35
LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 2009 1 Spin Measurements in Supersymmetry at ATLAS Christopher Lester Cavendish Laboratory, Cambridge (on behalf of the ATLAS collaboration)

Spin Measurements in Supersymmetry at ATLAS

  • Upload
    val

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

Spin Measurements in Supersymmetry at ATLAS. Christopher Lester Cavendish Laboratory, Cambridge (on behalf of the ATLAS collaboration). This talk is Backwards. not upside down !. Conclusions. - PowerPoint PPT Presentation

Citation preview

Page 1: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20091

Spin Measurements in Supersymmetry at ATLAS

Christopher LesterCavendish Laboratory, Cambridge

(on behalf of the ATLAS collaboration)

Page 2: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20092

This talk is Backwards

Page 3: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20093

not upside

down !

Page 4: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20094

Conclusions•ATLAS does not yet know the

circumstances (models, masses, integrated luminosities) in which the spins of supersymmetric particles will be unambiguously measurable

•There are lots of good and promising ideas – both within ATLAS and outside

•some are partly tested

•some are un-tested

•plenty of work remains to be done!

Page 5: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20095

What is “Discovering SUSY” ?

•What makes Supersymmetry different to Universal Extra Dimensional (UED) models?

•One part of the answer:

SPIN

Page 6: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20096

We will see two important themes:

•Mass measurements will precede(*) spin determinations

•“Spin measurement”(**) should not be confused with “sensitivity to spin”

(*) or will at best be simultaneous with

(**) Here “spin measurement” means “determining unambiguously the correct nature (scalar, fermion, vector) of one or more particles in a decay chain or model

Page 7: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20097

The methods considered here

•Spins in “QLL chain”

• A.Barr hep-ph/0405052 ATL-PHYS-2004-017

• Smillie et al hep-ph/0605286 (including ATLAS member)

• Biglietti et al ATL-PHYS-PUB-2007-004

(Study of second lightest neutralino spin measurement with ATLAS detector at LHC

• Matchev et al arXiv:0808.2472

•Slepton Spin (pair production)

• A.Barr hep-ph/0511115 ATL-PHYS-PUB-2005-023

Page 8: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20098

Other interesting methods

•Gluino chain spin

• Alvez, Eboli, Plehn hep-ph/0605067

• MAOS method

• Cho, Kong, Kim, Park arXiv:0810.4853

•Spins in chains with charginos

• Wang and Yavin hep-ph/0605296

• Smillie hep-ph/0609296

• Spins in chains radiating photons

• Ehrenfeld et al arXiv:0904.1293

Page 9: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 20099

Spin Consistency Check

Page 10: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200910

Spin Consistency Check

Di-Lepton Invariant Mass (GeV)

Rel

ativ

e F

req

uen

cy Straight lineConsistent with:

• Phase-space

• Scalar slepton (SFSF)

•Fermion KK lepton (FVFV)

Page 11: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200911

QL Spin Determination (A.Barr)

“NEAR”

“FAR”

How can we tell from ?

2 problems:

How can we distinguish the ‘near’ lepton from the ‘far’ lepton?

hep-ph/0405052 ATL-PHYS-2004-017

Page 12: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200912

Quark+NearLeptoninvariant mass distributions for:

sin ½θ*

Back to backin 2

0 frame

QL+

QL-

Phase space(spin-0)

Pro

babili

ty d

en

sity

QUARKS

L+ L- and

sin ½θ*

Back to backin 2

0 frame

QL-

QL+

Phase space(spin-0)

Pro

babili

ty d

en

sity

ANTI-QUARKSL+ L- and

__

_

hep-ph/0405052ATL-PHYS-2004-017

Page 13: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200913

Experimental problem

Cannot reliably distinguish QUARKs from ANTI QUARKs

In experiment, can only distinguishRED(QL+,_ L+) from BLUE(QL-,_L-)Can only distinguish lepton chargeRED(QL+,QL+) from BLUE(QL-,QL-)

Page 14: Spin Measurements in Supersymmetry at ATLAS

Expect QUARK and ANTI-QUARK contributions to cancel:

QL+QL+_

QL-QL-

_

SUM jL+

SUM jL-

Page 15: Spin Measurements in Supersymmetry at ATLAS

But LHC is Proton-Proton machine

•More Quarks than Anti-Quarks! So get:

QL+QL+_

QL-QL-

_

SUM

SUM

jL+

jL- Asy

mm

etry

!h

ep

-ph

/04

05

05

2

ATL-

PH

YS-2

004-0

17

Page 16: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200916

“Far” Lepton washout?(though compare with later comments Matchev arXiv:0808.2472)

“NEAR”

“FAR”

Page 17: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200917

jL+

So define mjL+, mjL- asymmetry

parton-level

detector-levelAsy

mm

etr

y “A

spin-0

Spin-

½

MjL / GeV sin ½θ*

where

jL-h

ep

-ph

/04

05

05

2

ATL-

PH

YS-2

004-0

17 500 fb-1

M(QL)

Page 18: Spin Measurements in Supersymmetry at ATLAS

Charge asymmetry at detector level

Susy spins compared only with no spin

(i.e. with phase space)

Points are for 500 fb-1

detector level

no spin

parton level x 0.6

Barr

hep-p

h/0

40

50

52

ATL-

PH

YS-2

004-

017

(similar to SU3)

M(QL)

Page 19: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200919

Tested further in ATLASATL-PHYS-PUB-2007-004

Biglietti et al

Preselection cuts

Dilepton selection cuts

Parametrised Simulation (ATLFAST)

Page 20: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200920

Di-lepton mass spectraATL-PHYS-PUB-2007-004

Biglietti et al

SU1 – MC truth SU3 – MC truth

Here at SU1 there are two sleptons (êL =255 GeV, êR=155 GeV) below chi2 =264 GeV. Chi1=137 GeV

Here at SU3 there is only one accessible slepton below chi2

Chi2=219, êR=155, Chi1=118 GeV

M(LL) M(LL)

Page 21: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200921

Jet-lepton mass spectraATL-PHYS-PUB-2007-004

Biglietti et al

SU1 – MC truth SU3 – MC truth

M(QL) M(QL)

Page 22: Spin Measurements in Supersymmetry at ATLAS

Truth AsymmetryATL-PHYS-PUB-2007-004

Biglietti et alSU1 – MC truth

Near lepton

Left slepton

Near lepton

Right slepton

Far lepton

Right slepton

Far lepton

Left slepton

A A

AA

220 /fb

220 /fb

220 /fb

220 /fb

M(QL) M(QL)

M(QL) M(QL)

Shows asy

mmetry

depends on parti

cle

identities

Page 23: Spin Measurements in Supersymmetry at ATLAS

BackgroundsATL-PHYS-PUB-2007-004

Biglietti et al

•Main background is SUSY

•Mostly defeated by flavour subtraction

•Main Standard Model backgrounds are

•Di-top + jets

•W / Z + jets

Page 24: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200924

Fast simulation resultsATL-PHYS-PUB-2007-004

Biglietti et al

SU1 – ATLFAST SU3 – ATLFAST

Note ... Flavour subtraction

Page 25: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200925

Fast simulation resultsATL-PHYS-PUB-2007-004

Biglietti et al

A A

SU1 – ATLFAST SU3 – ATLFAST

Note ... Flavour subtraction

30 /fb100 /fb

Sufficient power to eliminate null hypothesis

M(JL) M(JL)

Page 26: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200926

Safety checkATL-PHYS-PUB-2007-004

Biglietti et al

SU1 – ATLFAST SU3 – ATLFAST

Expect to see NO ASYMMETRY in these OFOS lepton plots. Confirmed!

30 /fb100 /fb

M(JL) M(JL)

Page 27: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200927

QUACK !

QUACK !

SU

SY

UED

Not all things that quack are ducks!

Page 28: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200928

UEDUED

SUSY SUSY

SPS1a masses

UED type masses

UED and SUSY not distinguished by dilepton mass spectrun

he

p-p

h/0

60

52

86

Compare ratios of dilepton invariant mass distributions for

different spin configurations (SUSY is horizontal) :

M(LL)2 M(LL)2

Page 29: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200929

UED masses SPS 1a masses

Similar form, different magnitudeNot detectable for UED masses

Jet + lepton asymmetry not good at distinguishing UED and

SUSY either.

Page 30: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200930

“ANY-Spin” Determination (Smillie et.al.)

Later fuller follow-up (Matchev, Kong, et al)

F

F FF

S FS

he

p-p

h/0

60

52

86

arX

iv:0

80

8.2

47

2

M(JL)2

(SUSY)(UED)

rela

tive

pro

bab

ilit

y

Cannot distinguish:

Page 31: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200931

01~

01~Rl

~

Rl~

l

l

Direct di-slepton productionA.Barr hep-ph/0511115 ATL-PHYS-PUB-2005-023

Event selection: •two single leptons•transverse missing energy > 100 GeV•no jets with pT> 100 GeV•no b-jets•mT2(l+, l-) < 100 GeV•Mll< 150 GeV•|missing pT+ pT(l+), pT(l-)| <100 GeV•Lepton pT(l1) > 40 GeV, pT(l2) > 30 GeV

Page 32: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200932

Look at slepton production angleA.Barr hep-ph/0511115 ATL-PHYS-PUB-2005-023

Page 33: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200933

Have some access to desired angle

Distribution of is correlated with decay angle

A.Barr hep-ph/0511115 ATL-PHYS-PUB-2005-023

Page 34: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200934

Fast simulation plot

Outer error bars: after SUSY & SM background subtraction

Significance strongly dependent on mass spectrum

A.Barr hep-ph/0511115 ATL-PHYS-PUB-2005-023

Page 35: Spin Measurements in Supersymmetry at ATLAS

LHC SUSY SPIN MEASUREMENTS SPIN PRAHA 200935

End Notes•QLL chain

•Some spin “sensitivity” – but no strong UED/SUSY separation

•Reduced discriminatory power when considering general couplings (Matchev/Kong).

•Di-slepton production

•Better chance of separating UED/SUSY

•Still model dependent

•Both require large cross sections