26
Spin Liquid in the Heisenberg model on the Kagome and Triangular lattices Workshop and Symposium on DMRG Technique for Strongly Correlated Systems in Physics and Chemistry Ian McCulloch University of Queensland Centre for Engineered Quantum Systems (EQuS) 26/6/2015 Ian McCulloch (UQ) iDMRG 26/6/2015 1 / 26

Spin Liquid in the Heisenberg model on the Kagome and ... · Spectroscopy of SU(2) broken states F. Kolley, S. Depenbrock, IPM, U. Schollwöck, V. Alba, Phys. Rev. B 88, 144426 (2013)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Spin Liquid in the Heisenberg model on the Kagomeand Triangular lattices

    Workshop and Symposium on DMRG Technique for Strongly CorrelatedSystems in Physics and Chemistry

    Ian McCulloch

    University of QueenslandCentre for Engineered Quantum Systems (EQuS)

    26/6/2015

    Ian McCulloch (UQ) iDMRG 26/6/2015 1 / 26

  • Outline

    1 Kagome Lattice

    2 Triangular Lattice – 3-leg cylinder

    3 Triangular lattice – 2D

    Ian McCulloch (UQ) iDMRG 26/6/2015 2 / 26

  • Kagome Lattice – Spin-1/2 Heisenberg Model

    Classical phase diagram

    J2 < 0 J2 = 0 – extensive degeneracy J2 > 0

    Ian McCulloch (UQ) iDMRG 26/6/2015 3 / 26

  • J2 = 0 S. Depenbrock, IPM, U. Schollwöck, Phys. Rev. Lett. 109, 067201 (2012)

    SU(2)-preserving DMRG8,000 states – equivalent to ∼ 16,000 states with U(1)allows increase in cylinder size compared with previous calculations

    Ian McCulloch (UQ) iDMRG 26/6/2015 4 / 26

  • Triplet gap

    SU(2) symmetry gives much better convergence with 1/W scalingGap ∼ 0.13(1)

    Ian McCulloch (UQ) iDMRG 26/6/2015 5 / 26

  • Topological Entanglement Entropy

    Reyni entropy Sα = 11−α log2 tr ρα

    Renyi entropies for small α do not converge well - the tail isn’t wellrepresented in DMRGRenyi entropies for larger α are consistent with γ = 1γ = log2(D) – quantum dimension D = 2

    Ian McCulloch (UQ) iDMRG 26/6/2015 6 / 26

  • Phase diagram for J1 − J2 F. Kolley, S. Depenbrock, IPM, U. Scholloöck,V. Alba, Phys. Rev. B 91, 104418 (2015)

    Triplet gap as a function of J2

    Ian McCulloch (UQ) iDMRG 26/6/2015 7 / 26

  • Spin structure factor

    Clear signals of magnetic ordering√(3)×

    √3 structure at J2 = −0.2

    q = 0 structure at J2 = 0.4

    Ian McCulloch (UQ) iDMRG 26/6/2015 8 / 26

  • SU(2) symmetry breaking

    In 1D calculations, it is almost always beneficial to use any availablecontinuous symmetry (definitely for finite MPS, more subtle for infiniteMPS)in 2D it isn’t clear – continuous symmetries can spontaneously breakIs it a good idea to use SU(2) symmetry, even if it is broken?

    In 1D the answer would almost certainly be no

    compare Néel state with entropy S = 0 compared with the projection ontoa singlet state with entropy S ∼ ln N

    In 2D, the answer appears to be yesadditional entropy is still only ∼ ln Nsmall correction verus S ∝ width, especially for small finite systems

    Ian McCulloch (UQ) iDMRG 26/6/2015 9 / 26

  • Spectroscopy of SU(2) broken states F. Kolley, S. Depenbrock,IPM, U. Schollwöck, V. Alba, Phys. Rev. B 88, 144426 (2013)

    The appearance of Goldstone modes kills the gap in the entanglementspectrumThe low-lying levels have a Tower of States structure

    Ian McCulloch (UQ) iDMRG 26/6/2015 10 / 26

  • Entanglement Spectrum Scaling

    Goldstone modes – linear dispersion, � ' 1/√(V)

    Implies that the TOS gap should vanish in 1/WFinite gap to higher levels

    Ian McCulloch (UQ) iDMRG 26/6/2015 11 / 26

  • Triangular lattice3-lag cylinder – S. Saadatmand, B. Powell, IPM, Phys. Rev. B 91, 245119 (2015)

    Map 3-leg cylinder onto 1D in the YC configuration

    Ian McCulloch (UQ) iDMRG 26/6/2015 12 / 26

  • Phase diagram

    120ᵒ gapless

    FM saturated

    Majumdar–Ghosh phase

    Columnar

    J2/J

    J1/J

    165ᵒ

    θ = 0

    θ = π/2

    θ = ±π

    θ = -π/2

    6.5ᵒ

    70.0ᵒ

    152.0ᵒ

    Ian McCulloch (UQ) iDMRG 26/6/2015 13 / 26

  • 120° State

    ............

    (a)

    Columnar State

    ............

    (b)

    A

    B

    C

    C

    A

    B

    A

    B

    C

    C

    A

    B

    A

    B

    C

    C

    A

    B

    A

    B

    C

    C

    A

    B

    ............

    Majumdar-Ghosh (θ=90°)

    (c)

    Majumdar-Ghosh State

    ............

    (d)

    Ian McCulloch (UQ) iDMRG 26/6/2015 14 / 26

  • iDMRG – correlation length scaling

    100 1000m

    1

    10

    100η

    120° state, θ=-45°quasi-long-range

    Majumdar-Ghosh state, θ=115°short-range

    Columnar state, θ=38°quasi-long-range

    Ian McCulloch (UQ) iDMRG 26/6/2015 15 / 26

  • Columar – Majumdar-Ghosh transition

    Phase transition from gapless columnar state to gappedMajumdar-Ghosh stateHow to locate?

    30 40 50 60 70 80 90θ (degrees)

    0

    0.1

    0.2

    0.3

    0.4

    0.5Sp

    in G

    ap

    Majumdar-GhoshState

    ColumnarState

    θc

    (a)

    Ian McCulloch (UQ) iDMRG 26/6/2015 16 / 26

  • Better approach – Binder cumulant

    Ian McCulloch (UQ) iDMRG 26/6/2015 17 / 26

  • 2D triangular lattice S. Saadatmand (work in progress)

    In the 2D model, possible spin liquid phase

    Mishmash et al., Phys. Rev. Lett. 111, 157203 (2013)

    Ian McCulloch (UQ) iDMRG 26/6/2015 18 / 26

  • More recently, preprints from S. R. White’s group (1502.04831) andSheng group (1504.00654)Two candidate groundstates, suggest Z2 spin liquidbut TEE difficult to fitMany puzzles – chiral? What are the excitiations?

    Most calculations done at J2 = 0.1

    0 0.2 0.4 0.6 0.8 1α=J

    2/J

    1

    0

    0.2

    0.4

    0.6

    0.8

    1

    χ/χ c

    lass

    ical

    Sublattice Magnetization(120° order parameter)Staggered Magnetization(columnar order parameter)

    α1=0.109(4) α

    classical α2=0.222(5)

    Magnetization order parameters,finite DMRG results for THM,extrapolated to thermodynamic limitusing all or some of: YC30×3, XC36×4,YC36×4, 5leg-Cwrap=(-4,5), andYC48×6, m

    max=1250.

    %25(8)

    Ian McCulloch (UQ) iDMRG 26/6/2015 19 / 26

  • iDMRG calculations

    Two groundstates, in odd and even spin sectorswith SU(2) iDMRG this is a simple manipulataion of the boundaryquantum numbers – the system remains translationally invariantPhase boundaries are a bit different from previous calculationsNo chiral symmetry breakingstructure factor in the spin liquid is a bit different to previous calculationsAverage nearest-neighbor spin correlation is somewhat different (we getS.S ' −0.25 to −0.3, versus −0.18 to 0.22)

    Ian McCulloch (UQ) iDMRG 26/6/2015 20 / 26

  • Correlation length

    Ian McCulloch (UQ) iDMRG 26/6/2015 21 / 26

  • Structure factor120◦ state

    "KxKyColor.SSF.alpha_-0.025.UnitCell18.iTHC-YC6.m_1250.grid200x200.EfficientNumbering.dat"

    -6 -4 -2 0 2 4 6

    Kx

    -6

    -4

    -2

    0

    2

    4

    6

    Ky

    1

    2

    3

    4

    5

    6

    7

    Ian McCulloch (UQ) iDMRG 26/6/2015 22 / 26

  • Structure factorSpin Liquid – even sector

    "KxKyColor.SSF.alpha_0.125.UnitCell12.iTHC-YC12.m_5000.grid200x200.EfficientNumbering.dat"

    -6 -4 -2 0 2 4 6

    Kx

    -6

    -4

    -2

    0

    2

    4

    6

    Ky

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    Ian McCulloch (UQ) iDMRG 26/6/2015 23 / 26

  • Structure factorSpin Liquid – odd sector

    yColor.SSF.alpha_0.125.SpinHalfBoundary.UnitCell24.iTHC-YC12.m_3500.grid200x200.EfficientNumbering.dat"

    -6 -4 -2 0 2 4 6

    Kx

    -6

    -4

    -2

    0

    2

    4

    6

    Ky

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    6.5

    Ian McCulloch (UQ) iDMRG 26/6/2015 24 / 26

  • Structure factorColumnar phase

    "KxKyColor.SSF.alpha_0.465.UnitCell18.iTHC-YC6.m_2000.grid200x200.dat"

    -6 -4 -2 0 2 4 6

    Kx

    -6

    -4

    -2

    0

    2

    4

    6

    Ky

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Ian McCulloch (UQ) iDMRG 26/6/2015 25 / 26

  • Summary

    Kagome Lattice

    Strong evidence for a Z2 spin liquidTriplet spin gap ∼ 0.13(1)Cannot (yet) distinguish between Z2 (toric code) and double-semionliquidsSU(2) level spectroscopy is a useful tool for symmetry-broken phases

    Triangular lattice3-leg ladder shows 120◦ to columnar transition, but no spin liquidProbable spin liquid for wider cylindersPhase boundaries are probably narrower than previous calculations– but depends strongly on details, eg even width cylinders frustrate 120◦

    ordercolumnar phase is diagonal in iDMRG (2-fold degenerate)

    Ian McCulloch (UQ) iDMRG 26/6/2015 26 / 26

    Kagome LatticeTriangular Lattice – 3-leg cylinderTriangular lattice – 2D