21
Spectral Decomposition 1

Spectral Decomposition

  • Upload
    niksr91

  • View
    59

  • Download
    3

Embed Size (px)

DESCRIPTION

Spectral Decomposition in Seismic data interpretation

Citation preview

Page 1: Spectral Decomposition

Spectral Decomposition

1

Page 2: Spectral Decomposition

Long Window Analysis

• The geology is unpredictable.• Its reflectivity spectrum is therefore white/blue.

Page 3: Spectral Decomposition

Long Window AnalysisReflectivityr(t)

Fourier Transform

Amplitude

Fre

quen

cy

Waveletw(t)

Noisen(t)

Seismic Traces(t)

Amplitude Amplitude Amplitude

Fre

quen

cy

Fre

quen

cy

Fre

quen

cy

TIMEDOMAIN

FREQUENCYDOMAIN

Tra

vel T

ime

Page 4: Spectral Decomposition

Short Window Analysis

• The non-random geology locally filters the reflecting wavelet.• Its non-white reflectivity spectrum represents the

interference pattern within the short analysis window.

Page 5: Spectral Decomposition

Short Window Analysis

WaveletOverprint

Reflectivityr(t)

Fourier Transform

Amplitude

Fre

quen

cy

Waveletw(t)

Noisen(t)

Seismic Traces(t)

Amplitude Amplitude Amplitude

Fre

quen

cy

Fre

quen

cy

Fre

quen

cy

TIMEDOMAIN

FREQUENCYDOMAIN

Tra

vel T

ime

Page 6: Spectral Decomposition

Spectral Interference

• The spectral interference pattern is imposed by the distribution of acoustic properties within the short analysis window.

Page 7: Spectral Decomposition

Spectral Interference

Source WaveletAmplitude Spectrum

Thin Bed ReflectionAmplitude Spectrum

Thin BedReflection

ReflectedWavelets

SourceWavelet

Thin Bed

ReflectivityAcousticImpedance

Temporal Thickness

FourierTransform

FourierTransform

Amplitude Amplitude

Fre

quen

cy

Fre

quen

cy

Temporal Thickness1

Page 8: Spectral Decomposition

The Tuning Cubex

y

z

xy

z

xy

z

xy

freq

xy

freq

Interpret

3-D Seismic Volume

Subset

Compute

Animate

Interpreted3-D Seismic Volume

Zone-of-InterestSubvolume

Zone-of-InterestTuning Cube(cross-section view)

Frequency Slicesthrough Tuning Cube(plan view)

Page 9: Spectral Decomposition

Prior to Spectral Balancing

• The Tuning Cube contains three main components:– thin bed interference,– the seismic wavelet, and– random noise

Multiply

Tuning Cube

xy

freq

xy

freqx

y

freqx

y

freq

Seismic Wavelet NoiseThin Bed Interference

++Add

Page 10: Spectral Decomposition

Short Window Analysis

WaveletOverprint

Reflectivityr(t)

Fourier Transform

Amplitude

Fre

quen

cy

Waveletw(t)

Noisen(t)

Seismic Traces(t)

Amplitude Amplitude Amplitude

Fre

quen

cy

Fre

quen

cy

Fre

quen

cy

TIMEDOMAIN

FREQUENCYDOMAIN

Tra

vel T

ime

Page 11: Spectral Decomposition

Spectral Balancing

xy

freq

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

freq

Split Spectral Tuning Cubeinto Discrete Frequencies

Tuning Cube

Spectrally BalancedTuning Cube

Gather Discrete Frequenciesinto Tuning Cube

Independently NormalizeEach Frequency Map

Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency n

Frequency 1 Frequency 2 Frequency 3 Frequency 4 Frequency n

Frequency Slicesthrough Tuning Cube(plan view)

Spectrally BalancedFrequency Slicesthrough Tuning Cube(plan view)

Page 12: Spectral Decomposition

After Spectral Balancing

• The Tuning Cube contains two main components:– thin bed interference, and– random noise

Tuning Cube

xy

freq

xy

freqx

y

freq

NoiseThin Bed Interference

+Add

Page 13: Spectral Decomposition

Real Data Example

• Gulf-of-Mexico, Pleistocene-age equivalent of the modern-day Mississippi River Delta.

Page 14: Spectral Decomposition

Gulf of Mexico Example 10,000 ft

Channel “A”

Channel “B”

Fault-Controlled Channel

Point Bar

N

1

0

Amplitude

analysis window length = 100ms

Response Amplitude

Page 15: Spectral Decomposition

Gulf of Mexico Example 10,000 ft

North-South Extentof Channel “A” Delineation

Channel “A”

Channel “B”

Fault-Controlled Channel

Point Bar

N

1

0

Amplitude

analysis window length = 100ms

Tuning Cube, Amplitude at Frequency = 16 hz

Page 16: Spectral Decomposition

Gulf of Mexico Example 10,000 ft

North-South Extentof Channel “A” Delineation

Channel “A”

Channel “B”

Fault-Controlled Channel

Point Bar

N

1

0

Amplitude

analysis window length = 100ms

Tuning Cube, Amplitude at Frequency = 26 hz

Page 17: Spectral Decomposition

Hey…what about the phase?

• Amplitude spectra delineate thin bed variability via spectral notching.

• Phase spectra delineate lateral discontinuities via phase instability.

Phase Spectrum

Phase

Fre

quen

cy

Amplitude Spectrum

Amplitude

Fre

quen

cy

Thin Bed Reflection

FourierTransform

Page 18: Spectral Decomposition

Faults

10,000 ft

N

180

-180

Phase

Gulf of Mexico Example

Response Phase

Page 19: Spectral Decomposition

Faults

10,000 ft

N

180

-180

Phase

analysis window length = 100msGulf of Mexico Example

Tuning Cube, Phase at Frequency = 16 hz

Page 20: Spectral Decomposition

analysis window length = 100ms

Faults

10,000 ft

N

180

-180

Phase

Gulf of Mexico Example

Tuning Cube, Phase at Frequency = 26 hz

Page 21: Spectral Decomposition

Summary

• Spectral decomposition uses the discrete Fourier transform to quantify thin-bed interference and detect subtle discontinuities.

• For reservoir characterization, our most common approach to viewing and analyzing spectral decompositions is via the “Zone-of-Interest Tuning Cube”.

• Spectral balancing removes the wavelet overprint.• The amplitude component excels at quantifying thickness

variability and detecting lateral discontinuities.• The phase component detects lateral discontinuities.