41
Spintronics without Magnets: spin-opticsMaxim Khodas and Arcadi Shekhter A.M. Finkelstein Dept of Condensed Matter Physics Weizmann Institute of Science, Rehovot, Israel Phys. Rev. Lett. 92, (2004) Phys. Rev. B 71, (2005) German-Israeli Foundation for Scientific Research and Development

Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Spintronics without Magnets:“spin-optics”

Maxim Khodas and Arcadi ShekhterA.M. Finkel’stein

Dept of Condensed Matter PhysicsWeizmann Institute of Science, Rehovot, Israel

Phys. Rev. Lett. 92, (2004)Phys. Rev. B 71, (2005)

German-Israeli Foundationfor Scientific Research and Development

Page 2: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Spintronics:

“…spin-based electronics, where it is not the electron charge but the electron spin that carriers information, and this offers opportunities for a new generations of devices combining standard microelectronics with spin-dependent effects…”

S.A. Wolf et. al. Science 294, 1488 (2001)

“Microelectroncs devices that function by using the spin of the electrons are nascent multibillion-dollar industry—and may lead to quantum microchips”

Scientific American 2002

Page 3: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

a) Magnetoelectronics (hard drives, MRAM)

b) Spin field effect transistor

c) Quantum computer 1998-99:“Quantum computing and singe-qubit measurements using the spin-filter effect”

d) Time-resolved optical experiments, Spins in quantum dots, Spin-dependent tunneling,Spin-Hall effect

“Chiral spin resonance and spin-Hall conductivity…” PRB 2005

“Spin Relaxation in the Presence of Electron-Electron Interactions” PRL 2006

Page 4: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

a) magnetoelectronics

giant magnetoresistance (GMR), 1988

e e

Page 5: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Read Head IBM

Page 6: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

b) spin field effect transistor

“Electronic analogue of the electro-optic modulator”S. Datta and B. Das , Appl. Phys. Lett., 1990

Kerr cell electro-optic material

Page 7: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Datta Das spin field effect transistor

FMFM

B

Page 8: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

InxGa1-xAs

InxAl1-xAs

2D Electron Gas = 2DEGconduction band

e donors

InxAl1-xAsInxGa1-xAs

zy

x

InxAl1-xAsInxGa1-xAs

z

++

quantum well

Page 9: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

spin-orbit interaction in semiconductors

2 2 ([ ] )4

: soe

eHm c

spin orbit σ− = − ×p E

is a direction ofasymmetry to the plane of 2D gas

: ˆ([ ] )Rashba term α σ×p l

structure inversion asymmetry (SIA)

l̂1ˆ([

" " :

] )2 B

individual magnetic field

gα σ µ σ× = ⋅pp l B

2D heterostructures:electrons are confined in anasymmetrical potential well

Page 10: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

2 21 1 ˆ([ ] )2 2R x yH p pm m

α σ= + + ×p l

0.04 0.05InAs em m≈ ÷

two chiralities

( )pε

Xp

Yp

2( 2 ( ) )bp m E E m α α± = − / + ∓

2( 1 )Fm v α α= + +ˆ[ ]

current operator

em

α σ⎛ ⎞= + ×⎜ ⎟⎝ ⎠

pJ l

/ Fvα α= - dimensionless

Page 11: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Das et al. Phys. Rev. B 39, 1411 (1989)

beating pattern in Shubnikov-de Haasoscillations due to the Spin Orbit splitting

x 1-xIn Ga As/InAlAs

Page 12: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

1ˆ([ ] )2 Bgα σ µ σ× = ⋅pp l Bspin precession

pB

FM FM

“The spin-orbit-coupling constant is proportional to the expectation value of the electric field at the heterostructure interface and, in principle, can be controlled by the application of a gate voltage. However, this has not yet been demonstrated experimentally”.

S. Datta and B. Das , Appl. Phys. Lett., 1990

suspicious prediction, becausethe expectation value of the electric field (of the confining potential)at the heterostructure interface is actually ZERO,

but it is correct!

Page 13: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

why the expectation value of the electric field

(at the heterostructure interface)is NOT zero:

0 0 0 0

20 0

( ) ( ) [ (

??

)]

( 0 ?) [ 2 ]

z z

z z

V z i p V z

i p E p m

Ψ ∇ Ψ = / Ψ , Ψ =

= / Ψ , − / Ψ =

( )z zeE V z= −∇

Page 14: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

why the expectation valueof the electric field

(at the heterostructure interface)is NOT zero:

0 0 0 0

20 0

20 0

( ) ( ) [ ( )]

( ) [ 2 ]

( )

??

( 2)

?

0[ !1 ( )] ! !

z z

z z

z z

V z i p V z

i p E p m

i p p m z

Ψ ∇ Ψ = / Ψ , Ψ =

= / Ψ , − / Ψ =

= / / Ψ / Ψ ≠,

( )z zeE V z= −∇

Page 15: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Gate voltage control of the spin-splitting

Ψ(z)

InGaAs

gateV

InAlAs

The electron wave function shifts back and forth in response to the gate voltage.The spin-splitting is sensitive to the closeness of the wave function to the interface.

Page 16: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

significant variation of the Spin Orbit coupling constant

relatively small variation of density with the gate voltage∆n~0.1n

0.1α≈

0.05α≈

Page 17: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Problems with the injection of spin carriers from magnets (metals with high values of the Fermi-momentum) to semiconductors.

“Electronic analogue of the electro-optic modulator”

Magnetic semiconductors—tremendous efforts:“How to make semiconductor ferromagnetic-A first course on spintronics”“Why ferromagnetic semiconductors?”“Spintronics: Fundamentals and Applications” Rev.Mod.Phys. 2004

Page 18: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Problems with the injection of spin carriers from magnets (metals with high values of the Fermi-momentum) to semiconductors.

“17 years after”

Spintronics without magnets: “spin-optics”Maxim Khodas, Arcadi Shekhter & A.F.

Page 19: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Stern and Gerlach Experiment, 1922

Page 20: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Basic idea: spin-split trajectories

Stern Gerlach, 1922

- spin-orbit coupling constants 2α α≠1

α1

α∇

ˆ( )[ ]xm

α σ= + ×pJ l

acts as a spin-dependent Lorentz force ( )xα∇

( )ˆ ( )xα σ

= ∇×

∝ ∇ ⋅eff effB A

l

/e mc− effA

y

Spatial inhomogeneous spin-orbit interaction leads to splitting of the trajectories;spin-orbit analogy of the Stern-Gerlach experiment

Page 21: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

spatially inhomogeneous spin-orbit interaction (lateral SO-interface)

cross-sectional view

Page 22: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

lateral SO

lateral SO

Page 23: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”
Page 24: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Snell’s law for electrons

lateral SO

lateral SO

Page 25: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

later

al S

O

( 2 )( 2 )

2

θ

α

π

π ϕ

/ − ≈

/ − ≈

c

c

angle of the total internal reflection and the aperture angle

ϕC

θC

ϕC

θC

electrons propagating at small tangent angles are most sensitive to the SO interaction

shadow interval

Page 26: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

( ) 0 0( )

SO SOxz N N

p xm x

α σ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

− Ψ = ; Ψ =

sharp and smooth interfaces

1η <<smooth interface--WKB:

( ) ( )( ) ( )x xi p dx i p dx

x x

x xx e x ev v

χ χφ φ+ −

+ −+

++ −++ −

∫ ∫Ψ = +

( ) 1 ; ( ) 0x xφ φ++ −+= −∞ = = −∞ = .

d -- width of the lateral interface;

-- wave length.λ( / ) / /Fd dx p dη α α λ= ∼

0

0

x x xN N Nz

x xSO SO

ip x ip x ip xip z

ip x ip x

e e r e r xe

e t e t x

χ χ χ

χ χ+ −

− −+ + −++ −++

+ −++ −+

⎧ + + , <⎪Ψ = ⎨+ , >⎪⎩

from N to SO

sharp interface--continuity conditions:1η ≥

Solution of the “Fresnel’s” problem:

Page 27: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Solution of the “Fresnel’s” problem:

spin carriers pass through (and reflect from)the region of inhomogeneous spin-orbit interaction practically without changing their chirality:

for any spin-split spectrum (Rashba, Dresselhaus):

( )4 F

E EEα

+ −−=

" "SO Nα δα α α→ = −

Page 28: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

α⇐∇

the intensities per unit outgoing angle of the transmitted electrons.Full line: sharp N-SO interface. Dashed line: smooth N-SO interface

0.1α =

( / ) / / 1Fd dx p dη α α λ= ∼ smooth interface:curves become almost rectangular

important forpotential applications

Page 29: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

region of inhomogeneous SO

Page 30: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

further development :Shekhter, Khodas & A. F.Phys. Rev. B 71, 125114 (2005)

Page 31: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

spin filter: analogy with opticsAngle of total internal reflection is also a “Brewster angle”

Page 32: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”
Page 33: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Spin Field Effect Transistoreffectiveness, fastness , size, temperature

Transparency of the stripe (in quasiclassics)

1

ϕ c/4π /2π

Page 34: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”
Page 35: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

feasibility of the proposal

the connection between geometrical optics and ballistic electron transport was established by TMF (transverse magnetic focusing):

“control of ballistic electrons in macroscopic 2D electron systems” 1990“hot electron spectrometry with quantum point contacts” 1990

Appl. Phys. Lett.vol. 74, 1281 (1999)

Page 36: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

Spin-splitting in p-type GaAs

S.J. Papadakis, E.P.De Poortere, M. Shayegan and R. Winkler.

2000

Page 37: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

proven example of optics of particles

Neutrons OpticsD.J. Hughes

New York 1954

internal

cold neutrons are transported by supermirror neutron guides

Page 38: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

conclusion:the tasks of spintronics can be solved by ballistic electrons;spintronics can work with electron spin the way optics does it routinely with light polarization;this approach exploiting the analogy with the optics of polarized light can be called “spin-optics”.

Thanks to Maxim Khodas and Arcadi Shekhterfor the fruitful collaboration

German-Israeli Foundationfor Scientific Research and Development

Page 39: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

2000

All over the world, "spin doctors" are working to understand thecharacteristics of spin-dependent phenomena in order to developa new generation of electronic-spintronic devices.

Page 40: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

diffuse emission for the purposes of spin filtering

further development :Shekhter, Khodas & A. F.Phys. Rev. B 71, 125114 (2005)

Page 41: Spintronics without Magnets: spin-opticscm.physics.tamu.edu/cmseminars/cm_talks/2007_01_28_Finkelstein_A.pdf · “How to make semiconductor ferromagnetic-A first course on spintronics”

sharp N-SO interface: the intensities per unit outgoing angle of the transmitted electrons

0.1α =

( / ) / / 1Fd dx p dη α α λ= ∼

smooth SO-interface:curves become almost rectangular

important forpotential applications

α⇐∇