90
Stabilization for convection dominated problems Gianluigi Rozza mathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy Advanced Topics in Comp.Mech. CISM Udine, December 7 - 10, 2020

Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization for convection dominated problems

Gianluigi Rozza

mathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy

Advanced Topicsin Comp.Mech.CISM Udine,

December 7 - 10, 2020

Page 2: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Outline

• FE and RB Stabilization for advection-diffusion problems

• Stabilization for fluids: Stokes and Navier-Stokes equations

• Increasing the Reynolds number: VMS-Smagorinsky RB model

1/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 3: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Table of contents

1 Advection-Diffusion problem

2 Steady Stokes equations

3 Steady Navier-Stokes equations

4 VMS-Smagorinsky turbulence model

2/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 4: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Advection-Diffusion problem

• Advection-diffusion equations depending on parameter:

−ε(µ)∆u + β(µ) · ∇u = f

3/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 5: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Advection-Diffusion problem

• Advection-diffusion equations depending on parameter:

(ε(µ)∇uh,∇vh)Ω + (β(µ) · ∇uh, vh)Ω = 〈f , vh〉

3/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 6: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Advection-Diffusion problem

• Advection-diffusion equations depending on parameter:

(ε(µ)∇uh,∇vh)Ω + (β(µ) · ∇uh, vh)Ω = 〈f , vh〉

⇓a(uh, vh;µ) = F (vh) ∀vh ∈ Vh

3/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 7: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Advection-Diffusion problem

• Advection-diffusion equations depending on parameter:

(ε(µ)∇uh,∇vh)Ω + (β(µ) · ∇uh, vh)Ω = 〈f , vh〉

⇓a(uh, vh;µ) = F (vh) ∀vh ∈ Vh

• High Péclet number: advection dominated probem

Pe = |β(µ)|2ε(µ) hK > 1

3/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 8: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Advection-Diffusion problem

• Advection-diffusion equations depending on parameter:

(ε(µ)∇uh,∇vh)Ω + (β(µ) · ∇uh, vh)Ω = 〈f , vh〉

⇓a(uh, vh;µ) = F (vh) ∀vh ∈ Vh

• High Péclet number: advection dominated probem

Pe = |β(µ)|2ε(µ) hK > 1

• Stabilization methods for advection dominate problem

3/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 9: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization method for advection dominated problems

a(uh, vh;µ) + astab(uh, vh;µ) = F (vh) ∀vh ∈ Vh

with

astab(uh, vh;µ) =∑k∈Th

δ

(ε(µ)∆uh + β(µ) · ∇uh,

hk

|β(µ)| (ρε(µ)∆vh + β(µ) · ∇vh))

K

• Different stabilization method depending on the choice of ρ:

ρ = 0: Streamline Upwind Petrov-Galerkin (SUPG) method ρ = 1: Galerkin Least-Square (GLS) method ρ = −1: Douglas-Wang (DW) method

A. Quarteroni, A. Valli Numerical Approximation of Partial Differential Equations.Springer Science & Business Media. Volume 23. 2008.

4/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 10: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization method for advection dominated problems

a(uh, vh;µ) + astab(uh, vh;µ) = F (vh) ∀vh ∈ Vh

with

astab(uh, vh;µ) =∑k∈Th

δ

(ε(µ)∆uh + β(µ) · ∇uh,

hk

|β(µ)| (ρε(µ)∆vh + β(µ) · ∇vh))

K

• Different stabilization method depending on the choice of ρ:

ρ = 0: Streamline Upwind Petrov-Galerkin (SUPG) method ρ = 1: Galerkin Least-Square (GLS) method ρ = −1: Douglas-Wang (DW) method

A. Quarteroni, A. Valli Numerical Approximation of Partial Differential Equations.Springer Science & Business Media. Volume 23. 2008.

4/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 11: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization method for advection dominated problems

a(uh, vh;µ) + astab(uh, vh;µ) = F (vh) ∀vh ∈ Vh

with

astab(uh, vh;µ) =∑k∈Th

δ

(ε(µ)∆uh + β(µ) · ∇uh,

hk

|β(µ)| (ρε(µ)∆vh + β(µ) · ∇vh))

K

• Different stabilization method depending on the choice of ρ:

ρ = 0: Streamline Upwind Petrov-Galerkin (SUPG) method ρ = 1: Galerkin Least-Square (GLS) method ρ = −1: Douglas-Wang (DW) method

A. Quarteroni, A. Valli Numerical Approximation of Partial Differential Equations.Springer Science & Business Media. Volume 23. 2008.

4/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 12: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization method for advection dominated problems

a(uh, vh;µ) + astab(uh, vh;µ) = F (vh) ∀vh ∈ Vh

with

astab(uh, vh;µ) =∑k∈Th

δ

(ε(µ)∆uh + β(µ) · ∇uh,

hk

|β(µ)| (ρε(µ)∆vh + β(µ) · ∇vh))

K

• Different stabilization method depending on the choice of ρ:

ρ = 0: Streamline Upwind Petrov-Galerkin (SUPG) method

ρ = 1: Galerkin Least-Square (GLS) method ρ = −1: Douglas-Wang (DW) method

A. Quarteroni, A. Valli Numerical Approximation of Partial Differential Equations.Springer Science & Business Media. Volume 23. 2008.

4/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 13: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization method for advection dominated problems

a(uh, vh;µ) + astab(uh, vh;µ) = F (vh) ∀vh ∈ Vh

with

astab(uh, vh;µ) =∑k∈Th

δ

(ε(µ)∆uh + β(µ) · ∇uh,

hk

|β(µ)| (ρε(µ)∆vh + β(µ) · ∇vh))

K

• Different stabilization method depending on the choice of ρ:

ρ = 0: Streamline Upwind Petrov-Galerkin (SUPG) method ρ = 1: Galerkin Least-Square (GLS) method

ρ = −1: Douglas-Wang (DW) method

A. Quarteroni, A. Valli Numerical Approximation of Partial Differential Equations.Springer Science & Business Media. Volume 23. 2008.

4/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 14: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization method for advection dominated problems

a(uh, vh;µ) + astab(uh, vh;µ) = F (vh) ∀vh ∈ Vh

with

astab(uh, vh;µ) =∑k∈Th

δ

(ε(µ)∆uh + β(µ) · ∇uh,

hk

|β(µ)| (ρε(µ)∆vh + β(µ) · ∇vh))

K

• Different stabilization method depending on the choice of ρ:

ρ = 0: Streamline Upwind Petrov-Galerkin (SUPG) method ρ = 1: Galerkin Least-Square (GLS) method ρ = −1: Douglas-Wang (DW) method

A. Quarteroni, A. Valli Numerical Approximation of Partial Differential Equations.Springer Science & Business Media. Volume 23. 2008.

4/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 15: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilization method for advection dominated problems

a(uh, vh;µ) + astab(uh, vh;µ) = F (vh) ∀vh ∈ Vh

with

astab(uh, vh;µ) =∑k∈Th

δ

(ε(µ)∆uh + β(µ) · ∇uh,

hk

|β(µ)| (ρε(µ)∆vh + β(µ) · ∇vh))

K

• Different stabilization method depending on the choice of ρ:

ρ = 0: Streamline Upwind Petrov-Galerkin (SUPG) method ρ = 1: Galerkin Least-Square (GLS) method ρ = −1: Douglas-Wang (DW) method

A. Quarteroni, A. Valli Numerical Approximation of Partial Differential Equations.Springer Science & Business Media. Volume 23. 2008.

4/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 16: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Stabilization

First issue: How stabilize the Reduced Basis problem?

• Offline stabilization only: VN = spanuh(µ1), . . . , uh(µN) and solveFind uN ∈ VN such thata(uN , vN ;µ) = F (vN) ∀vN ∈ VN

• Offline-Online stabilization:Find uN ∈ VN such thata(uN , vN ;µ) + astab(uN , vN ;µ) = F (vN) ∀vN ∈ VN

P. Pacciarini, G. Rozza Stabilized reduced basis method for parametrizedadvection-diffusion PDEs. Computer Methods in Applied Mechanics andEngineering, 274 (2014), pp. 1-18.

5/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 17: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Stabilization

First issue: How stabilize the Reduced Basis problem?

• Offline stabilization only: VN = spanuh(µ1), . . . , uh(µN) and solveFind uN ∈ VN such thata(uN , vN ;µ) = F (vN) ∀vN ∈ VN

• Offline-Online stabilization:Find uN ∈ VN such thata(uN , vN ;µ) + astab(uN , vN ;µ) = F (vN) ∀vN ∈ VN

P. Pacciarini, G. Rozza Stabilized reduced basis method for parametrizedadvection-diffusion PDEs. Computer Methods in Applied Mechanics andEngineering, 274 (2014), pp. 1-18.

5/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 18: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Stabilization

First issue: How stabilize the Reduced Basis problem?

• Offline stabilization only: VN = spanuh(µ1), . . . , uh(µN) and solveFind uN ∈ VN such thata(uN , vN ;µ) = F (vN) ∀vN ∈ VN

• Offline-Online stabilization:Find uN ∈ VN such thata(uN , vN ;µ) + astab(uN , vN ;µ) = F (vN) ∀vN ∈ VN

P. Pacciarini, G. Rozza Stabilized reduced basis method for parametrizedadvection-diffusion PDEs. Computer Methods in Applied Mechanics andEngineering, 274 (2014), pp. 1-18.

5/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 19: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Stabilization

First issue: How stabilize the Reduced Basis problem?

• Offline stabilization only: VN = spanuh(µ1), . . . , uh(µN) and solveFind uN ∈ VN such thata(uN , vN ;µ) = F (vN) ∀vN ∈ VN

• Offline-Online stabilization:Find uN ∈ VN such thata(uN , vN ;µ) + astab(uN , vN ;µ) = F (vN) ∀vN ∈ VN

P. Pacciarini, G. Rozza Stabilized reduced basis method for parametrizedadvection-diffusion PDEs. Computer Methods in Applied Mechanics andEngineering, 274 (2014), pp. 1-18.

5/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 20: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Numerical test

• β(µ) = (1, 1), ε(µ) = 1µ

⇒ Pe = µ

• µ ∈ [100, 1000]

6/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 21: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Numerical test

• β(µ) = (1, 1), ε(µ) = 1µ

⇒ Pe = µ

• µ ∈ [100, 1000]

6/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 22: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Numerical test

• β(µ) = (1, 1), ε(µ) = 1µ

⇒ Pe = µ

• µ ∈ [100, 1000]

u = 0

u = 0

u = 1

u = 1

(0, 1) (1, 1)

(0, 0) (1, 0)

6/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 23: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Numerical Results

Figure: RB solution for Pe = 600

7/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 24: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Table of contents

1 Advection-Diffusion problem

2 Steady Stokes equations

3 Steady Navier-Stokes equations

4 VMS-Smagorinsky turbulence model

8/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 25: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Steady Stokes equations

We define the steady Stokes equations, with ν the viscosity:−ν∆u +∇p = f in Ω

∇ · u = 0 in Ω

9/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 26: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Steady Stokes equations

We define the steady Stokes equations, with ν the viscosity:ν(∇uh,∇vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

9/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 27: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Steady Stokes equations

We define the steady Stokes equations, with ν the viscosity:ν(∇uh,∇vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Bilinear forms:

a(u, v;µ) = ν(∇u,∇v)Ω, b(v, q;µ) = −(∇ · v, q)Ω

9/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 28: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Steady Stokes equations

We define the steady Stokes equations, with ν the viscosity:ν(∇uh,∇vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Bilinear forms:

a(u, v;µ) = ν(∇u,∇v)Ω, b(v, q;µ) = −(∇ · v, q)Ω

• Discrete inf-sup condition:

∃β0 such that 0 < β0 < βh(µ) = infqh∈Mh

supvh∈Vh

b(vh, qh;µ)‖vh‖1‖qh‖0

9/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 29: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Steady Stokes equations

We define the steady Stokes equations, with ν the viscosity:ν(∇uh,∇vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Bilinear forms:

a(u, v;µ) = ν(∇u,∇v)Ω, b(v, q;µ) = −(∇ · v, q)Ω

• Discrete inf-sup condition:

∃β0 such that 0 < β0 < βh(µ) = infqh∈Mh

supvh∈Vh

b(vh, qh;µ)‖vh‖1‖qh‖0

• Standard ROM stabilization: inner pressure supremizer .

9/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 30: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Discrete Stokes equations with stabilization

a(uh, vh;µ) + b(vh, ph;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

Different stabilization terms:

• Brezzi-Pitkaranta stabilization (1984)

spres(qh;µ) =∑K∈Th

h2K (∇ph,∇qh)K

• Hughes, Franca and Balestra stabilization (1986)

spres(qh;µ) = δ∑K∈Th

h2K (a0uh − ν∆uh +∇ph − f,∇qh)K

S. Ali Stabilized reduced basis methods for the approximation of parametrizedviscous flows. PhD Thesis, SISSA, 2018.

10/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 31: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Discrete Stokes equations with stabilization

a(uh, vh;µ) + b(vh, ph;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

Different stabilization terms:

• Brezzi-Pitkaranta stabilization (1984)

spres(qh;µ) =∑K∈Th

h2K (∇ph,∇qh)K

• Hughes, Franca and Balestra stabilization (1986)

spres(qh;µ) = δ∑K∈Th

h2K (a0uh − ν∆uh +∇ph − f,∇qh)K

S. Ali Stabilized reduced basis methods for the approximation of parametrizedviscous flows. PhD Thesis, SISSA, 2018.

10/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 32: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Discrete Stokes equations with stabilization

a(uh, vh;µ) + b(vh, ph;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

Different stabilization terms:

• Brezzi-Pitkaranta stabilization (1984)

spres(qh;µ) =∑K∈Th

h2K (∇ph,∇qh)K

• Hughes, Franca and Balestra stabilization (1986)

spres(qh;µ) = δ∑K∈Th

h2K (a0uh − ν∆uh +∇ph − f,∇qh)K

S. Ali Stabilized reduced basis methods for the approximation of parametrizedviscous flows. PhD Thesis, SISSA, 2018.

10/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 33: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Discrete Stokes equations with stabilization

a(uh, vh;µ) + b(vh, ph;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

Different stabilization terms:

• Brezzi-Pitkaranta stabilization (1984)

spres(qh;µ) =∑K∈Th

h2K (∇ph,∇qh)K

• Hughes, Franca and Balestra stabilization (1986)

spres(qh;µ) = δ∑K∈Th

h2K (a0uh − ν∆uh +∇ph − f,∇qh)K

S. Ali Stabilized reduced basis methods for the approximation of parametrizedviscous flows. PhD Thesis, SISSA, 2018.

10/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 34: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Discrete Stokes equations with stabilization

a(uh, vh;µ) + b(vh, ph;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

Different stabilization terms:

• Brezzi-Pitkaranta stabilization (1984)

spres(qh;µ) =∑K∈Th

h2K (∇ph,∇qh)K

• Hughes, Franca and Balestra stabilization (1986)

spres(qh;µ) = δ∑K∈Th

h2K (a0uh − ν∆uh +∇ph − f,∇qh)K

S. Ali Stabilized reduced basis methods for the approximation of parametrizedviscous flows. PhD Thesis, SISSA, 2018.

10/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 35: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)

• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization:

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 36: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem

Inner pressure supremizer ⇒ Enrich the velocity space(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization:

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 37: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization:

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 38: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization:

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 39: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization:

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 40: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization: Offline stabilization only without supremizer

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 41: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization: Offline stabilization only without supremizer

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 42: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization: Offline stabilization only without supremizer Offline stabilization only with supremizer

Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 43: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization: Offline stabilization only without supremizer Offline stabilization only with supremizer Offline-online stablization without supremizer

Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 44: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Reduced Basis Model for stabilized Stokes equations

• Reduced space by the Greedy algorithm selecting snapshots

u(µ1), . . . , u(µN), p(µ1), . . . , p(µN)• Stabilization of the Reduced Basis problem Inner pressure supremizer ⇒ Enrich the velocity space

(Tµp p(µk), vh)V = b(vh, p(µk);µ) ∀vh ∈ Vh

Online stabilization term

spres(qN ;µ) =∑K∈Th

h2K (∇pN ,∇qN)K

• Inf-sup condition for the reduced stabilized problem:

∃β0 such that 0 < β0‖qh‖0 ≤ supvh∈Vh

b(vN , qN ;µ)‖vN‖1

+∑K∈Th

h2K (∇qN ,∇qN)K

• Different options for stabilization: Offline stabilization only without supremizer Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

11/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 45: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Lid-driven Cavity

ΓD0

ΓD0

ΓDg

ΓD0

(0, 1) (µ2, 1)

(0, 0) (µ2, 0)

Figure: Domain Ω with the different boundaries identified.

12/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 46: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Problem details

• 2 parameters: viscosity (µ1) and domain length (µ2)

• Non stable pair of FE: (P1− P1)

• Range of parameter domain: (µ1, µ2) ∈ [0.25, 0.75]× [1, 3]

Figure: RB pressure solution with offline only stabilization

13/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 47: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Problem details

• 2 parameters: viscosity (µ1) and domain length (µ2)

• Non stable pair of FE: (P1− P1)

• Range of parameter domain: (µ1, µ2) ∈ [0.25, 0.75]× [1, 3]

Figure: RB pressure solution with offline only stabilization

13/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 48: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Problem details

• 2 parameters: viscosity (µ1) and domain length (µ2)

• Non stable pair of FE: (P1− P1)

• Range of parameter domain: (µ1, µ2) ∈ [0.25, 0.75]× [1, 3]

Figure: RB pressure solution with offline only stabilization

13/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 49: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Problem details

• 2 parameters: viscosity (µ1) and domain length (µ2)

• Non stable pair of FE: (P1− P1)

• Range of parameter domain: (µ1, µ2) ∈ [0.25, 0.75]× [1, 3]

Figure: RB pressure solution with offline only stabilization

13/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 50: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Numerical solutions

• Online solution for (µ1, µ2) = (0.6, 2)

Figure: FE solution (left) and RB solution (right), for velocity (top) and pressure (bottom)

14/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 51: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Error evolution

Figure: Error in Greedy algorithm for velocity (left) and pressure (right)

15/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 52: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Table of contents

1 Advection-Diffusion problem

2 Steady Stokes equations

3 Steady Navier-Stokes equations

4 VMS-Smagorinsky turbulence model

16/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 53: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Parametrized steady Navier-Stokes equations

We define the steady Navier-Stokes equations, with Re the Reynolds number: − 1Re ∆u + u · ∇u +∇p = f in Ω

∇ · u = 0 in Ω

• Stabilization terms for momentum and continuity equations:

sconv (vh;µ) = δ∑K∈Th

h2K

(− 1

Re ∆uh + uh · ∇uh +∇ph, uh · ∇vh)K

spres(qh;µ) = δ∑K∈Th

hK

(− 1

Re ∆uh + uh · ∇uh +∇ph,∇qh

)K

sdiv (vh;µ) = γ∑K∈Th

(∇ · uh,∇ · vh

)K

A. Brooks and T. Hughes Streamline Upwind/Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,32(13):199-259, 1982

17/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 54: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Parametrized steady Navier-Stokes equations

We define the steady Navier-Stokes equations, with Re the Reynolds number:Find (uh, ph) ∈ Vh ×Mh such that1

Re (∇uh,∇vh)Ω + (uh · ∇uh, vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Stabilization terms for momentum and continuity equations:

sconv (vh;µ) = δ∑K∈Th

h2K

(− 1

Re ∆uh + uh · ∇uh +∇ph, uh · ∇vh)K

spres(qh;µ) = δ∑K∈Th

hK

(− 1

Re ∆uh + uh · ∇uh +∇ph,∇qh

)K

sdiv (vh;µ) = γ∑K∈Th

(∇ · uh,∇ · vh

)K

A. Brooks and T. Hughes Streamline Upwind/Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,32(13):199-259, 1982

17/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 55: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Parametrized steady Navier-Stokes equations

We define the steady Navier-Stokes equations, with Re the Reynolds number:Find (uh, ph) ∈ Vh ×Mh such that1

Re (∇uh,∇vh)Ω + (uh · ∇uh, vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Stabilization terms for momentum and continuity equations:

sconv (vh;µ) = δ∑K∈Th

h2K

(− 1

Re ∆uh + uh · ∇uh +∇ph, uh · ∇vh)K

spres(qh;µ) = δ∑K∈Th

hK

(− 1

Re ∆uh + uh · ∇uh +∇ph,∇qh

)K

sdiv (vh;µ) = γ∑K∈Th

(∇ · uh,∇ · vh

)K

A. Brooks and T. Hughes Streamline Upwind/Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,32(13):199-259, 1982

17/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 56: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Parametrized steady Navier-Stokes equations

We define the steady Navier-Stokes equations, with Re the Reynolds number:Find (uh, ph) ∈ Vh ×Mh such that1

Re (∇uh,∇vh)Ω + (uh · ∇uh, vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Stabilization terms for momentum and continuity equations:

sconv (vh;µ) = δ∑K∈Th

h2K

(− 1

Re ∆uh + uh · ∇uh +∇ph, uh · ∇vh)K

spres(qh;µ) = δ∑K∈Th

hK

(− 1

Re ∆uh + uh · ∇uh +∇ph,∇qh

)K

sdiv (vh;µ) = γ∑K∈Th

(∇ · uh,∇ · vh

)K

A. Brooks and T. Hughes Streamline Upwind/Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,32(13):199-259, 1982

17/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 57: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Parametrized steady Navier-Stokes equations

We define the steady Navier-Stokes equations, with Re the Reynolds number:Find (uh, ph) ∈ Vh ×Mh such that1

Re (∇uh,∇vh)Ω + (uh · ∇uh, vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Stabilization terms for momentum and continuity equations:

sconv (vh;µ) = δ∑K∈Th

h2K

(− 1

Re ∆uh + uh · ∇uh +∇ph, uh · ∇vh)K

spres(qh;µ) = δ∑K∈Th

hK

(− 1

Re ∆uh + uh · ∇uh +∇ph,∇qh

)K

sdiv (vh;µ) = γ∑K∈Th

(∇ · uh,∇ · vh

)K

A. Brooks and T. Hughes Streamline Upwind/Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,32(13):199-259, 1982

17/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 58: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Parametrized steady Navier-Stokes equations

We define the steady Navier-Stokes equations, with Re the Reynolds number:Find (uh, ph) ∈ Vh ×Mh such that1

Re (∇uh,∇vh)Ω + (uh · ∇uh, vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Stabilization terms for momentum and continuity equations:

sconv (vh;µ) = δ∑K∈Th

h2K

(− 1

Re ∆uh + uh · ∇uh +∇ph, uh · ∇vh)K

spres(qh;µ) = δ∑K∈Th

hK

(− 1

Re ∆uh + uh · ∇uh +∇ph,∇qh

)K

sdiv (vh;µ) = γ∑K∈Th

(∇ · uh,∇ · vh

)K

A. Brooks and T. Hughes Streamline Upwind/Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,32(13):199-259, 1982

17/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 59: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Parametrized steady Navier-Stokes equations

We define the steady Navier-Stokes equations, with Re the Reynolds number:Find (uh, ph) ∈ Vh ×Mh such that1

Re (∇uh,∇vh)Ω + (uh · ∇uh, vh)Ω − (ph,∇ · vh)Ω = 〈f, vh〉 ∀vh ∈ Vh

(∇ · uh, qh)Ω = 0 ∀qh ∈ Mh

• Stabilization terms for momentum and continuity equations:

sconv (vh;µ) = δ∑K∈Th

h2K

(− 1

Re ∆uh + uh · ∇uh +∇ph, uh · ∇vh)K

spres(qh;µ) = δ∑K∈Th

hK

(− 1

Re ∆uh + uh · ∇uh +∇ph,∇qh

)K

sdiv (vh;µ) = γ∑K∈Th

(∇ · uh,∇ · vh

)K

A. Brooks and T. Hughes Streamline Upwind/Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,32(13):199-259, 1982

17/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 60: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilized Reduced Basis Navier-Stokes equations

Find (uh, ph) ∈ Vh ×Mh such that

a(uh, vh;µ) + c(uh, uh, vh;µ) + b(vh, ph;µ)+sconv (vh;µ) + sdiv (vh;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

• Greedy algorithm for the snapshots selection ⇒ A posteriori error bound

• Different stabilizations as in Stokes problem

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

18/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 61: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilized Reduced Basis Navier-Stokes equations

Find (uh, ph) ∈ Vh ×Mh such that

a(uh, vh;µ) + c(uh, uh, vh;µ) + b(vh, ph;µ)+sconv (vh;µ) + sdiv (vh;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

• Greedy algorithm for the snapshots selection ⇒ A posteriori error bound

• Different stabilizations as in Stokes problem

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

18/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 62: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilized Reduced Basis Navier-Stokes equations

Find (uh, ph) ∈ Vh ×Mh such that

a(uh, vh;µ) + c(uh, uh, vh;µ) + b(vh, ph;µ)+sconv (vh;µ) + sdiv (vh;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) + spres(qh;µ) = 0 ∀qh ∈ Mh

• Greedy algorithm for the snapshots selection ⇒ A posteriori error bound

• Different stabilizations as in Stokes problem

Offline stabilization only with supremizer Offline-online stablization without supremizer Offline-online stabilization with supremizer

18/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 63: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Problem details

• Physical parameter: Reynolds number, (µ)• Non stable pair of FE: (P1− P1)• Range of parameter domain: µ ∈ [100, 500]

ΓD0

ΓD0

ΓDg

ΓD0

(0, 1) (1, 1)

(0, 0) (1, 0)

Saddam Hijazi, Shafqat Ali, Giovanni Stabile, Francesco Ballarin and GianluigiRozza. The Effort of Increasing Reynolds Number in Projection-Based ReducedOrder Methods: from Laminar to Turbulent Flows. Arxiv preprint. arXiv:1807.11370

19/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 64: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Numerical solutions

• Online solution for µ = 200

Figure: FE solution (left) and RB solution (right), for velocity (top) and pressure (bottom)

20/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 65: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Error evolution

Figure: Error in Greedy algorithm for velocity (left) and pressure (right)

21/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 66: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Table of contents

1 Advection-Diffusion problem

2 Steady Stokes equations

3 Steady Navier-Stokes equations

4 VMS-Smagorinsky turbulence model

22/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 67: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Smagorinsky model

We define the steady Smagorinsky model, with Re the Reynolds number− 1

Re ∆u−∇ · (νT (u)∇(u)) + u · ∇u +∇p = f in Ω

∇ · u = 0 in Ω

as(uh; uh, vh;µ) =∑K∈Th

(νT (uh)∇uh,∇vh)K

• Non linear eddy viscosity: νT (uh) = (CShK )2|∇uh|

• VMS modelling for the eddy viscosity term

Chacón Rebollo, T., Gómez Mármol, M., Rubino S. Numerical analysis of a finiteelement projection-based VMS turbulence model with wall laws. Comput. MethodsAppl. Mech. Engrg. 285 (2015), 379–405.

23/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 68: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Smagorinsky model

We define the steady Smagorinsky model, with Re the Reynolds numberFind (uh, ph) ∈ Vh ×Mh such that

a(uh, vh;µ) + c(uh, uh, vh;µ) + b(vh, ph;µ)+as(uh; uh, vh;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) = 0 ∀qh ∈ Mh

as(uh; uh, vh;µ) =∑K∈Th

(νT (uh)∇uh,∇vh)K

• Non linear eddy viscosity: νT (uh) = (CShK )2|∇uh|

• VMS modelling for the eddy viscosity term

Chacón Rebollo, T., Gómez Mármol, M., Rubino S. Numerical analysis of a finiteelement projection-based VMS turbulence model with wall laws. Comput. MethodsAppl. Mech. Engrg. 285 (2015), 379–405.

23/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 69: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Smagorinsky model

We define the steady Smagorinsky model, with Re the Reynolds numberFind (uh, ph) ∈ Vh ×Mh such that

a(uh, vh;µ) + c(uh, uh, vh;µ) + b(vh, ph;µ)+as(uh; uh, vh;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) = 0 ∀qh ∈ Mh

as(uh; uh, vh;µ) =∑K∈Th

(νT (uh)∇uh,∇vh)K

• Non linear eddy viscosity: νT (uh) = (CShK )2|∇uh|

• VMS modelling for the eddy viscosity term

Chacón Rebollo, T., Gómez Mármol, M., Rubino S. Numerical analysis of a finiteelement projection-based VMS turbulence model with wall laws. Comput. MethodsAppl. Mech. Engrg. 285 (2015), 379–405.

23/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 70: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Smagorinsky model

We define the steady Smagorinsky model, with Re the Reynolds numberFind (uh, ph) ∈ Vh ×Mh such that

a(uh, vh;µ) + c(uh, uh, vh;µ) + b(vh, ph;µ)+as(uh; uh, vh;µ) = 〈f, vh〉 ∀vh ∈ Vh

b(uh, qh;µ) = 0 ∀qh ∈ Mh

as(uh; uh, vh;µ) =∑K∈Th

(νT (uh)∇uh,∇vh)K

• Nonlinear eddy viscosity: νT (uh) = (CS hK )2|∇uh|

• VMS modelling for the eddy viscosity term

Chacón Rebollo, T., Gómez Mármol, M., Rubino S. Numerical analysis of a finiteelement projection-based VMS turbulence model with wall laws. Comput. MethodsAppl. Mech. Engrg. 285 (2015), 379–405.

23/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 71: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

VMS-Smagorinsky model

We decompose the velocity and pressure spaces as

Yh = Yh ⊕ Y ′h Mh = Mh ⊕M′h

thus, uh = uh + u′h, u′h = (Id − σh)uh = σ∗huh, ph = ph + p′h

LES closure model: VMS-Smagorinsky

a′s(uh; uh, vh) =∫

Ω(CShK )2|∇(σ∗h (uh))|∇(σ∗h (uh)) : ∇(σ∗h (vh)) dΩ

Pressure stabilization:

spres(p, q) =∫

ΩτK ,p(µ) σ∗h (∇ph)σ∗h (∇qh) dΩ,

τK ,p(µ) =[

c11/Re + νT

h2K

+ c2UK

hK

]−1E. Delgado Ávila. Development of reduced numeric models to aero-thermic flows inbuildings. PhD Thesis, University of Seville, 2018.

24/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 72: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

VMS-Smagorinsky model

We decompose the velocity and pressure spaces as

Yh = Yh ⊕ Y ′h Mh = Mh ⊕M′h

thus, uh = uh + u′h, u′h = (Id − σh)uh = σ∗huh, ph = ph + p′h

LES closure model: VMS-Smagorinsky

a′s(uh; uh, vh) =∫

Ω(CShK )2|∇(σ∗h (uh))|∇(σ∗h (uh)) : ∇(σ∗h (vh)) dΩ

Pressure stabilization:

spres(p, q) =∫

ΩτK ,p(µ) σ∗h (∇ph)σ∗h (∇qh) dΩ,

τK ,p(µ) =[

c11/Re + νT

h2K

+ c2UK

hK

]−1E. Delgado Ávila. Development of reduced numeric models to aero-thermic flows inbuildings. PhD Thesis, University of Seville, 2018.

24/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 73: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

VMS-Smagorinsky model

We decompose the velocity and pressure spaces as

Yh = Yh ⊕ Y ′h Mh = Mh ⊕M′h

thus, uh = uh + u′h, u′h = (Id − σh)uh = σ∗huh, ph = ph + p′h

LES closure model: VMS-Smagorinsky

a′s(uh; uh, vh) =∫

Ω(CShK )2|∇(σ∗h (uh))|∇(σ∗h (uh)) : ∇(σ∗h (vh)) dΩ

Pressure stabilization:

spres(p, q) =∫

ΩτK ,p(µ) σ∗h (∇ph)σ∗h (∇qh) dΩ,

τK ,p(µ) =[

c11/Re + νT

h2K

+ c2UK

hK

]−1

E. Delgado Ávila. Development of reduced numeric models to aero-thermic flows inbuildings. PhD Thesis, University of Seville, 2018.

24/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 74: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

VMS-Smagorinsky model

We decompose the velocity and pressure spaces as

Yh = Yh ⊕ Y ′h Mh = Mh ⊕M′h

thus, uh = uh + u′h, u′h = (Id − σh)uh = σ∗huh, ph = ph + p′h

LES closure model: VMS-Smagorinsky

a′s(uh; uh, vh) =∫

Ω(CShK )2|∇(σ∗h (uh))|∇(σ∗h (uh)) : ∇(σ∗h (vh)) dΩ

Pressure stabilization:

spres(p, q) =∫

ΩτK ,p(µ) σ∗h (∇ph)σ∗h (∇qh) dΩ,

τK ,p(µ) =[

c11/Re + νT

h2K

+ c2UK

hK

]−1E. Delgado Ávila. Development of reduced numeric models to aero-thermic flows inbuildings. PhD Thesis, University of Seville, 2018.

24/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 75: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilized VMS-Smagorinsky RB model

• Offline-Online stabilizationFind (uN , pN) ∈ VN ×MN such that

a(uN , vN ;µ) + c(uN , uN , vN ;µ) + b(vN , pN ;µ)+a′s(uN ; uN , vN ;µ) = 〈f, vN〉 ∀vN ∈ VN

b(uN , qN ;µ) + spres(pN , qN ;µ) = 0 ∀qN ∈ MN

• Greedy algorithm for the snapshots selection ⇒ A posteriori error estimator• EIM approximation for non linear terms:

∑K∈Th

(νT (σ∗huh)∇uh,∇vh)K ≈∑K∈Th

Mv∑j=1

(qvj ∇uh,∇vh)K

∑K∈Th

(τK ,p(µ) σ∗h (∇ph), σ∗h (∇qh))K ≈∑K∈Th

Mp∑j=1

(qpj σ∗h (∇ph), σ∗h (∇qh))K

25/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 76: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilized VMS-Smagorinsky RB model

• Offline-Online stabilizationFind (uN , pN) ∈ VN ×MN such that

a(uN , vN ;µ) + c(uN , uN , vN ;µ) + b(vN , pN ;µ)+a′s(uN ; uN , vN ;µ) = 〈f, vN〉 ∀vN ∈ VN

b(uN , qN ;µ) + spres(pN , qN ;µ) = 0 ∀qN ∈ MN

• Greedy algorithm for the snapshots selection ⇒ A posteriori error estimator

• EIM approximation for non linear terms:

∑K∈Th

(νT (σ∗huh)∇uh,∇vh)K ≈∑K∈Th

Mv∑j=1

(qvj ∇uh,∇vh)K

∑K∈Th

(τK ,p(µ) σ∗h (∇ph), σ∗h (∇qh))K ≈∑K∈Th

Mp∑j=1

(qpj σ∗h (∇ph), σ∗h (∇qh))K

25/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 77: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilized VMS-Smagorinsky RB model

• Offline-Online stabilizationFind (uN , pN) ∈ VN ×MN such that

a(uN , vN ;µ) + c(uN , uN , vN ;µ) + b(vN , pN ;µ)+a′s(uN ; uN , vN ;µ) = 〈f, vN〉 ∀vN ∈ VN

b(uN , qN ;µ) + spres(pN , qN ;µ) = 0 ∀qN ∈ MN

• Greedy algorithm for the snapshots selection ⇒ A posteriori error estimator• EIM approximation for non linear terms:

∑K∈Th

(νT (σ∗huh)∇uh,∇vh)K ≈∑K∈Th

Mv∑j=1

(qvj ∇uh,∇vh)K

∑K∈Th

(τK ,p(µ) σ∗h (∇ph), σ∗h (∇qh))K ≈∑K∈Th

Mp∑j=1

(qpj σ∗h (∇ph), σ∗h (∇qh))K

25/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 78: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Stabilized VMS-Smagorinsky RB model

• Offline-Online stabilizationFind (uN , pN) ∈ VN ×MN such that

a(uN , vN ;µ) + c(uN , uN , vN ;µ) + b(vN , pN ;µ)+a′s(uN ; uN , vN ;µ) = 〈f, vN〉 ∀vN ∈ VN

b(uN , qN ;µ) + spres(pN , qN ;µ) = 0 ∀qN ∈ MN

• Greedy algorithm for the snapshots selection ⇒ A posteriori error estimator• EIM approximation for non linear terms:

∑K∈Th

(νT (σ∗huh)∇uh,∇vh)K ≈∑K∈Th

Mv∑j=1

(qvj ∇uh,∇vh)K

∑K∈Th

(τK ,p(µ) σ∗h (∇ph), σ∗h (∇qh))K ≈∑K∈Th

Mp∑j=1

(qpj σ∗h (∇ph), σ∗h (∇qh))K

25/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 79: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

A posteriori error estimator

Residual: R((vh, qh);µ) = F ((vh, qh);µ)− A((uN , pN), (vn, qN);µ)

εN(µ) = ‖R(·;µ)‖X ′ , τN(µ) = 4εN(µ)ρTβ2N

∆N(µ) = βN2ρT

[1−

√1− τN(µ)

]TheoremIf βN > 0 and τN(µ) ≤ 1, then there exists a unique solution (uh(µ), ph(µ)) to(FE) such that

‖(uh(µ), ph(µ))− (uN(µ), pN(µ))‖X ≤ ∆N(µ)

26/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 80: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

A posteriori error estimator

Residual: R((vh, qh);µ) = F ((vh, qh);µ)− A((uN , pN), (vn, qN);µ)

εN(µ) = ‖R(·;µ)‖X ′ , τN(µ) = 4εN(µ)ρTβ2N

∆N(µ) = βN2ρT

[1−

√1− τN(µ)

]

TheoremIf βN > 0 and τN(µ) ≤ 1, then there exists a unique solution (uh(µ), ph(µ)) to(FE) such that

‖(uh(µ), ph(µ))− (uN(µ), pN(µ))‖X ≤ ∆N(µ)

26/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 81: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

A posteriori error estimator

Residual: R((vh, qh);µ) = F ((vh, qh);µ)− A((uN , pN), (vn, qN);µ)

εN(µ) = ‖R(·;µ)‖X ′ , τN(µ) = 4εN(µ)ρTβ2N

∆N(µ) = βN2ρT

[1−

√1− τN(µ)

]TheoremIf βN > 0 and τN(µ) ≤ 1, then there exists a unique solution (uh(µ), ph(µ)) to(FE) such that

‖(uh(µ), ph(µ))− (uN(µ), pN(µ))‖X ≤ ∆N(µ)

26/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 82: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Finite element details

• Reynolds range: µ ∈ [1000, 5100]

• Non stable pair of Finite Element. (P2− P2)

• Regular mesh (2601 nodes and 5000 triangles):

ΓD0

ΓD0

ΓDg

ΓD0

(0, 1) (1, 1)

(0, 0) (1, 0)

27/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 83: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

M5 10 15 20 25

10-4

10-3

10-2

10-1

100

‖νT (µ)− I[νT (µ)]‖∞‖τK,p(µ)− I[τK,p(µ)]‖∞

Figure: Infinity norm error for EIM greedy algorithm

28/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 84: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

N

1 2 3 4 5 6 7 810

0

101

102

103

104

105

maxµ∈D

τN (µ) without supremizer

maxµ∈D

τN (µ) with supremizer

Figure: Comparison with and without supremizer

29/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 85: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10-4

10-3

10-2

10-1

100

101

102

103

104

105

maxµ∈D

τN (µ)

maxµ∈D

∆N (µ)

Figure: Maximum a posteriori error bound (without supremizer)

30/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 86: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Re

1000 1500 2000 2500 3000 3500 4000 4500 500010

-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

∆N (µ)‖Uh(µ)− UN (µ)‖X

Figure: A posteriori error bound at N=16

31/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 87: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

FE and RB velocity solution

Figure: FE (left) and RB (right) velocity solution for µ = 4521

32/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 88: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Results

FE dof: 30603

EIM dof: 25 (νT ) + 20 (τK ,p), RB dof: 32

Data µ = 1610 µ = 2751 µ = 3886 µ = 4521TFE 4083.19s 6918.53s 9278.51s 10201.7sTonline 0.71s 0.69s 0.69s 0.7sspeedup 5750 10026 13280 14459‖uh − uN‖T 2.4 · 10−5 4.129 · 10−6 3.14 · 10−5 3.23 · 10−5‖ph − pN‖0 2.17 · 10−7 1.99 · 10−8 5.38 · 10−8 6.36 · 10−8

Table: Data summary

33/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 89: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Conclusions

• FE stabilization terms for convection dominated problems

• RB Offline-online stabilization the only consistent one

• No considering the inner pressure supremizer reduces the RB velocity spacedimension

• Good accuracy in the computation of the RB-Smagorinsky solution

THANK YOU FOR YOURATTENTION

34/ 34 G. Rozza Stabilization for Convection Dominated Problems

Page 90: Stabilization for convection dominate problems...Stabilizationfor convectiondominate problemsd GianluigiRozza mathLab,Mathematics Area, SISSA International Schoolfor AdvancedStudies,

Conclusions

• FE stabilization terms for convection dominated problems

• RB Offline-online stabilization the only consistent one

• No considering the inner pressure supremizer reduces the RB velocity spacedimension

• Good accuracy in the computation of the RB-Smagorinsky solution

THANK YOU FOR YOURATTENTION

34/ 34 G. Rozza Stabilization for Convection Dominated Problems