54
Micromagnetics for Spintronics André THIAVILLE Laboratoire de Physique des Solides Univ. Paris-Sud & CNRS 91405 Orsay, France International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016, A. Thiaville 1

Micromagnetics for Spintronics

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Micromagnetics for Spintronics

Micromagnetics for Spintronics

André THIAVILLE

Laboratoire de Physique des Solides Univ. Paris-Sud & CNRS

91405 Orsay, France

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016, A. Thiaville 1

Page 2: Micromagnetics for Spintronics

F

F

Mechanics of continuous media

What does Micromagnetics ?

Micromagnetics = mechanics of continuous magnetic structures International School on Spintronics & Spin-

Orbitronics, Fukuoka 16-17 dec. 2016, A. Thiaville

2

Page 3: Micromagnetics for Spintronics

Why use Micromagnetics ?

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 3

Page 4: Micromagnetics for Spintronics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 4

Page 5: Micromagnetics for Spintronics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 5

Page 6: Micromagnetics for Spintronics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 6

Page 7: Micromagnetics for Spintronics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 7

Page 8: Micromagnetics for Spintronics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 8

Page 9: Micromagnetics for Spintronics

L

231,0

2

0 s

demech

MEE

0,

2

demechE

LAE

stable monodomain state for

3

231

22

0 LL

AM

s

Demagnetising factor N

NL

With anisotropy, the transition size increases too

When not to use Micromagnetics ? nm-size objects

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 9

Page 10: Micromagnetics for Spintronics

The progressive development of Micromagnetics

1926 1931 1931 1932 1935 1944 1946 1948 1955 1963 1969 . . .

P. Weiss F. Bitter K. Sixtus, L. Tonks F. Bloch L. Landau, E. Lifchitz L. Néel C. Kittel W. Döring T.L. Gilbert W.F. Brown A.E. LaBonte

Concept of magnetic domains Observation of domain (walls) Dynamics of domain walls Bloch wall Effective field, LL dynamic equation Bloch walls for different anisotropies Single domain particles Domain wall dynamic structure, mass Gilbert damping, LLG equation Micromagnetics Asymmetric Bloch wall: numerical micromagnetics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 10

Page 11: Micromagnetics for Spintronics

What is Micromagnetics ?

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 11

Page 12: Micromagnetics for Spintronics

0

0.2

0.4

0.6

0.8

1

m

my

mx

position x

atomic spins continuous distribution

Basic assumptions of Micromagnetics

x

y

mTMM s

)(

1) Fixed magnetization modulus

2) Slow variations at the atomic scale -> continuous model trm ,

1m

« micromagnetization »

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 12

Page 13: Micromagnetics for Spintronics

i j jiSSJE

Basic magnetic energy terms

H

Exchange

Anisotropy Demagnetising field

Applied field

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 13

Page 14: Micromagnetics for Spintronics

Micromagnetic equations : statics

Dss HmMHmMmKGmAE

00

2

2

1)()(

exchange anisotropy applied field demagnetizing field

+ boundary conditions

Statics : minimise Brown equations

effective field exchangeanisodemagappliedeff HHHHH

mM

A

s

0

2

m

E

MH

s

eff

0

1

0

mxH eff

0

nm

rdEV

3

NB « functional derivative »

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 14

Page 15: Micromagnetics for Spintronics

MdivHdiv D

0

DHrot

0appHdiv

jHrot app

+ boundary conditions

Demagnetizing field : magnetostatic approximation

MHB

0 with 0Bdiv

and jHrot

demagnetizing field applied field

nMnHHD

ext

D

)(

int

0)(int

tHHD

ext

D

appD HHH

volumic magnetic charges

surfacic magnetic charges

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 15

Page 16: Micromagnetics for Spintronics

Basic micromagnetic characteristic lengths

KA Bloch wall width parameter

A=10-11 J/m, K=102 – 105 J/m3 = 1 - 100 nm

2

0

2

sM

A

exchange length

Ms= 106 A/m = some nm

2

2

0

2

sM

KQQuality factor

Q > 1 hard material Q << 1 soft material

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 16

Page 17: Micromagnetics for Spintronics

The Bloch wall : length Easy axis z

y x

q m

x

y

)(cos

)(sin0

xθm

No demag energy 0mdiv

qq 22

sinKdxdAE

qq ,0 -5 -4 -3 -2 -1 0 1 2 3 4 50

0.25

0.5

0.75

11

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 17

Page 18: Micromagnetics for Spintronics

The magnetic vortex : length

0//

rxry

m0mdiv

2D magnetization

0 nm

Divergence of the exchange energy 22

/ rAmAEech

3D magnetization

)(cos

/)(sin

/)(sin

r

rxr

ryr

m

qq

q 0mdiv

0 nm

qq

222

/sindrdrAE

ech

Ansatz

θM

E s

dem

2

2

0 cos2

International School on Spintronics & Spin-

Orbitronics, Fukuoka 16-17 dec. 2016, A. Thiaville

18

Page 19: Micromagnetics for Spintronics

Observation by Magnetic force microscopy (MFM)

NiFe (50 nm)

T. Okuno

JM Garcia

240nm 240nm

Topography Magnetic image

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 19

Page 20: Micromagnetics for Spintronics

The Néel wall

Thin film without anisotropy, or small in-plane anisotropy

Bloch wall

Néel wall

+ + +

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 20

Page 21: Micromagnetics for Spintronics

Walls in soft thin films

Symmetric Néel wall

Asymmetric Néel wall

Asymmetric Bloch wall

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 21

Page 22: Micromagnetics for Spintronics

2D instability of the Néel wall : cross-tie

- - - - - - -

+ + + + + + +

electron holography image

A. Tonomura et al., Phys. Rev. B25 6799 (1982)

map of the magnetic charges

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 22

Page 23: Micromagnetics for Spintronics

Magnetization dynamics

/ML

Angular momentum dynamics

gyromagnetic ratio (>0)

meg

gB

2

dtLd

m

H

HmMs

0

mHdtmd

0

..102.25

00IS

28 GHz/ T

Can be found directly from quantum mechanics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 23

Page 24: Micromagnetics for Spintronics

Micromagnetic equations : dynamics

dtmdmmH

dtmd

eff 0

Landau-Lifshitz-Gilbert (LLG)

mHmmH effeff

2

0

1

Effective field exchangeanisotropydemagappliedeff HHHHH

mM

A

s

0

2

m

E

MH

s

eff

0

1

: Gilbert damping parameter

(solved form of LLG)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 24

Page 25: Micromagnetics for Spintronics

Properties of the magnetization dynamics

0.2)(

2

dtmdm

dt

md

Conservation of the magnetization modulus

2

00

00

)/(.

..

dtmdMmxH

dtmdM

dtmdxmHM

dtmdHM

dtdE

seff

s

effs

effs

Decrease of the energy with time : the magnetic system is not isolated

1)

2)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 25

Page 26: Micromagnetics for Spintronics

J. Miltat, Nano Spin School, Cargese 05-2005

Numerical Micromagnetics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 26

Page 27: Micromagnetics for Spintronics

Finite differences : Finite elements :

Two types of numerical schemes

J. Miltat, Nano Spin School, Cargese 05-2005

- easy to code - well adapted to demag field calculation (FFT) - most used

- can handle any shape - can easily implement local mesh refinement

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 27

Page 28: Micromagnetics for Spintronics

Design rules

Cell size smaller than the characteristic length of the problem (of the structure if statics only) In principle, results for decreasing size meshes should be extrapolated to zero mesh size to reach the continuous limit Warnings : - mesh friction - mesh orientation effects - Bloch points - Brown paradox : role of defects

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 28

Page 29: Micromagnetics for Spintronics

Time schemes

mHHmH

K

sDA

seff MM

A

00

12

effeff

mmmdtdm HH

00

21

TDtT

Heat diffusion equation :

Stability of explicit scheme for dt < (dx)2 / D

Small time steps, or implicit scheme

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 29

Page 30: Micromagnetics for Spintronics

Codes

1) OOMMF (http://math.nist.gov/oommf): since 1999 - public and free; finite differences - easy to use, versatile inputs (scripts) - requires expertise in C++ for modification 2) MuMax3 (http://mumax.github.io) : since 2011 - public and free; finite differences - extremely fast (runs on GPUs) 3) Nmag (http://nmag.soton.ac.uk/nmag) : since 2007 - public and free; finite elements Home-made programs Commercial codes

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 30

Page 31: Micromagnetics for Spintronics

J. Miltat, Nano Spin School, Cargese 05-2005

Other energy terms and effective fields

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 31

Page 32: Micromagnetics for Spintronics

mMMHm

E

MH sth

s

eff

;

1

0

0

thH

H thi (t)H th

j (t' ) ij (t t' )

2kBT

0MsV

(Hthi )

2kBT

0MsV

System supposed to evolve "slowly"

Inclusion of some thermal fluctuations : Langevin model

W. F. Brown, Phys. Rev. 130 (1963) 1677 TkB

J. Miltat, Nano Spin School, Cargese 05-2005

V: volume of a mesh cell

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 32

Page 33: Micromagnetics for Spintronics

Spin transfer torque (STT)

m m1

electrons

in

out

given

in out

Favors a parallel alignment of F to F1

m m1

in

out

given

in out

Favors an anti-parallel alignment of F to F1

electrons

mmmmmDeM

PJg

dtmd

s

B

transferspin

11

12

Slonczewski STT

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 33

Page 34: Micromagnetics for Spintronics

Spin transfer torque (CPP geometry)

mmmmmdt

mdmmH

dt

mdeff

110

1

m1

m

transferspindtmd

destabilizing stabilizing

Slonczewski field-like (damping-like)

Effective field for the Slonczewski term

10

erspintransfeff,

1 mmH

m

m1

q

No energy term to be associated with this spin transfer torque term !

transferspindtmd

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 34

Page 35: Micromagnetics for Spintronics

Torque by the spin Hall effect in an adjacent layer

Co 0.6 nm

Pt 3 nm electrons

CIP in Co + CPP

spin Hall in Pt with y polarized

(spin-orbit scattering) reference layer

)(1

ymmt

m

SHE

teM

gJ

teM

gJ

s

BHx

s

Bzspin

22

1 , q

Slonczewski

CPP-STT

First demonstration of the effect on domain walls : P.P.J. Haazen, E. Murè, J.H. Franken, R. Lavrijsen, H.J.M. Swagten, B. Koopmans Nat. Mater. 12, 299 (2013)

x

z

y

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 35

Page 36: Micromagnetics for Spintronics

Spin transfer torque (CIP geometry)

electrons

before after

CPP spin transfer between successive x slices

L. Berger, J. Appl. Phys. 49, 2156 (1978)

Adiabatic limit (walls are wide): carrier spins always along local magnetization -> angular momentum given per unit time in the slab dx

))()(( dxxsxsPe

J

dxx

mP

e

J

2dx

dt

mdM s

=

s

m

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 36

Page 37: Micromagnetics for Spintronics

mux

mu

dt

md

transferspin

)(_

s

B

Me

gPJu

2

Permalloy : Cm

Me

g

s

B /1072

311

1 x 1012 A/m2 & P = 0.5 u = 35 m/s

u : a velocity that expresses the spin transfer (spin drift velocity) (Zhang & Li : bJ)

Spin transfer torque in continuous form (CIP)

« adiabatic » term

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 37

Page 38: Micromagnetics for Spintronics

Full LLG equation under CIP-STT

mmumummmHm xxtefft

0

"adiabatic term" "non-adiabatic term"

Solved form

mmumu

mHmmHm

xx

effefft

1

1

1002

Initial velocity for step current

A. Thiaville et al., Europhys. Lett. 69 990 (2005)

uV20

1

1

m

E

MH

s

eff

0

1 effective field of other micromagnetic terms

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 38

Page 39: Micromagnetics for Spintronics

The “non-adiabatic” term : many models

2

1/sf

sd

sf

sd

<<1 expected for 3d metals

3) Ab initio calculations : spin-orbit coupling for the carriers 4) Non-local effects

1) True non-adiabaticity for narrow walls ? Requires sub-nm thin domain walls 2) Spin accumulation and precession

I. Garate et al., PRB 79 104416 (2009)

G. Tatara et al., Phys. Rep. 468, 213 (2008)

J.Q. Xiao, A. Zangwill, M. Stiles

PRB 73, 054428 (2006)

S. Zhang and Z. Li, PRL 93, 127204 (2004)

A. Manchon et al., arXiv 1110.3487

D. Claudio Gonzalez et al., PRL 108 227208 (2012)

C. Petitjean et al., PRL 109, 117204 (2012)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 39

Page 40: Micromagnetics for Spintronics

jijiij SMSE

ijijij AntisymSymM

(good base)

3

2

1

00

00

00

ij

ij

ij

ij

A

A

A

Sym

SDSAntisym ijij

jiij

ijji

antisym

ij

SSD

DSSE

« pseudodipolar »

« anisotropic exchange »

« antisymmetric »

Only if no inversion symmetry

Antisymmetric exchange in asymmetric structures (Dzyaloshinskii-Moriya interaction : DMI)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 40

Page 41: Micromagnetics for Spintronics

)( jiij

antisym

ij SSDE

ijjijijiijji

antisym

ji DDSSDSSDE

)()(

The micromagnetic forms of DMI

What about the orientation of the DMI vector ?

Localized magnetism, single crystal : Moriya rules apply

T. Moriya, Phys. Rev. 120, 91-98 (1960)

Isotropic « bulk case » uDuD

)(

Isotropic « interface case » uzDuD

)(

Chiral spin spirals favored

Chiral spin cycloids favored

y

mm

y

mm

x

mm

x

mmDe

y

zz

yx

zz

x

DM

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 41

Page 42: Micromagnetics for Spintronics

J. Miltat, Nano Spin School, Cargese 05-2005

Physics without fully solving the LLG equation:

Thiele equation

Collective coordinates model for domain wall dynamics

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 42

Page 43: Micromagnetics for Spintronics

Derivation of the Thiele equation (1)

LLG equation mmmHm tefft

0

`solved’ form mmmmH tteff

0/

ASSUME a magnetization structure in RIGID MOTION

))((),( 0 tRrmtrm

Force on the structure

i

effs

i

effs

i

ix

mHM

R

mHM

dR

dEF 0

00

j j

jtx

mVm 0

j ijj

js

ix

m

x

m

x

mmV

MF 000

0

0

0

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 43

Page 44: Micromagnetics for Spintronics

A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973)

0

FFF dissipgyro

Gyrotropic force case of a film in x-y plane of thickness h

VGFg

Sk

ssz Nh

Mdxdydzm

y

m

x

mMG

4

0

00

00

0

0

Dissipation force

VDF

dxdydz

x

m

x

mMD

ji

sij

00

0

0 .

j j

j

ji

sj

ji

si V

x

m

x

mMVm

x

m

x

mMF 00

0

00

00

0

0

Derivation of the Thiele equation (2)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 44

Page 45: Micromagnetics for Spintronics

A. Thiaville et al., Europhys. Lett. 69, 990 (2005)

Applications of the Thiele equation

0

FuVDuVG

Simple wall (Gz=0) 0

FVD

hM

dxdzx

mMD

T

ssxx

2

0

0

2

0

0

0

hHMF sx 02HV T

x

0

(both per unit length)

Thiele equation under CIP STT

Free structure (F=0), no gyrovector uV

/

Defines the Thiele domain wall width T

A.A. Thiele, J. Appl. Phys. 45, 377 (1974)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 45

Page 46: Micromagnetics for Spintronics

SHE longitudinal force on a magnetic structure

LLG with SHE pmmmmmHm eff

10

Solve for Heff

(Thiele procedure) mpmmmmHeff

11

0

The forces are mHM

dX

dEF xeff

sx

0

0

pmmM

mpmM

F xs

xsSHE

x

0

0

0

0

DMI energy density (interfacial DMI) xyyx

y

zz

yx

zz

x

DM

mmmmD

y

mm

y

mm

x

mm

x

mmDe

)()(

SHE: for j//x one has p//y

SHE force along J according to Néel chirality !

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 46

Page 47: Micromagnetics for Spintronics

Collective coordinates models of domain wall dynamics

J.C. Slonczewski, Intern. J. Magnetism 2, 85 (1972) … A.P. Malozemoff, J.C. Slonczewski, Magnetic domain walls in bubble materials (Academic Press, 1979)

Slonczewski equations for DW field dynamics in bubble materials (films with large PMA)

N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

1D field dynamics of a Bloch wall

1D DW dynamics in nanowires of soft magnetic materials

A. Thiaville et al., J. Magn. Magn. Mater. 242, 1061 (2002) D. Porter & M. Donahue, J. Appl. Phys. 95, 6729 (2004) A. Thiaville & Y. Nakatani, in Spin Dynamics in Confined Magnetic Structures III (Springer, 2006) A. Thiaville et al., Europhys. Lett. 69, 990 (2005) A. Thiaville & Y. Nakatani, in "Nanomagnetism and

Spintronics", (Elsevier, 2009, 2013)

Field

STT

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 47

Page 48: Micromagnetics for Spintronics

Construction of the model(s)

appHq

0

cossin0 KHq

q

qq

E

M s0

0sin

q

qq

E

M s sinsin

0

0

LLG in (q, )

variables (here with only conservative terms)

)(

)(expAtan2),(

t

tqxtxq )(),( ttx Assumption for the structure

(here, 1D assumption)

Case of DW driven by easy axis field

J.C. Slonczewski, Intern. J. Magnetism 2, 85 (1972)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 48

Page 49: Micromagnetics for Spintronics

Walker field sKW

MKHH0

/2/

Explicit solution for angle (t) for field applied at t=0

2

2

2

2

1Atan1

1tan1tan

t

H app

app

W

H

H

Wapp HH 1

1Atanh1

1tanh1tan

22

2

2 / tH app Wapp HH 1

The Walker solution (1D)

N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 49

Page 50: Micromagnetics for Spintronics

appHqvWall velocity

Linear mobility

Velocity loss due to precession

Precessional regime, constant

Wapp HH

2

22

1

Wapp

app

HHHq

Limit case without transverse anisotropy

0WH

tH app

21

tHq app21

Uniform precession

« hard wall » mobility

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 50

Page 51: Micromagnetics for Spintronics

0 1 2 3 40

1

2

3

4

u / vW

v / v W

10

3

1.5

1

0.5

0.25

0

/

1D model in the case of STT

For stationary motion

uv /

stC

Wvuv

Döring limit of stationary motion

uq

uH

qK cossin0

A. Thiaville et al., Europhys. Lett. 69, 990 (2005)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 51

Page 52: Micromagnetics for Spintronics

What Micromagnetics does not (fully) describe: The Bloch point

r

rm

r

Aeexc

2

2for + rotations

RAEexc 8R radius where BP profile applies

Exchange Energy density : Total energy:

hedgehog > circulating > spiraling

Demag energy

W. Döring, J. Appl. Phys. 39, 57 (1968)

Diverges ! Finite !

E. Feldtkeller, Z. angew. Phys. 19, 530-536 (1965) [17, 121-130 (1964)]

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 52

Page 53: Micromagnetics for Spintronics

Conclusions & perspectives

Versatile micromagnetic framework One (a few) phenomenological parameter(s) for each torque term Atomic-scale Micromagnetics also exists In most cases, a numerical calculation is required But many physical insights can be obtained analytically Limit: magnetization not fixed (ultrafast, large temperatures) ./..

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 53

Page 54: Micromagnetics for Spintronics

References

A. Hubert, R. Schäfer, Magnetic Domains (Springer, 1998)

Handbook of Magnetism and Advanced Magnetic Materials, volume 2, H. Kronmüller and S. Parkin Eds. (Wiley, 2007)

International School on Spintronics & Spin-Orbitronics, Fukuoka 16-17 dec. 2016,

A. Thiaville 54