =

    0 9 0 01 0 0

    0 8 0 0 2 0 0

    0 8 0 0 0 2 0

    0 8 0 0 0 0 2

    0 8 0 2 0 0 0

    . .

    . .

    . .

    . .

    . .

    GG

    GGG

    J J 

    J J J 

    (ii) The chain is irreducible by inspection: every state is accessible from everyother state. State C  is clearly aperiodic because of the one-step loop from C to C ; because of irreducibility, every other state must be aperiodic too.

    (iii) (a)    = P  reads

    c = 0.9c + 0.8(c + 1 + 2 + 3)

    c = 0.23

    1

    = 0.1c + 0.2c

    2

    = 0.21

    3

    = 0.22 .

    Discard first equation and choose c as working variable:

    3 =1

    02.c = 5c

    2

    =1

    02.3 = 5

    3 = 25c

      = c(1248, 1, 125, 25, 5)

    1 =1

    02. 2 = 52 = 125c

    c =1

    01.1  

    02

    01

    .

    .c = 101  2c = 1248c .

    Find c by normalisation: c(1248 + 1 + 125 + 25 + 5) = 1,

     c =1

    1404.

    (b) Proportion of beneficiaries: 125 25 51404

     = 11.04%.

  • 8/17/2019 Stochastic Modelling 2000-2004

    14/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’  Report 

    Page 7

    (iv) (a) Average profit per period per member in stationary régime is

    Z  = ( f   c)  1248 1

    1404

    F H G

      I K J 

     + ( f   b)125 25 5

    1404

    F H G

      I K J 

    = f   c 12491404

    155

    1404 b   .

    For Z  > 0 you need f  > c1249

    1404

    155

    1404  b   .

    (b) With the given data

    Z   = 300  150 1249 600 155

    1404

     = 100.32.

    9 (i) (a)   1 = Cov( X t , X t1) = Cov(1 X t1 + 2 X t2 + et , X t1) = 10 + 21+ 0, since

    et is independent of X 

    t1.

    (b) Similarly 2 =

    11 +

    20 and

    0 =

    11 +

    22 + Cov( X t , et). A further

    application of the same technique gives Cov( X t, e

    t) =

    e

    2.

    Thus 1 =

    1

    21

    0 and

    2 =

    2

    1

    2

    21

    H GI 

    K J  

    0.

    (c)   k is found by the relation k = k / 0.

    (ii) We have 1 = r

    1(     )1

    2  and

     

    2

    1

    2

    21

     = r2, which are solved by

    1 =

    r r

    r

    1 2

    1

    2

    1

    1

    ( ),

      2 =

    r r

    r

    2 1

    2

    1

    21

      .

    10 (i) (a)   Bt defined by following properties:

     Independent increments:

     Bt  B

    s independent of B

    a , 0 a

      s

    whenever s  t.

      Stationary Gaussian increments: Bt   Bs ~ N (0, t  s).

      Continuous sample paths: t   Bt continuous.

  • 8/17/2019 Stochastic Modelling 2000-2004

    15/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’ Report 

    Page 8

    Transition density to go from x at time s to y at time t:

     gts( y  x) =1

    2

    22

    ( ).( ) / ( )

    t s

    e  y x t s

     

    (b) {W s = x, W t = y} = { Bs + s = x,  Bt + t = y} = { Bs =x s

    ,

     Bt =

     y t

    }.  Hence transition density of W  is

    1

      gts  y x t s F 

    H G  I 

    K J 

    ( ).

    (ii) By Itô’s lemma

    d(log S t) =

    1 1

    2

    1

    2

    2

    S dS 

    S dS 

    t

    t

    t

    t

    H G

    K J  ( )

    = µdt + dBt  2

    2dt.

    Hence

    log S t = log S 0 +

    H GI 

    K J 2

    2 t +  Bt ,

    and finally

    S t = S et B

    t

    0

    2

    2

    H GI 

    K J  

    .

    (iii)   P[S t > bS 0 = a] = P  

     B t  b

    at

      F 

    H GI 

    K J  

    L

    NMM

    O

    QPP

    2

    2log

    = P   B  b

    at

    H GI 

    K J F 

    H G

    K J 

    L

    NMM

    O

    QPP

    1

    2

    2

    log

    = 12

    2

    H GI 

    K J F 

    GGGG

    J J J J 

    b

    at

    t

    log

    .

  • 8/17/2019 Stochastic Modelling 2000-2004

    16/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’ Report 

    Page 9

    Here a = 38, b = 45,  = 0.25,  = 0.2, t = 13

    year.

    So, above quantity is

    1  G(0.800) = 1  0.7881 = 0.2119.

    (iv)   P Pmax max log0

      00

    2

    2

    1

    H GI 

    K J F 

    H G

    K J  

    L

    NMM

    O

    QPPs t

      ss t

      sS b S a B

      s b

    a

     

    = G 

    t  b

    a

    t

    b

    aG 

    t  b

    a

    t

    H GI 

    K J  

    GGGG

    J J J J 

    R

    ST

    UVW

    H GI 

    K J  

    GGGG

    J J J J 

    2

    2

    2

    2

    2   2   2log

    exp log

    log

    .

    The first term is 0.2119 by (iii).

    The second term is the product ofb

    a

    F H G  I K J 

    2  2

    2

    = 6.9893 with G(2.128)

    = 1  G(2.128) = 1 0.9833.

    So the result is finally 0.2119 x 0.0167 = 0.3286.

    11 (i) The generator matrix of the process would be

    GGGGG

    J J J J J 

    1 0 4 01 0 5 0

    0

    0 0 0

    0 0 0

    0 0 0 0 0

    1

    3

    1

    12

    1

    12

    1

    6

    1

    60

    1

    60

    1

    2

    1

    2

    . . .

    .

    (ii) The probability of ever visiting state I is1

    10

    4

    10

    1

    4  =

    1

    5.

    (iii) (a)  d

    dt p t

     AA( )  =  p AA(t), which has solution p AA(t) = e

    t.

    (b) Similarly,d

    dt p t

     AF  ( )  =

    1

    3  p AF (t) + 0.4 p AA(t), so that

    d

    dt{et/3  p AF (t)} = 0.4e

    t/3  p AA(t) = 0.4e2t/3,

    giving p AF (t) = et/3  0.6(1 e2t/3).

  • 8/17/2019 Stochastic Modelling 2000-2004

    17/189

    Subject 103 (Stochastic Modelling) — April 2000 — Examiners’  Report 

    Page 10

    (iv) (a) The equation arises as follows: when the process arrives in state i the

    subsequent holding time has mean i

    1, after which the process

     jumps to a different state, choosing state j with probability pij = ij / i(independent of the length of the holding time). The total time toreach state D is therefore the time until the first jump plus the time

    from arriving in the new state until hitting D (unless the new state isD).

    (b) We have m I  = 60, mO = 2, m F  = 3 +1

    4  60 +

    1

    4  2 = 18.5,

    m A = 1 + 0.1  60 + 0.5  2 + 0.4  18.5 = 15.4 hours.

    (v) The time-homogeneous Markov model has exponential holding times, so thedistribution is completely determined by the expectation.

    (vi) A simple check on whether the Markov model fits the data is therefore toverify that the distributions of holding times are at least roughlyexponential, and a simple way of doing that is to compare sample standarddeviations with sample means. More detailed comparisons might bepossible, depending on the size of the data set.

    (vii) (a) Calculations required in the first case would include working out theexpected duration of stay if the change were implemented, whichinvolves solving the equations in (iv) again. For the second situation,

     just replace mO in the original calculation. New parameter values

    will need to be guessed. Whichever model comes out better should becompared with the initial situation, to determine whether theimprovement was worth the additional resources.

    (b) Model suitability: on the one hand the required decision is couched interms of expectations, which lend themselves well to Markov processtreatment. On the other, the fundamental problem in the system isqueue length, which can never be successfully modelled by a processwhich tracks only a single individual at a time. (A network of queuing processes would be a much better model.)

  • 8/17/2019 Stochastic Modelling 2000-2004

    18/189

    Faculty of Actuaries Institute of Actuaries

    EXAMINATIONS

    11 S ept ember 2000 (pm)

    Subject 103 — Stochastic Modelling

    Ti me al l owed: T hr ee hours 

    I N S T R U C T I O N S T O T H E C A N D I D A T E  

    1 . W ri t e you r su rn a m e in f u l l , t h e in i t ia ls of you r ot h er n am es a n d you r 

    Cand i dat e’s N um ber on th e fr ont of the answer bookl et.

    2 . M a rk a l loca t ion s a re sh own in b ra cket s.

    3. Attempt all 11 questions, beginn i ng your answer t o each questi on on a 

    separate sheet.

    G r a p h p a p er i s n o t r eq u i r ed f o r t h i s p a p er .

    A T T H E E N D O F T H E E X AM I N A T I O N  

    H and in BOT H your answer bookl et and th i s questi on paper .

    I n a d d i t i on t o t h i s pa p er you sh ou l d h a ve a va i l a b le Act u a r ia l  

    Tables and an electronic calculator.

     

    Fa culty of Actua ries

    103—S2000 

      Inst itut e of Actua ries

  • 8/17/2019 Stochastic Modelling 2000-2004

    19/189

    103—2

    1   There a re  N   individuals in a population, some of whom have a certain infectiontha t spreads a s follows. Conta cts betw een t wo members of this popula tion occur

    in a ccordance with a P oisson process ha ving ra te λ . When a conta ct occurs, it is

    equally likely to involve any of the  P   =   N 2

    e j

    pairs of individuals in the population.

    If a conta ct involves a n infected a nd a non-infected individua l, then w ith

    probability   p   the noninfected individua l becomes infected. Once infected, a n

    individual remains infected throughout. Let   X (t ) denote th e num ber of infected

    members of the populat ion a t t ime   t .

    (i) S t a te w het her   X (t ),   t  > 0 is a cont inuous-time Ma rkov jump process. If so,

    write down its state space and transition rates; i f not, explain how it can

    be expressed in t erms of a different process w hich  i s  Ma r kov. [2]

    (ii) Derive a n expression for the expected time until a l l members a re infected,

    st a r t in g fr om a sin g le in fect ed in dividua l [2]

    [Total 4]

    2   During a long motorwa y journey a child a muses himself by noting down , a t theend of ea ch minute, the lane in which the ca r is tra vell ing. The motorwa y ha s

    three lanes and the journey lasts  N   minutes.

    (i) Describe how to f it a three-sta te t ime-homogeneous Ma rkov chain model

    t o t h e d a t a , w r i t in g d ow n f orm u l ae f or t h e e st i m a t e s of t h e t r a n s it i on

    pr oba bilit ies. [2]

    (ii) Describe one test wh ich could be a pplied to determine w hether the process

    possesses the Ma rkov property . [2]

    [Total 4]

    3   A sta nda rd Ornstein-U hlenbeck process ma y be defined a s a sta tiona ry zero-mean Gaussian process {U 

    t   :   t  ∈ R} w ith a utocova riance function given by

    Cov(U t   ,  U 

    s ) =

      τθ

    θ2

    2e    t s − − (s ,   t  ∈ R).

    (i) S h ow t h a t t h e pr oces s {U n 

      :  n   = 1, 2, ...}, obtained by observing   U   only at

    in t eger t im es, is a fir st -order a ut or eg ression . [2]

    (i i) De r iv e e xp r es s ion s f or t h e p ar a m e t e rs α  a n d σ2 of the autoregression interms of θ  a n d τ2. [2]

    [Total 4]

  • 8/17/2019 Stochastic Modelling 2000-2004

    20/189

    103—3   PLEASE TURN OVER

    4   (i ) S t a t e I t ô ’s l em m a a s i t a p pl ie s t o a s t och a s t i c p r oce ss {X t   :   t  ≥ 0} a nd a

    function   f  (X t ) which is not explicitly dependent on   t . [2]

    (i i) App ly I t o ’s L e m ma w i t h   f  (x ) =   x 4 to calcula te t he stocha stic dif ferentia l

    d B t ( ),4 w h e r e  B 

    t   is st a n da r d B row n ia n m ot ion . [3]

    (i ii ) H e n ce e xp r es s t h e I t ô i n t eg r al z 03t s s B d B    in terms of  B t  a n d of a n or di n ar y

    integral involving  B s . [2]

    [Total 7]

    5   Consider a homogeneous Ma rkov chain with sta te space S   = {1, 2, 3} a ndt r a n s it i on m a t r i x

    P   =

    ¼ ½ ¼

    ½ ½

    ¾ ¼

    0

    0

    G

    G

    .

    (i) C a lcula t e t h e 3-st ep t ra n sit ion m a t r ix. [2]

    (ii) Ca lculat e, for each of the follow ing initia l conditions, the probabili ty tha t

    the chain w ill be in sta te 3 when i t is observed a t t ime n   = 3 g iv e n t h a t :

    (a ) t h e ch a i n is in s t a t e 1 a t t im e z er o

    (b ) t h e ch a i n is i n s t a t e 1 a t t im e z er o a n d in st a t e 2 a t t i m e 1

    (c) t h e pr ob ab i li t ie s of b ei n g i n s t a t e s 1, 2, a n d 3 a t t i m e z er o a r e

    given by   1431 931, a n d   831   respect ively [4]

    (iii) How w ould your a nsw ers to (a ), (b) a nd (c) cha nge if the time of the

    observat ion w ere n   = 300 instea d of n   = 3? [2]

    [Total 8]

  • 8/17/2019 Stochastic Modelling 2000-2004

    21/189

    103—4

    6   The da ily closing price of a sha re is observed every tr a ding day for a yea r,yielding a sequence of values {s 1 , . . . ,  s n }. A model is required for t he purposes of

    predicting fut ure va ria bility of th e sha re price. The model suggest ed is a

    Brownian one.

    (i) Explain briefly, on purely theoretical grounds, wh ich of the two models

    I :   S t 

     =   µ +   αt   +   σB t 

    I I : log (S t ) =  µ +   αt   +   σB 

    y ou w ould expect t o provide a bet t er fit . [1]

    (i i) Re fe r t o F i g u re s 1 a n d 2 b el ow .

    (a ) E x p la i n b r ie fl y w h e t h e r y ou r ch os en m od el a p pe ar s t o p r ov id e a

    g ood f it t o t h e d a t a .

    (b) S t a te  on e  of the t ests you could ca rry out on the da ta to a scerta in

    w h et h er t h e m odel fit s a deq ua t ely . [3]

    (i ii ) (a ) De s cr i be h ow a Lé v y p r oce ss m ode l d if fe r s f r om a B r ow n i an m od el .

    (b) Outline the dif ficulties would you encounter in pra ctice i f you were

    fit t in g a L évy pr ocess m odel t o t he da t a provided. [3]

    [Total 7]

    Figure 1: the share price S n 

    Figure 2: log-transformed share price log S n 

  • 8/17/2019 Stochastic Modelling 2000-2004

    22/189

    103—5   PLEASE TURN OVER

    7   A client wishes to model th e beha viour of a st ocha stic process {X t   :   t  ≥  0} wh ich

    represents t he avera ge annua l return for a part icular cla ss of asset. After a

    number of observat ions th e client ha s determined th a t Corr(X t  ,  X 

    t −1) = 0.7 a nd

    Corr(X t  ,  X 

    t −2) = 0.5. He thinks tha t one of the tw o models

    I :   X t  =   µ  + 0.7(X t −1 − µ) + 0.5(X t −2 − µ) +   e t 

    I I :   X t  =   µ +   e t   + 0 .7e t −1  + 0 .5e t −2

    w ill be best, but ca nnot decide w hich. He ha s simulat ed both processes from t ime

    t   = 1 t o t i m e   t   = 200, but has not obtained the results he expected, so is seeking

    your advice.

    (i ) (a ) O u t lin e a s ui t a b le m e t h od of s im u la t in g a s econ d -or d er

    a utoregression, a ssuming you have a ccess to a reliable strea m

    {u k  :  k  ≥ 0} of pseudo-ra ndom numbers uniformly dist ributed over

    th e ra nge [0, 1].

    (b ) E x pla in w h y m ig h t it b e d es ir a b l e t o e ns u re t h a t t h e s t r ea m {u k }ca n be re-used if n ecessa r y . [4]

    (ii) S t a t e w hy n eit her of t he sugg est ed m odels is suit a ble. [1]

    (i ii ) (a ) D e r iv e t h e l a g -1 a n d la g -2 a u t ocor r el a t i on s , ρ1 a n d ρ2, of a second-order a utoregressive process

    X t  =  µ +   α1  (X t −1 − µ) +   α2  (X t −2 − µ) +   e t  .

    (b ) F i nd v a l u es of t h e pa r a m et e r s α1  a n d α2  wh ich w ould provide asuitable AR(2) model for {X 

    t   :   t   = 0, 1, 2, … }. [5]

    [Total 10]

  • 8/17/2019 Stochastic Modelling 2000-2004

    23/189

    103—6

    8   Consider a time-homogeneous Ma rkov jump process {X (t ) :   t  ≥  0} w i t h t w o s t a t e sdenoted by 0, 1, and transition rates σ0,1  =   λ , σ1,0  =  µ.

    (i ) S t a t e Kolm og or ov ’s f or w a r d e q u at i on f or t h e p r ob ab i li t y   P 0,0(t ) t h a t   X   is in

    s t a t e 0 a t t i m e  t , given t h a t it st a r t s in st a t e 0. [1]

    (ii) S how t ha t   P 0,0(t ) =  µ

    λ µ

    λ 

    λ µ

    λ µ

    +

      +

    +

    − +e   t ( ) . [3]

    (iii) L et   O t  denote th e tota l am ount of t ime spent in sta te 0 up until t ime   t ,

    w hich ma y be expressed a s  O t  = z 0

    t s I d s , w h e r e   I s  =

    1 if 0

    0 if 0

    ≠ 

      . D erive,

    using t he result in pa rt (ii), a n expression for   E[O t X (0) = 0], the expected

    occupat ion t ime in st a te 0 by time   t   for th e tw o-sta te cont inuous-time

    Ma rkov ch a in st a rt ing in st a t e 0. [2]

    (iv) Write down t he expected occupat ion time in sta te 1 by time   t   for t he tw o-

    st a t e con tin uous-t im e Ma r kov ch a in st a r tin g in st a t e 0. [1]

    (v ) A h e a l t h i n su r a n c e s ch e m e l a b el s m e m be r s a s   “h e a l t h y”  (state 0) or

    “u n h e a l t h y”   (s ta te 1) a t a ny t ime. When in stat e 0, members pay

    contributions at rate α; wh en in sta te 1 they receive benefit a t r a te  β.Expenses amount t o a consta nt  γ  per member per unit time.

    (a ) E x p la i n h ow t h e a b o v e m od el ca n b e u s ed t o ca l cu l a t e α  in t ermsof β  a n d γ .

    (b ) S t a t e t h e a s s u m pt i on s w h i ch y ou m a ke i n a p p ly i n g t h e m od el .

    (c) D i scu ss w h e t h er t h ey a r e li kely t o b e s a t i sf ied in pr a ct i ce. [4]

    [Tot a l 11]

    9   Su ppose th a t th e evolution of th e price of a n asset follow s the lognorma l model

    log(S t ) =   Y 

    t  =   y  +   µt   +   αB 

    t  w h e re  B 

    t   denotes the standard Brownian motion and µ

    is a nega tive drift . The asset w ill be liquidat ed at the stopping t ime

    T α  = inf{t   :  Y t  =   a } when its value reduces to  e a , where  a   is some number less than

    y . Consider now the exponential  V t   = exp(u Y 

    t  −  c (u )t ).

    (i ) D e riv e t h e con d it i on on   c (u ) under w hich {V t   :   t  ≥  0} is a m a r t in g a le. [3]

    (ii) S t a t e t h e opt ion a l s t oppin g t h eor em a n d ex pla i n h ow it is u sed . [3]

    (iii) Derive the moment genera ting function   f  (y ,  v ) =   [   u vT 

    e −

    E   Y 0  =   y ] of t heba nkruptcy t ime for positive  v  by a pplying t he optiona l stopping t heorem

    t o t h e m a r t i n ga l e V t   . [5]

    [Tot a l 11]

  • 8/17/2019 Stochastic Modelling 2000-2004

    24/189

    103—7   PLEASE TURN OVER

    10   Consider a surviva l model wit h tw o sta tes   “alive”   (A ) a n d   “dead”   (D ), w ith t ime-

    dependent tra nsition r a te from   A   t o  D  e q u a l t o µ(t ) =  µt . The time para meter,   t ,represents the age of the individual under consideration.

    (i ) C a l cu la t e t h e t r a n s it i on pr ob a b ili t y   P AA

    (s ,   t ), defined by

    P AA

    (s ,   t ) =   P(X (t ) =   AX (s ) =   A ). [2]

    (i i) S h o w , b y m a kin g u s e of t h e f or m u la

    E(X ) = z  ∞0  P[X  ≥ x ] d x 

    for a positive random variable  X , that the expected future lifespan of an

    individual a ged  s  is

    E[R s ] =

      1 ( )1

    ( )

    G s 

    g s 

    − µ

    µ µ  ,

    w h e r e  G   is the sta nda rd G a ussia n proba bility distribution function a nd   g 

    is it s den sit y . [4]

    (iii) I t is desired to ca libra te the above model so tha t t he expected future

    lifespa n of an individual a ged 70 is 6 years. Derive a n a pproxima tion t o

    th e corresponding va lue of µ, using the double inequality

    1 1 1 13x    x 

    G x 

    g x x − ≤

      −≤

    ( )

    ( ). [5]

    (iv) A company w ishes to test the va lidity of the above model. They assumetha t the t rue force of morta lity from a ge 70 onw a rds is of the form

    µ(t ) =   a   +   bt   and intend to test whether   a   = 0. The testing method will beto simula te one sa mple of size 1000 when   a   = 0 a n d a n o t h e r w h en   a  ≠  0,then t o see which most resembles th e dat a w hich t he company ha s

    collected.

    Explain how to simulate a value from the proposed distribution, for

    arbitrary values of  a  a n d   b . [5]

    [Tot a l 16]

  • 8/17/2019 Stochastic Modelling 2000-2004

    25/189

    103—8

    11   The movement s of a consum er price index ar e t o be subjected to time series

    a na lysis w ith t he a im of foreca sting future beha viour. The index is ca lculat ed

    monthly.

    (i) Expla in wh ether you would expect to f it a model wh ich included (a ) a

    t ren d t erm , (b) a sea son a l effect . [3]

    The values {x t   : 1 ≤  t  ≤  n } are th e residuals wh ich rema in once a ny trend or

    seasona l va ria tions ha ve been r emoved. An ARIMA(1, 1, 1) model is to be fitt ed

    t o t h e {x t }.

    (i i) (a ) As su m i n g t h e AR I M A(1, 1 , 1) m od el i s cor r ect , w r i t e d ow n a n

    equation for   X n + 1

     in t erms of th e w hite n oise process

    {e t : 1 ≤  t  ≤ n   + 1} a nd th e observa tions {x 

    t : 1 ≤  t  ≤  n }.

    (b) S t a t e t h e pa ra m et er s of t h e m odel. [2]

    (iii) The B ox-J enkins procedure defines th e  k -step-ahead forecast for   X   to be

    ( )x k n    =   E(X n +  k x n  ,   x n −1 , . ..,   x 1).

    (a ) Derive the 1-step-a head and 2-step-a head foreca sts for   X   for the

    ARIMA(1, 1, 1) model, assuming that the values of the parameters

    and the value of  e 0

     are known exa ctly.

    (b ) E v a l u a t e t h e pr ed ict i on v a r i a n ce Va r (X n + 1

     −   ˆ   (1))n x    , a g a i n a s s u m in gt ha t t he va lues of t he pa ra met er s a re kn ow n. [5]

    (iv) The most elementa ry form of the technique know n as exponential

    smoothing produces at time  n   a 1-step-ahead forecast   x n 

    * defined by

    x n 

    * =   x n 

      +   ξ( ),*x x n n −   −1

    for some ξ ∈  (0, 1) w hich m a y be chosen by th e user.

    Show tha t, for part icular va lues of the a utoregressive and moving a verage

    par a meters, t he B ox-J enkins foreca sts a bove coincide w ith th e foreca sts

    pr oduced by expon en t ia l sm oot h in g. [2]

    (v ) (a ) S t a t e w h e t h er t h e AR I M A(1, 1, 1) m od el i s  I (0),   I (1) or neith er.

    (b ) D i s cu s s w h e t h e r t h e r e i s a d if fe re n ce b et w e en a n   I (0) model a nd a n

    I (1) model in terms of the conditional distribution of   X n + k 

      given {x t   :

    1 ≤  t  ≤ n } for lar ge va lues of  k .   [3]

    (v i) I t i s s u g ge st e d t h a t a s a l a r i es in d ex m i gh t b e coi n t eg r a t e d w i t h t h e

    consu mer price index.

    (a ) E x pla i n w h a t is m ea n t by t h e s ug g es t ion .

    (b) C om men t on w het her it is a rea son a ble suggest ion . [3]

    [Tot a l 18]

  • 8/17/2019 Stochastic Modelling 2000-2004

    26/189

    Faculty of Actuaries Institute of Actuaries

    EXAMINATIONS

    S eptember 2000

    Subject 103 — Stochastic Modelling

    EX AM INERS ’ RE P O RT

      Faculty of Actuaries

      Institute of Actuaries

  • 8/17/2019 Stochastic Modelling 2000-2004

    27/189

    Subject 103 (Stochastic Modelling) — September 2000 — Examiners’ Report 

    Page 2

    1   (i) This is clea rly a Markovian birth process. The sta te spa ce is {0, 1, . . .,  N }.

    G i v en t h a t w e h a v e m   infected and   N  −  m  hea lthy individuals , thenumber of “dangerous” pair contacts is   m (N  −  m ). Thus, the rate

    σm ,m +1 =  λ p   ( )

    .

    m N m 

    (ii) The expected total infection time is the sum of the reciproca l rates

    1

    1

    1.

    ( )

    p m N m  

    =λ − 

    (Since  1

    ( )m N m −  =

      1 1 1,

    N m N m  

    + −

      th is time ma y a lso be expressed a s

    1

    1

    1 1.

    p m 

    =

    −λ   

      )

    2   (i) L et   N i j 

     denote th e number of minutes when t he ca r w a s in lane   i   a t t h e

    s ta r t of th e mi n ute a n d i n la n e   j   a t t he end. The estima te of the

    tra nsition probability   p i j 

      is   N i j 

     /N i +   , where  N i +   =   Σ j   N i j   .

    (i i) The problem here is the alterna tive hypothesis. I t w ould be possible to

    test w hether t he distribution of  X n + 1  conditional on   X n  =   i  w a s r e a l ly

    independent of  X n −1. Or one might t est, using a st a nda rd goodness-of-fit

    test, whether the distribution of the number of consecutive minutes spent

    in lane   i  rea lly w a s geometrica lly distributed with para meter determinedby   i .

    3   (i) S ince {U n 

    } is Ga ussia n a nd sta tiona ry, i t is determined uniquely by its

    mean a nd a utocova riance functions. For   k  > 0 w e h a v e γ k 

      = Cov(U n 

      ,   U n −k )

    =2

    2

    τθ

      e −θk  , so tha t t he ACF is ρk 

     =   e −θk  a n d t h e v a r i a n ce γ 0 =2

    2

    τθ

     .

    (i i) Compa re this wit h the corresponding va lues for an AR(1): γ 0 =2

    21

    σ

    − α  a n d

    ρk 

     =   αk  for   k   > 0.

    The tw o are seen t o mat ch a s long a s α  =   e −θ a n d σ2 = (1 −  e −2θ)2

    .2

    τθ

  • 8/17/2019 Stochastic Modelling 2000-2004

    28/189

    Subject 103 (Stochastic Modelling) — September 2000 — Examiners’ Report 

    Page 3

    4   (i) I f  X   satisfies   d X t  =   Y 

    t  d B 

    t  +   Z 

    t  d t , then   f  (X 

    t ) sa tisfies

    d [f  (X t )] =   f   ′(X 

    t ) Y 

    t  d B 

    t  + { f   ′(X 

    t ) Z 

    t  + ½   f   ′′(X 

    t )   2 }t Y d t .

    (ii) (x 4)′ = 4x 3 , (x 4)′′  = 12x 2.

    4( )t d B =   34 t B d B t  +

      12

      .   212 t B d t    =  34 t B d B t  +

      26 .t B d t 

    (iii)   40   ( )t 

    s d B    =  3 20 04 6 .t t 

    s s s B d B B d s   +

    Therefore   30t 

    s s B d B    =  4 231

    04 2  .t 

    t s B B d s  −

    5   (i)   P   =

    1 2 11

    2 0 2 ,43 1 0

    P   2

    =

    8 3 51

    8 6 2165 6 5

    ,   P   3

    =

    29 21 141

    26 18 20 .6432 15 17

    (ii) (a )   313P    =  14

    64=

      7

    32= 0.21875.

    (b)   223P    =  2

    16=

      1

    8= 0.125.

    (c)   3 3 313 23 3314 9 831 31 31

    P P P + +   =   14 14 9 20 8 1731 64× + × + ××   =   51231 64×   =   8 .31

    (iii) B y t im e  n   = 300 the effects of the sta rt ing point ha ve worn off. The

    a nswer is therefore indistinguishable from the sta tiona ry proba bility π3

     i n

    all three cases.

    It is ea sily observed t ha t the distribution in (c) is s ta tionary, so tha t

    π3  =

      8

    31.

    6   (i) The daily cha nge in va lue of a sha re is genera lly on a sca le consistent

    with the va lue of the sha re: this tends to indica te th a t model II is

    preferable.

    (i i) (a ) M od el I I d oes a p pea r t o f it b et t e r t h a n m od el I ; t h e  S   dataset does

    indeed exhibit la rge varia tions w hen it is a t a high level, a nd

    smaller ones when low.

    However, the f i t does not a ppear a ll tha t good, as B rown ian

    increments a re normally distributed, so are seldom a s large a ssome of the jumps which a ppear in t his dat a set.

  • 8/17/2019 Stochastic Modelling 2000-2004

    29/189

    Subject 103 (Stochastic Modelling) —  September 2000  —  Examiners ’  Report 

    Page 4

    (b ) I f t h e B r o w n i a n m od el w e r e a c cu r a t e, t h e d a y -t o -d a y i n cr em e n t s

    s n  − s 

    n −1   should be independently normally distributed with

    constant mean and variance:

    a test of normality (Anderson-Darling, Kolmogorov-Smirnov, χ2

    goodness-of-fit) w ould do fine; a t est of independence (ba sed onsa mple ACF , or the D urbin-Wa tson st a tist ic) w ould a lso be a good

    suggestion.

    (iii) (a ) A L évy process is th e sum of three independent component s: a

    deterministic part of the form µ +   αt , a Brownian part of the formσB 

    t  a nd a pure jump part w hich ma y be thought of as a compound

    P oisson process.

    (b) One problem would be in estima ting the distribution of the jump

    sizes, pa rt icula rly w ith only 250 observa tions. Even if a fa mily

    w ere a ssumed for t he distribut ion (e.g. double exponent ial), t herewould be the a dditiona l diff iculty tha t sma ll jumps would not be

    detecta ble a ga inst th e background of the G a ussia n noise.

    7   (i) (a ) F ir st t h e  u k  need to be tra nsformed so tha t their distribution is

    someth ing suita ble for t he w hite noise sequence of a t ime series,

    since at the very least the mean of the sequence needs to be zero.2(0, )e N    σ   is th e sta nda rd choice: one meth od of achieving this is to

    define, for each integer   t ,

    e 2t 

      = 2 2 12 log s in (2 )e t t u u  +σ − π

    e 2t + 1

     = 2 2 12 log cos (2 ),e t t u u  +σ − π

    but there a re others, such a s th e polar method, inverse tra nsform

    method or acceptance-rejection sampling.

    The va lues of t he  e t  can now be fed into the formula to give the

    values of the  X t   , whichever model is in use.

    (b) The a bility to re-use a pseudo-ra ndom number sequence is

    importa nt wh en comparing t he a bility of different m echa nisms to

    control a process w hich is a ffected by ra ndomness: in order t o

    ensure fair compa rison of the m echa nisms, t he must be subjected

    to t he sa me degree of  “random ”  input.

    (ii) The models do not possess th e correct correla tion stru cture.

  • 8/17/2019 Stochastic Modelling 2000-2004

    30/189

    Subject 103 (Stochastic Modelling) —  September 2000  —  Examiners ’  Report 

    Page 5

    (iii) (a )   ρ1

      = Corr(X t   ,X 

    t −1) =  α1Corr(X t −1  , X t −1) +   α2Corr (X t −2  , X t −1) =  α1  +   α2 ρ1  .

    Hence ρ1

     =  α1

     /(1 − α2)

    ρ2

      = Corr(X t   ,X 

    t −2) =  α1Corr(X t −1 , X t −2) +   α2Corr(X t −2  , X t −2) =   α1 ρ1  +   α2  .

    (b ) We h a v e 0.7 =  ρ1

     =   α1

     /(1 − α2)

    a nd 0.5 =   ρ2

     =  α2

     +   21α   /(1 − α2) =  α2   + 0.7α1. Two equa tions in tw o

    unknown s. Solution: α1

     =  35

    ,51

    α2

     =  1

    .51

    (2 ma rks for t he observa tion t ha t  α1

     = 0 .7 a n d α2

      = 0 is very close

    to giving t he right a nswer, a s i t gives ρ2

      = 0.49.)

    8   (i) 0,0 ( )P t ′   =  µP 0,1(t ) − λ P 0,0(t ), or a more genera l form such a s 0,0 ( )P t ′   =ΣP 

    0,k(t )σ

    k,0

    (ii) S in ce  P 0,1

    (t ) = 1 −  P 0,0

    (t ),

    w e h a v e 0, 0 ( )P t ′   =  µ(1 −  P 0,0(t )) − λ P 0,0(t ). Any solution method w ill do,

    e.g.  d 

    d t [e (λ + µ)t  P 

    0,0(t )] =  µe (λ + µ)t  , solved by   P 

    0,0(t ) =

      µλ + µ

      +   Ce −(λ + µ)t , w i t h   C 

    being determined by th e fa ct tha t   P 0,0

    (0) = 1.

    (iii)   E0

    O t 

      =   E0   0

    t  I 

    s  d s  = 0

    t  E

    0 I 

    s  d s  = 0

    t  P 

    0,0(s )d s 

    =2( )

    t µ λ 

    +λ + µ   λ + µ

      (1 −  e −(λ + µ)t )

    (iv) Since the process must be in sta te 0 or sta te 1 a t a ll t imes, the solution is

    just   t  − E0 

     0t  =

    2( )

    t λ λ 

    −λ + µ   λ + µ

      (1 −  e −(λ + µ)t ).

    (v ) (a ) As su m i n g a m e m be r w h o i s i n it i a l l y h e a l t h y , e xp ect e d ou t g oi n gs

    (including expenses) by time   t  a nd expected income by time   t , a r e

    respectively

    γ t   +   β   ( )2

      (1 )( )

    t t e 

    − λ+µ λ λ − − λ + µ   λ + µ

    a n d   ( )2

      (1 ) .

    ( )

    t t e 

    − λ+µ µ λ α + −

    λ + µ   λ + µ

  • 8/17/2019 Stochastic Modelling 2000-2004

    31/189

    Subject 103 (Stochastic Modelling) —  September 2000  —  Examiners ’  Report 

    Page 6

    In the long run, then, as   t  → ∞, w e require αµ  =  βλ  +   γ (λ  +   µ) t obreak even.

    (b ) Th e a s s u m pt i on s re q u ir ed a r e t h a t t h e r a t e of b ecom i n g i ll a n d

    ra te of recovery from illness are const a nt .

    (c) This w ill certa inly not be true of a ny individual member but, i f

    membership is large a nd t he a ge an d hea lth profiles of th e

    members are constant by virtue of a constant influx of new 

    members, i t ma y be a reasonable approxima tion.

    9   (i) I f  V t   is a ma rtinga le, then its expecta tion must be consta nt a nd equa l to

    its initia l value  e uy .

    Therefore  ( ) ( )t u y t B c u t  e 

      +µ +α −E   =

    2 2( /2 ( ))u y u u c u t  e 

      + µ+ α − =   e u y .

    Thus w e must ha ve  c (u ) =   u µ  +   u 2α2 /2.

    (ii) The optiona l s topping theorem sta tes tha t i f  M t   i s a m a r t i n g a l e, a n d   T   is a

    random stopping time, then under some additional technical conditions

    (such as   M t ∧T  being uniformly bounded) w e ha ve:

    EM T 

      =   M 0.

    It is frequently used to evaluate the expectation of a function of  T , such a s

    the moment generating function (as in this instance).

    (iii) Applying the optiona l s topping theorem to the mart ingale  V t  w e f in d t h a t

    a T V E   =   e uy  =

      ( ).a 

    u a c u T  e 

      −E

    The equa tion   c (u ) =   v  h a s t w o r oot s   u +  ,  u − , one being nega tive and the

    other positive (since v   is positive).

    Now a t T 

    V  ∧   =  ( ) t u v Y vt  e 

      −a n d   Y 

    t  ≥  a   for 0 ≤  t  ≤ T 

    a . I f  u (v ) < 0, then

    0 <  ( )

    u v a 

    t T V e ∧   ≤   for a ll  t , so that the technical condition is satisfied; thesam e ca nnot be said if  u (v ) > 0.

    Therefore the positive root is unacceptable and   f  (y ,   v ) =   a vT 

    y e −

    E   =  ( )( )u v y a  

    e   −  −

    .

    Comm ent: For the record , th er e were two ver y sl ight err or s in th is questi on, both 

    appeari ng as subscri pts. I n l i ne 4, f i r st form ul a:   { }T α    should have read  { }a T    , a n d i n pa r t  

    ( i i i ) l i n e 1:   { }u T    shoul d have r ead  { }a T    . T hi s was taken in to account by the m ark ers, and 

    th e exami ner s ensur ed th at no m ar ks w er e lost by stud ent s because of eit her sm al l er r or.

  • 8/17/2019 Stochastic Modelling 2000-2004

    32/189

    Subject 103 (Stochastic Modelling) —  September 2000  —  Examiners ’  Report 

    Page 7

    10   (i)   P AA

     (s ,   t ) =t s    xd x e 

      µ=

    2 2( ) /2t s e 

    −µ −

    (ii)   P[R s  ≥  w ] =   P 

    AA  (s ,  s  +   w ) =

    2 2(( ) ) /2s w s e 

    −µ + − =2 /2

    .sw w 

    e −µ −µ Therefore

    E[R s ] =

    2/2

    0   .sw w 

    e d w ∞ −µ −µ

    Complete t he squa re a t the exponent to get

    E[R s ] =

    2 2/2 ( ) /2

    0s s w 

    e e d w  µ ∞ −µ +

    =2 2

    /2 /2s x 

    d x e e 

    µ ∞ −µ µ

      =  1 ( )1

    .( )

    G s 

    g s 

    − µ

    µ µ

    (iii) From (ii) a nd the given bound

    1 1[ ]s R 

    s ≤ µ µE   =  1

    s µ

    3 3 /2

    1 1 1[ ]s R 

    s s 

    ≥ −

    µµ µ

    E   =3 2

    1 1.

    s    s −

    µ   µ

    The first ineq ua lity y ields

    µ ≤  1

    [ ]s s R E=

      1

    420= 0.00238 . (year)−2.

    The second inequality can be written as

    µ2E[R s ]

    3

    10,

    s    s 

    µ− + ≥

    so  µ  must lie outside the interval:

    2 3

    4 [ ]1 1

    2 [ ]

    s    s s 

    ± −  E

    E=

    4 [ ]1 1

    2 [ ]

    s R 

    ± −  E

    E=

    241 1

    70

    2 6 70

    ± −

    × ×

      = [0.00023, 0.00215]

    In fa ct, since clea rly µ  1

    [ ]s s R −

    E

    w e s e e t h a t  µ must l ie in t he interval

    [0.00215, 0.00238].

    (i v) Us e t h e i n ve rs e t r a n s for m m e t h od ,   X   =   F −1(U ).

    In t his ca se 1 −  F (x ) = 70exp( [ ] )x 

    a bt d t  −

      +   = exp{−a (x  −  70) − ½   b (x 2 − 702)}.

  • 8/17/2019 Stochastic Modelling 2000-2004

    33/189

    Subject 103 (Stochastic Modelling) —  September 2000  —  Examiners ’  Report 

    Page 8

    Therefore  ½   bx 2 +   ax  =  −log(1 −  F (x )) +   ½   702b   + 70a . Replace F (x ) by   u   t oget

    x  =   F −1(u ) =

    2 22 [ log(1 )   ½   70 70 ]a a b u b a  

    − + + − − + +

    =   −r   +   2 2 170 140 2 log(1 ),r r b u  −+ + − −

    w h e r e  r   =   ab −1. I f  u   is an observation of a uniform pseudo-random variate,

    then   x   is an observation from the required distribution.

    11   (i) C on su m er pr ices   d o  tend t o exhibit regular sea sona l va riat ion, t hough n ot

    a great deal these days. And, s ince prices tend to go up rat her more tha n

    they come down, it is probably worth including a trend term in any model.

    It is certa inly possible to test w hether th e trend t erm is equal t o zero.

    (ii) (a )   X n + 1 −  x n   =  α(x n  −  x n −1) +   e n + 1  +   βe n   .

    (b ) Th e pa r a m e t er s a r e α, β  a n d   2 .e σ   The t rend remova l process w ouldha ve a ccounted for a ny µ p a r a m e t er .

    (iii)   ˆ   (1)n x    =   E(X n + 1x n  , . ..,  x 1) =   x n   +   α(x n  −  x n −1) +   E(e n + 1  +   βe n x n  , . ..,   x 1). Now e 

    n + 1 ha s mea n 0 a nd is conventiona lly supposed independent of everyt hing

    tha t ha ppens before  n .

    On the other hand,  e n 

     ca n be deduced from pa st da ta ,

    e.g.  e n 

     =   x n  −  x 

    n −1 − α(x n −1 − x n −2)  −  βe n −1   , which ma y be iterat ed back to gete 

    n   in t erms of the known   x  a n d t h e kn ow n   e 

    0.

    Thus

    ˆ   (1)n x    =   x n   +   α(x n  −  x n −1) +   βe n   .

    Similarly,

    ˆ   (2)n x    =   E(X n + 2Fn ) =   E(X n + 1  +   α(X n + 1 −  x n ) +   e n + 2  +   βe n + 1Fn  )

    = (1 +   α)   ˆ   (1)n x    − αx n   .

    We see tha t   X n + 1 −   ˆ   (1)n x    =   e n + 1   , so that the prediction variance is just

    Var(e n + 1

    ) =   2 .e σ

  • 8/17/2019 Stochastic Modelling 2000-2004

    34/189

    Subject 103 (Stochastic Modelling) —  September 2000  —  Examiners ’  Report 

    Page 9

    (iv ) S in ce  e n 

      =   x n  −   1ˆ   (1)n x  −   , w e h a v e

    ˆ   (1)n x    =   x n   +   α(x n  −  x n −1) +   β(x n  −   1ˆ   (1));n x  −

    if we set  α = 0 a n d β  =   −ξ, the equa tion is identica l to the updat ingequa tion for exponent ial smoothing.

    (v ) An AR IM A(p ,  d ,   q ) model is   I (d ); in t his case,  x   is   I (1).

    A st a t i on a r y (I (0)) model ha s a n equilibrium distribut ion: t he distr ibution

    of the forecast of  X n +  k  would converge t o equilibrium for lar ge  k . An   I (1)

    process is the partial sum of an   I (0) process, so would have increasing

    va riance, even if th e mean ha ppened t o be stable.

    (v i) Tw o s er ies {x } a n d {y } are cointegrat ed if both a re   I (1) but th ere a re some

    constants   a  a n d   b  such t ha t {a x   +   by } is s tat iona ry.

    Two processes are likely to be cointegrated if one drives the other, or if

    both a re driven by the sa me underlying process. In t he given insta nce the

    suggestion is certainly worth investigating.

  • 8/17/2019 Stochastic Modelling 2000-2004

    35/189

    Faculty of Actuaries Institute of Actuaries

    EXAMINATIONS

    10 April 2001 (pm)

    Subject 103 — Stochastic Modelling

    Time allowed: Three hours

    INSTRUCTIONS TO THE CANDIDATE 

    1. Write your surname in full, the initials of your other names and your

    Candidate’s Number on the front of the answer booklet.

    2. Mark allocations are shown in brackets.

    3. Attempt all 10 questions, beginning your answer to each question on a

    separate sheet.

    Graph paper is not required for this paper.

     AT THE END OF THE EXAMINATION 

    Hand in BOTH your answer booklet and this question paper.

    In addition to this paper you should have available

     Actuarial Tables and an electronic calculator.

     Faculty of Actuaries

    103—A2001  Institute of Actuaries

  • 8/17/2019 Stochastic Modelling 2000-2004

    36/189

    103 A2001—2

    1 {N (t) : t ≥ 0} is a Poisson process with rate λ  and { t : t ≥ 0} is the filtrationassociated with N .

    (i) Write down the conditional distribution of N (t + s) − N (t) given  t , where

    s > 0 and use your answer to find E (θN (t+s) t). [3]

    (ii) Find a process of the form M (t) = η(t)θN (t) which is a martingale. [2][Total 5]

    2  An insurance company wishes to test the assumption that claims of a particulartype arrive according to a Poisson process model. The times of arrival of the next

    20 incoming claims of this type are to be recorded, giving a sequence T 1 , …, T 20.

    (i) Give reasons why tests for the goodness of fit should be based on the inter-

    arrival times X i = T i − T i−1 rather than on the arrival times T i . [1]

    (ii) Write down the distribution of the inter-arrival times if the Poissonprocess model is correct and state one statistical test which could be

    applied to determine whether this distribution is realised in practice. [2]

    (iii) State the relationship between successive values of the inter-arrival times

    if the Poisson process model is correct and state one method which could

    be applied to determine whether this relationship holds in practice. [2]

    [Total 5]

    3  (i) Give a definition of the spectral density of a stationary time series,

    expressed in terms of the autocovariance function {γ k : k ∈ Z } of theprocess. Use this definition to derive the spectral density of a first-ordermoving average process and of a first-order autoregression. [5]

    (ii) Suppose the “inverse” of a time series model with spectral density  f (ω) is

    defined to be the model with spectral density1

    ( ) f  ω. Using part (i), state

    the form of the inverse of a first-order moving average and state the way

    in which the inverse of an invertible MA(1) differs from the inverse of a

    non-invertible MA(1). [2]

    [Total 7]

  • 8/17/2019 Stochastic Modelling 2000-2004

    37/189

    103 A2001—3 PLEASE TURN OVER

    4  Let X n denote an autoregressive high frequency time series modelled by:

     X n+1 = (1 − α) X n + θ + τen ,

    where en = ±1 with equal probabilities and α, θ, τ are constant parameters. Ananalyst wishes to investigate whether this series may be approximated by some

    continuous time diffusion, i.e. X n ≈ Y nh , where Y t satisfies a stochastic differential

    equation

    dY t = µ(Y t) dt + dBt

    and Bt denotes standard Brownian motion.

    (i) State the expectation and variance of dY t = Y t+h − Y t , the increment of theprocess Y t over a small interval of size h, conditional on Y t = y. [2]

    (ii) Calculate the expectation and variance of the increment X n+1 −  X n of the

    autoregression, conditional on X n = y. [2]

    (iii) Find, by equating the first and second moments of the increments in (i)

    and (ii) above, an expression for the drift µ( y) of the approximatingdiffusion in a form which does not involve the time increment h. [2]

    (iv) State a condition under which the approximating process in (iii) is a

    Brownian motion with drift. [1]

    (v) State a condition under which the approximating process in (iii) is an

    Ornstein-Uhlenbeck process. [1]

    [Total 8]

    5 (i) Derive expressions for ρ1 and ρ2 , the autocorrelation function of X  at lags1 and 2, in the case that X  is a stationary process satisfying the recursion:

     X t = α X t−1 + et + βet−1 ,

    where {et : t = 1, 2, …} is a sequence of uncorrelated random variables with

    mean 0, variance σ2. [5]

    (ii) A company’s monthly sales figures, corrected for trend and seasonalfactors, exhibit sample autocorrelation function at lags 1 and 2 of r1 = 0.5,

    r2 = 0.4. Find method of moments estimators of α and β for the modelin (i). [3]

    [Total 8]

  • 8/17/2019 Stochastic Modelling 2000-2004

    38/189

    103 A2001—4

    6  A motor insurance company has 80,000 policy holders, paying an average annualpremium of £400. The company receives claims at a rate of 2000 per month, the

    sizes of the claims having mean £1,200, standard deviation σ = £200.

    Let S (t) denote the company’s total surplus at time t, with S (0) equal to the

    initial reserve, set at £20,000,000.

    (i) Calculate the expectation of the total amount paid out in claims in a given

    month and the safety loading employed by the company. [2]

    (ii) State, with reasons, whether it would be appropriate to use a diffusion

    approximation to calculate the probability of ruin, that is the probability

    that the process {S (t) : t ≥ 0} ever hits 0. [3]

    (iii) Describe a simulation-based method for estimating the probability of ruin.

    Indicate why it would be important to use a method of generating pseudo-

    random variables which gives rise to reproducible sequences. [4]

    [Total 9]

    7 The evolution of a stock price S t is modelled by

    S t = ,tt Be

    µ +σ

    where  Bt represents a standard Brownian motion, µ and σ are fixed parametersand the initial value of the stock is S 0 = 1.

    (i) Derive an expression for P {S t ≤ x }. [2]

    (ii) Derive expressions for the median of S t and the expectation of S t . [4]

    (iii) (a) Determine an expression for the conditional expectation E (S tF s),where s < t and where {F s : s ≥ 0} denotes the filtration associatedwith the process S .

    (b) Find conditions on µ and σ under which the process {S t : t ≥ 0} is amartingale.

    (c) State, with reasons, whether or not the stock would be a good long

    term investment in this case.

    [5]

    [Total 11]

  • 8/17/2019 Stochastic Modelling 2000-2004

    39/189

    103 A2001—5 PLEASE TURN OVER

    8  A company assesses the credit-worthiness of various firms every quarter; theratings are, in order of decreasing merit, A, B, C  and D (default). Historical data

    support the view that the credit rating of a typical firm evolves as a Markov

    chain with transition matrix

     P  =

    2 2

    2 2

    2 2

    1 0

    1 2

    1 20 0 0 1

    − α − α α α

    α − α − α α α

    α α − α − α α

    for some parameter α

    (i) Draw the transition graph of the chain. [2]

    (ii) Determine the range of values of α for which the matrix P  is a validtransition matrix. [2]

    (iii) State, with reasons, whether the chain is irreducible and aperiodic.

    [2]

    (iv) Derive a stationary probability distribution for the chain and establish

    whether it is unique. [4]

    (v) For the value α = 0.1, calculate the probability that the company’s ratingin the third quarter, X 3, is in the default state D:

    (a) in the case where the company’s rating in the first quarter, X 1, is

    equal to A 

    (b) in the case X 1 = B

    (c) in the case X 1 = C

    (d) in the case X 1 = D

    [3]

    [Total 13]

  • 8/17/2019 Stochastic Modelling 2000-2004

    40/189

    103 A2001—6

    9  A continuous-time Markov sickness and death model has four states: H (healthy),S  (sick), T  (terminally ill) and D (dead). From a healthy state transitions are

    possible to states S  and D, each at rate 0.05 per year. A sick person recovers his

    health at rate 1.0 per year; other possible transitions are to D and T , each with

    rate 0.1 per year. Only one transition is possible from the terminally ill state,

    and that is to state D with transition rate 0.4 per year.

    (i) Draw the transition graph for this process. [2]

    (ii) Define P (t) = { pij(t) : i, j ∈ H, S, T, D} where pij(t) denotes the probability of being in state j at time t given that the individual was in state i at time 0.

    State the Kolmogorov forward equation satisfied by the matrix P (t),

    making sure that you specify the entries of the matrix A which appears.

    [3]

    (iii) Calculate the probability of being healthy for at least 10 uninterrupted

    years given that you are healthy now. [1]

    (iv) Let d j denote the probability that a life which is currently in state j will

    never suffer a terminal illness. By considering the first transition from

    state H , show that dH  =1 12 2

    + dS  and deduce similarly that dS  =51

    12 6 H d+ .

    Hence evaluate dH  and dS . [5]

    (v) Write down the expected duration of a terminal illness, starting from the

    moment of the first transition into state T . Use the result of (iv) to deduce

    the expectation of the future time spent terminally ill by an individual

    who is currently healthy. [4]

    [Total 15]

    10  A family agrees an expenditure target, Y n , for year n, in such a way that theannual increase in the expenditure target is proportional to the increase in the

    family income over the previous year. The actual expenditure during the year,

     X n , is assumed to be related to the expenditure target, but incorporating an

    element of randomness and a factor accounting for the family’s propensity to

    overspend. The family income, I n , is assumed to grow at a constant annual rate,

    before randomness is taken into account.

    The head of the household believes that the following three equations form an

    appropriate representation of the above information:

    Y n  = Y n−1 + β(I n−1 − I n−2)

     X n  = (1 + π) Y n +(1)ne

    I n  = (1 + α) I n−1 +(2 )ne

    where (1) (2){( , ) :n ne e  n = 1, 2, …} is a sequence of zero-mean bivariate Normal

    random variables and α, β and π are positive parameters (with β < 1).

  • 8/17/2019 Stochastic Modelling 2000-2004

    41/189

    103 A2001—7

    (i) Express the first of the equations in terms of the backshift operator, B,

    and deduce that a linear relationship exists between Y n and I n−1. [3]

    (ii) Show that the process Zn = ( X n , I n) is a first-order multivariate

    autoregressive process. [2]

    (iii) State, with reasons, whether {I n : n ≥ 1} is a stationary time series, andhence determine whether

    {Z

    n : n 

    ≥ 1} is I (0), I (1) or neither. [3]

    (iv) Find an estimator for the parameter α by minimising the quantity

    =Σ(2) 2

    2( )nt te . [3]

    (v) The head of the household wishes to perform a simulation to investigate

    whether the propensity to overspend will result in negative net savings.

    It is assumed that (1) Var( )ne  =2 (2)1 , Var( )neσ  =

    22σ  and

    (1) (2)Cov( , )n ne e  = ρσ1σ2 , where −1 < ρ < 1.

    (a) Describe a method of simulating an observation of the pair(1) (2)( , )n ne e  starting from two uniformly distributed pseudo-random

    variables U 1 , U 2 .

    (b) Describe the role of sensitivity analysis in drawing conclusions

    from the simulation. [6]

    (vi) An alternative model is proposed, involving the logarithms of the

    quantities I n , X n and Y n :

    ln Y n  = ln Y n−1 + ln I n−1 − ln I n−2

    ln X n  = θ + ln Y n  +(1)ne

    ln I n  = φ + ln I n−1 +(2 )ne

    Discuss whether this model is more suitable than the original model. [2]

    [Total 19]

  • 8/17/2019 Stochastic Modelling 2000-2004

    42/189

    Faculty of Actuaries Institute of Actuaries

    EXAMINATIONS

     April 2001

    Subject 103 — Stochastic Modelling

    EXAMINERS’ REPORT

     Faculty of Actuaries

     Institute of Actuaries

  • 8/17/2019 Stochastic Modelling 2000-2004

    43/189

    Subject 103 (Stochastic Modelling) — April 2001 — Examiners’ Report 

    Page 2

    1 (i) Given  t we know that N (t + s) − N (t) ~ Poisson(λ s).

    Hence E (θN (t+s) t) = θN (t) e(θ−1)λ s.

    (ii) Now E (η(t + s) θN (t+s)

     t) = η(t + s) θN (t)

     e(θ−1)λ s

    , which needs to be equal toM (t) = η(t) θN (t). It follows that η(t) = e−(θ−1)λ t.

    2 (i) The inter-arrival times are much more suitable because they areindependent.

    (ii) They should be exponentially distributed with the same mean.

    Kolmogorov-Smirnov, Anderson-Darling or χ2 goodness-of-fit test can allbe used.

    (iii) Successive values should be independent.

    Regress X i on X i−1 using ordinary least squares, or fit an AR(1) and test

    the α1 parameter for significance (equivalent to Durbin-Watson test).

    3 (i) Spectral density f (ω) = 12

    ∞−∞π Σ  γ ke

    ikω , or equivalent.

    For MA(1), therefore, we have

     f (ω) =2

    2

    eσπ

    (1 + β2 + 2β cos ω).

     And for AR(1),

     f (ω) =2

    2

    1

    2 1 2 cos

    eσπ   + α − α ω

    .

    (ii) Clearly from (i) the inverse of the MA(1) is an AR(1), with α = −β and with

    a different value of2eσ .

    The word “invertible” attached to a MA(1) indicates that the inverse is a

    stationary AR(1), whereas a non-“invertible” MA(1) has as inverse an

     AR(1) model which cannot be stationary, such as X t = 2 X t−1 + et.

  • 8/17/2019 Stochastic Modelling 2000-2004

    44/189

    Subject 103 (Stochastic Modelling) — April 2001 — Examiners’ Report 

    Page 3

    4 (i) ( | ) ( ) ( )t tE dY Y y y h o h= = µ + ,  Var( | ) ( )t tdY Y y h o h= = +

    (ii) 1( | )n n nE X X X y y+   − = = θ − α ,2

    1 Var( | )n n n X X X y+   − = = τ .

    (iii)   µ( y)h = (θ − α y) and h = τ2

    , so µ( y) = (θ − α y) / τ2

    .

    (iv) The increments of a brownian motion do not depend on its current value,

    i.e. α = 0.

    (v) An OU process drifts towards zero, so that θ = 0.

    5 (i) Let γ k denote the autocovariance function of X . Then

    Cov ( X t , et) = 0 + σ2 + 0 = σ2;

    Cov ( X t , et−1) = αγ 0 + 0 + βσ2;

    γ 2 = αγ 1

    γ 1 = αγ 0 + 0 + β Cov ( X t−1 , et−1) = αγ 0 + βσ2

    γ 0 = αγ 1 + Cov ( X t , et) + β Cov ( X t , et−1) = α2γ 0 + (1 + 2αβ + β

    2) σ2,

    implying that

    γ 0 =2

    2

    2(1 2 )

    1

    σ+ αβ + β

    − α,

    ρ1 = 2( ) (1 )

    1 2

    α + β + αβ+ αβ + β

    , ρ2 = αρ1.

    (ii) Estimate of α is r2 / r1 = 0.8; estimate of β is given by12

    (1 + 2αβ + β2) = (α + β) (1 + αβ), or 0.3β2 + 0.84β + 0.3 = 0, with solution

    β =

    −1.4

    ±  0.96 .

    In this case we take the positive square root to ensure invertibility.

  • 8/17/2019 Stochastic Modelling 2000-2004

    45/189

    Subject 103 (Stochastic Modelling) — April 2001 — Examiners’ Report 

    Page 4

    6 (i) Expectation is £2.4m. Safety loading is

    ρ =C  − αµ

    αµ =

    (400 /12) 80,000 2,000 1,200

    2,000 1,200

    × − ××

     = 11.11%

    where α denotes the mean arrival rate of claims and µ the mean claimsize.

    (ii) Conditions for validity of diffusion approximation are uµ  large, ρ small,

    µρu  moderate, where u is the reserve.

    In this caseu

    µ is large, ρ is not particularly small and

    uµρ  =

    7 22 10 11.1 10

    1,200

    −× × × = 1,852, clearly too large. We conclude that the

    diffusion approximation is not appropriate.

    (iii) Decide on a quantum of time, which may be a month or may be smaller.

    For each time period generate a Poisson variate to indicate the number of 

    claims received and, conditional on this, a Normal variate with

    appropriate mean and variance to represent the total sum claimed.

    Subtract this from the total premium income over the period

    (deterministic), using the resulting quantity as the increment of the

    surplus process. Run the simulation for an extended period of time,

    stopping if/when it goes below zero. A large number of simulations should

    be performed, with the probability of ruin being estimated using standard

    techniques based on the Binomial distribution.

    The importance of reproducibility is for sensitivity analysis. The

    estimated probability may depend heavily on the values assumed for

    mean and standard deviation of the claim size, or on other numerical

    parameters. It is necessary to vary the initial assumptions and run the

    simulation again, just to ensure that conclusions are not substantially

    changed if the parameter values used do not adequately reflect the actual

    conditions experienced.

    7 (i)  P {S t ≤ x } = P {exp (µt + σ Bt) ≤ x } = P {µt + tN σ  ≤ ln(x )} = ( )ln( )x tt− µσΦ , whereΦ denotes the standard Normal distribution function.

    (ii) We have to find m so that P {S t ≤ m} = { }tt B P e mµ +σ ≤  = P {µt + σ Bt ≤ ln (m)}

    =  P {σ Bt ≤ ln (m) −µt} = 12 . Since σ Bt is a symmetric normal variable, itsmedian is 0 and the last equation can only be satisfied if ln(m) − µt = 0and m = eµt .

      The expectation is ES t = Ee(µt+σ B(t)) = Eeµt   tN eσ =

    2

    2 tte e

    σµ  =( )22   t

    eσµ+

    .

  • 8/17/2019 Stochastic Modelling 2000-2004

    46/189

    Subject 103 (Stochastic Modelling) — April 2001 — Examiners’ Report 

    Page 5

    (iii) By the same token, E (S tF s) = S (s) E (eµ(t−s)+σ( B(t)− B(s))) = S (s)

    ( )22 ( )t se

    σµ+ −.

    If S  is to be a martingale, the conditional expectation must be equal to

    S (s).

    This will happen if µ = 212

    − σ .

    From part (ii) we see that for this stock with initial value 1, the median of 

    the distribution at time t goes to 0 exponentially fast for large t hence, a

    very bad investment!

    8 (i) Transition Graph

    (ii) All transition probabilities must lie in [0,1].

    Now 1 − 2α − α2 ≤ 1 − α − α2 ≤ 1 for α ≥ 0, so it suffices to ensurethat 1 − 2α − α2 ≥ 0 i.e. α ≤ 2 − 1. So the range of possible values of α is [0, 2 − 1].

    (iii) The chain is not irreducible since D is a trap state.

    The chain is aperiodic by inspection.

    (iv) A stationary probability distribution, if it exists, must obey

    (1 − α − α2) π A + απ B + α2πC  =   π A

    απ A + (1 − 2α − α2) π B + απC  = π B

    α2π A + απ B + (1 − 2α − α2) πC  =   πC 

    α2π B + απC  + π D =   π D

    The last equation implies π B = πC = 0, and this in turn shows that π A  = 0.

    Hence the stationary probability distribution is π = (0, 0, 0, 1)T 

    .

    1 − 2α − α2

    α

    α B

    C D

    α

    α

    1

    1 − α − α2

    1 − 2α − α2

    α2α2

    α

    α2

  • 8/17/2019 Stochastic Modelling 2000-2004

    47/189

    Subject 103 (Stochastic Modelling) — April 2001 — Examiners’ Report 

    Page 6

    It is unique: there is just one recurrent class and it is aperiodic. (Or point

    out that there is no other solutions to the equations.)

    (v) With α = 0.1, the transition matrix is

    0.89 0.1 0.01 00.1 0.79 0.1 0.01

    0.01 0.1 0.79 0.1

    0 0 0 1

    Its square is

    0.8022 0.169 0.0268 0.002

    0.169 0.6441 0.159 0.0279

    0.0268 0.159 0.6342 0.18

    0 0 0 1

    the relevant entries being the last column.

    9 (i) Transition Graph:

    (ii) KFE: ( ) P t′  = P (t) A,

     A =

    0.1 0.05 0 0.05

    1.0 1.2 0.1 0.1

    0 0 0.4 0.4

    0 0 0 0

    − − −

     .

    (iii) The probability of staying in state H  for 10 years is 10∞  0.1e−0.1x  dx  = e−1.

    H T 

     D

    0.05 0.1

    1.0

    0.1 0.40.05

  • 8/17/2019 Stochastic Modelling 2000-2004

    48/189

    Subject 103 (Stochastic Modelling) — April 2001 — Examiners’ Report 

    Page 7

    (iv) First transition from H  must be to S  or D, each equally likely. If to D, then

    it is certain that no terminal illness will occur; otherwise, the probability

    of avoiding a terminal illness is S d .

    From S  similarly, except that the transition probabilities are to H  with

    prob. 1.0 51.2 6= , to D or to T , each with prob. 0.1 11.2 12= . Once in T  it is notpossible to avoid terminal illness.

    Solving the above equations, dS  =51 1

    12 6 2(1 ),S d+ × +  implying that dS  =

    67

    ,

    dH  =1314

    .

    (v) The Markov property implies that the time spent in state T  has

    exponential distribution. The rate is 0.4 per year, so the expectation is 2.5

    years.

    The expected time spent in terminal illness given current health is (ever

    hit T   X 0 = H ) × 2.5 years =2.514

     years.

    10 (i) (1 −  B) Y  = β B (1 −  B) I ,with solution Y  = β BI  + const

    (ii) We have the vector equation

    (1)1

    (2)1

    0 (1 ) const

    = ,0 1 0

    n n   n

    n n   n

     X X    e

    I I    e

    + π β

    + +    + α  

    which clearly represents a vector AR(1).

    (iii)   I is not stationary: the condition for an AR(1) to be stationary is that the

    autoregressive parameter is less than 1 in absolute value.

    I  is not I (1), either, since ∇I  = e(2) + α BI  which, as already stated, is notstationary.

    Z is therefore neither I (0) nor I (1).

    (iv) The equation for the sum of squares is

    SS  = −= =