48
AIAA AIAA Rocky Mountain Section Seminar Series What’s New in the New SMAD Space Weather Applications David A. Vallado MAY 9, 2015

Space Weather Applications - American Institute of … Space... · 2015-05-28 · Space Weather Applications David A. Vallado ... – Compare Orbital Mechanics content in •SMAD

Embed Size (px)

Citation preview

  • AIAA

    AIAA Rocky Mountain Section Seminar Series Whats New in the New SMAD

    Space Weather Applications

    David A. Vallado

    MAY 9, 2015

  • Outline

    Introduction Compare Orbital Mechanics content in

    SMAD The New SMAD

    Space Weather Application Long term solar cycle generation

    Summary

  • Problem setup

    Suppose you are tasked with determining how much fuel a Low Earth Orbiting satellite will require for a 15 year mission beginning in 2025? Where do you start?

  • SMAD applicable sections Introduction to Astrodynamics

    Keplerian Motion Equations of Motion Classical Orbital Elements Ground Tracks Orbit Determination

    Orbit Perturbations Third-body perturbations Non-spherical Earth Atmospheric Drag

    Chang per rev

    Solar Radiation Pressure

    Orbit Maneuvering Coplanar maneuvers Plane Changes Rendezvous

    Launch Windows Orbit Maintenance

    Space Environment and Survivability Solar cycle Gravitational field and microgravity Upper Atmosphere

  • The New SMAD applicable sections Introduction to Astrodynamics

    Keplerian Orbits Keplers Laws Orbital Elements and terminology

    Orbits of the Moon and planets Satellite Orbit Terminology Orbit Perturbations

    Non-spherical Earth Third-body perturbations Solar Radiation Pressure

    Atmospheric Drag and Satellite decay Chang per rev

    Cd discussion

    Solar Flux cycles

    Satellite decay

    Specialized Orbits GEO Repeat GT Other

    Orbit Maneuvering Coplanar maneuvers Plane Changes Rendezvous

    Overview of Spacecraft Design Lifetime and Reliability Total Delta v

  • Some obvious Differences

    The New SMAD More detail Better tie with Lagrange Planetary Equations

    How perturbing forces affect the orbital elements

    In the text Get More buttons

    Web links for additional information Live calc button

    Perform trade spaces in real-time

  • Some not so Obvious Differences Youll need to Consider Atmospheric Drag

    Several aspects are important How atmospheric drag affects satellite orbits Solar cycles are important for long range planning

    How much fuel is needed Look at the solar cycles

    How do you estimate what the future cycles are supposed to be? Hathaway Schatten Polynomial

    Can be quite far off Other?

    Timing / magnitude issues

  • Remainder of the Presentation Discussion

    Introduce atmospheric drag Factors influencing

    Solution Approaches Atmospheric models

    Input Data Solar Flux

    Historical Prediction

    Short, medium, long range

    A new approach to estimating future solar cycles

  • Intro Atmospheric drag

    Dominant perturbation force for Low Earth satellites Acts to retard motion

    Over time, it eventually causes the satellite to re-enter atmosphere Related to the Suns solar cycle

    About 11 year cycle Accurately estimating its effect

    Requires numerous items! Next slide

  • Mass Maneuvers known? Area Model detail Attitude known? Materials cD

    Accuracy

    Satellite Parameters

    Observations Quality Quantity Type, etc. Solution method Batch Least Squares Fit span correct? Kalman filter Process noise correct? Other Include Orbit Propagation

    Orbit Propagation

    Assumptions Indices F10.7, Kp, ap, etc. Data used in generation Satellite, ground, combination Specific to an orbit class Scope i.e. winds Fidelity?

    Atmospheric Model Development

    Indices Availability Accuracy Source Interpolate? Time lags Include Atmospheric Model Development

    Atmospheric Model Use

    Input State Accuracy? Solution method Integrator type? Propagator Force model fidelity Scope attitude, models, thrust, etc.? Include Satellite Parameters Atmospheric model choice Include Atmospheric Model Use Other

    Orbit Determination

  • Atmospheric Model Development

    Assumptions Indices

    F10.7, Kp, ap, S10, Mg10, etc. Data used in generation

    Satellite, ground, combination Availability

    Specific to an orbital class Scope

    i.e. winds Fidelity

    10-15% in density Numerous models!

  • 1960

    1970

    1980

    1990

    2000

    ICAO/ARDC

    USSA 62

    2010

    USSASupp

    USSA 76

    DENSELLOCKHEED

    JACCHIA

    JACCHIAWalker-BRUCE

    GRAM(Justus)

    GRAM-3

    GRAM-90

    J60(Jacchia)

    J65

    J70

    J71(Jacchia-Roberts)

    CIRA-65

    J77

    CIRA-72

    CIRA-90

    CIRA-61 Harris-Priester

    MSIS-77

    ESR04(von Zahn)

    C(Kohnlein)

    MSIS-83

    HWM-93

    GTM

    CTIM

    GOST-04

    TGCM

    TIGCM

    TIEGCM

    UCL(Fuller-Rowell,

    Rees)

    NCAR(Roble,

    Dickinson)

    MSIS UT(Long)

    DTM-78(Barlier)

    MSIS-86

    MSIS-90

    NRLMSIS-00

    HWM-87

    OG06(Hedin)

    Total density from satellite drag

    Temperature and composition from ground and in-situ

    instruments

    General Circulation models

    1965

    1975

    1985

    1995

    MET-99

    MET-88

    M1, M2(Thullier)

    AEROS(Kohnlein)

    DCA*(Russian)

    HASDM*

    * Corrections to existing models

    GRAM-99

    DTM-94

    DTM-03

    GOST-84

    JB-08*GRAM-07

    GITM

  • Satellite Parameters

    Size and shape affect how atmospheric drag affects a satellite Many sizes and shapes!

    Higher Solar flux, greater impact on satellite orbits

  • GFZ

    ERS-2

    GPS

    JasonGrace-a

    ICESatCHAMP

    Hubble Space Telescope

    Using a single cD is analogous to using a two-body gravity field!

    Various Satellite shapes

    Wheres the errorOn this page?

  • Atmospheric Model Use

    Indices Availability

    Free? Span of data Classified?

    Accuracy of the indices Source

    Observed vs adjusted Prediction

    Interpolate? Time lags

    Includes all Atmospheric Model Development errors

  • Observed & Adjusted Solar Flux

    Observed On the Earth at a particular time ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Observed/

    Adjusted Equivalent value at an average 1 AU distance ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Adjusted/

    Observations Algonquin Radio Observatory, Ottawa, Ontario

    1947 to 1991 May 31 17:00 UTC observations

    Dominion Radio Astrophysical Observatory, Penticton, BC (DRAO) 1991 to date 20:00 UTC observations

    Lenhart Ottawa, at 17:00 UTC (adjusted)

    ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/

    210.7( )

    10.7( ) 2adj

    obs

    F AUF

    r -=

    K L

  • Observed vs. Adjusted Solar Flux Data errors

    Some inconsistencies from data bursts at measurement time 10-40 SFU

    A Solution If DRAOadj Lenhart adj > 0.001

    Lenhartadj = lenhartadj + DRAO-Lenhart

    If DRAOobs - DRAOobs/corr > 0.5

    DRAOobs = DRAOadj + DRAOobs - DRAOobs/corr

    Corrected values in CelesTrak Should the bursts be included?

    -40.0

    -30.0

    -20.0

    -10.0

    0.0

    10.0

    20.0

    30.0

    40.0

    Jan-50 Jan-54 Jan-58 Jan-62 Jan-66 Jan-70 Jan-74 Jan-78 Jan-82 Jan-86 Jan-90 Jan-94 Jan-98 Jan-02 Jan-06 Jan-10 Jan-14

    DRAO (obs) -Lenhart (adj)

    data

    DRAO (obs) -DRAO (adj)

    data

    DRAO (adj) -Lenhart (adj)

    data

    -20.0

    -15.0

    -10.0

    -5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    Jan-50 Jan-54 Jan-58 Jan-62 Jan-66 Jan-70 Jan-74 Jan-78 Jan-82 Jan-86 Jan-90 Jan-94 Jan-98 Jan-02 Jan-06 Jan-10 Jan-14

    DRAO (obs) -Lenhart (adj)

    data

    DRAO (obs) -DRAO (adj)

    data

    DRAO (adj) -Lenhart (adj)

    data

  • Space Weather Solar Flux and Geomagnetic Tracked for many years

    Data to the 1930s CSSI Consolidated files

    Produced since 2005 Data Integrity

    Discrepancies Blank values, 0.0s translates as a 100-200 SFU error Corrected in CSSI files

    Quality flag set to 4 as an indicator of CSSI correction Includes seasonal/solar cycle variations

    Observed and adjusted to 1.0 AU values DRAO and Lenhart values

    Atmospheric models use both

  • Space Weather Historical Data

    0.0

    50.0

    100.0

    150.0

    200.0

    250.0

    300.0

    Jan-50 Jan-54 Jan-58 Jan-62 Jan-66 Jan-70 Jan-74 Jan-78 Jan-82 Jan-86 Jan-90 Jan-94 Jan-98 Jan-02 Jan-06 Jan-10 Jan-14

    Solar Cycle 23Solar Cycle 22Solar Cycle 21Solar Cycle 20Solar Cycle 19

    F10.7center F10.7

    avg apSolar Cycle 24

  • Space Weather: Predictions

    Lots of Variability Short term

    3, 27, and 45-day predictions Longer term

    Current solar cycle Long term

    Multiple solar cycles Schatten ESA PDFLAP Statistical sampling

  • Solar Flux Predictions: Short Term NOAA Predictions

    27-day and 45-day (F10.7 and ap)

    3-day 3-hourly Kp values off

    significantly as well

    Over time, the predictions average out

    For a particular day, they can be very bad Mar 2015 for example

    -10.0

    -5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    0 10 20 30 40 50

    Diffe

    renc

    e (S

    FU)

    Days of Prediction

    Average

    StdDev

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    0 10 20 30 40 50

    Diffe

    renc

    e

    Days of Prediction

    ap

    F107

  • Solar Flux Predictions Shorter Term

    Data differences

    Min, Mid, and Max 30-50 SFU

    Note timing of Cycle is off

  • Solar Flux Predictions Shorter Term

    Early, Mid, and Late Also 30-50 SFU

    differences

    0.0

    50.0

    100.0

    150.0

    200.0

    250.0

    300.0

    Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Jan-08 Jan-10 Jan-12

    Solar Cycle 23, May 1996 - April 2000 - March 2008

    Apr 95Early

    Apr 95Late

    Trend

    Apr 95Mid

  • Solar Flux Predictions Long Term One or two Solar cycles in advance

    Schatten predictions Trend Polynomial

    Data differences One solar cycle

    ~150 SFU

    Almost equal to the solar min-max difference!

    50.0

    100.0

    150.0

    200.0

    250.0

    300.0

    Jan-50 Jan-54 Jan-58 Jan-62 Jan-66 Jan-70 Jan-74 Jan-78 Jan-82 Jan-86 Jan-90 Jan-94 Jan-98 Jan-02 Jan-06 Jan-10 Jan-14

  • Current Solar Cycle Solar Flux Prediction

    0

    50

    100

    150

    200

    250

    300

    07/24/98 01/14/04 07/06/09 12/27/14 06/18/20 12/09/25 06/01/31 11/21/36 05/14/42

    Nov-2013Oct-2008

    Dec-2002

    Aug-2001

    Mar-1997

  • Space Weather: Summary

    So whats the impact on satellite positions over time? Study done a few years ago

    Set various conditions to mimic the errors we saw in the predictions

  • Error Analysis Summary Topic Summary of Topic Effect Atmospheric Model Development Indices Which indices available when developed?

    How were they used? Span of time indices available

    Data used in generation Satellites were limited in atmospheric model development

    Orbital Class Atmospheric model is only good for certain orbital classes

    Fidelity Many studies, no conclusive winner 10-15% or more inaccuracy

    Atmospheric Model Use Which Model Jacchia, MSIS, DTM, etc. 100 to 50,000 m in 4

    days Implementation Code implements technical approach exactly? ?? Accuracy Inherent inaccuracy of the model 10-15% Data Indices Availability Publically available?

    Time span available ??

    Data Correction Observed vs adjusted 6,000 m in 4 days Daily vs Hourly values Frequency of updates to indices 3,000 m in 4 days Interpolation Interpolate or not

    Which parameters to interpolate, or all? Method of interpolation

    10-5,000 m in 4 days 3,000 in 4 days 10-20 m

    Which Index to use Use ap or Kp preferentially? ?? Time lags 6.7 hours, other ?? Time of observation 1700 vs 2000 UTC for F10.7

    1,000 m in 4 days

    Averages Centered or trailing? 10,000 m in 4 Prediction Source, Schatten, ESA, Dan, Other?

    Variability over time Short term accuracy

    120 150 SFU (long) Varies 1-5 SFU (short)

    Winds ?? All previous categories

  • Error Analysis Summary

    Satellite Parameters Mass Accuracy 5 10%? Area Time varying? ?? cD Aerodynamics, gas dynamics, contium flow ?? Model detail Sphere, plate models, detailed CAD ?? Attitude known Consider a 10 m long 3 m diameter cylinder end vs

    side 424% difference

    Materials Interaction to atmosphere DSMC method? ?? Maneuvers Known or unknown

    Magnitude, direction Can be very large 100s of km

    Orbit Propagation Input state accuracy Example 1m initial error in the position 5,000 10,000 m in 7

    days (extrapolated) Integrator type Small Force model fidelity Drag force is 10 100 km or more effect in 4 days Varies All previous categories Orbit Determination Obs Quality Not tested Obs Quantity Phillips Lab (1995) report 400 m at epoch Solution method BLS Not tested ?? Solution EKF Force Models Using a different atmospheric model 500-10000+ m in 7 days All previous categories

  • Space Weather: Predictions

    But what data should I use for 2025-2040?? Current Schatten prediction goes to about 2045

    Some distribution issues Some inaccuracies from prediction to prediction Lacks detail at daily level

    Consider percentile approach Non physical technique Uses existing data

  • p. 29

    How Does the Percentile Approach Work? Use entire data set

    February 14, 1947 to date (ftp.ngdc.noaa.gov ) Determine average period (3954 days) and cycle representative start time

    Entire data set (60 years) mapped into a single 3954-day time span Day 1 to 3954

    Each day within 3954-day solar cycle period then has 3 or more representative groupings of (F10.7, F10.7 Bar, ap)

    Trio of numbers (F10.7, F10.7 Bar and ap ) linked together Maintains linkage/correlation of values (F10.7, F10.7 Bar & ap) Allows historically-observed solar & geomagnetic activity variations and timing uncertainties

    Select an interval to draw values for Single steps, orbital period, multiple periods Keep drawn values during that span

  • Percentile Approach

    Historical data grouped by solar cycle

    50

    100

    150

    200

    250

    300

    350

    400

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Flu

    x (S

    FU)

    Days into the Solar Cycle

    19

    20

    21

    22

    23

    24

    Solar Cycle Percentile Avg StdDev Avg StdDev19 85 16.365 19.728 12.178 11.06120 30 11.798 13.659 8.452 7.81521 67 12.845 17.629 7.884 8.49722 68 15.431 20.123 11.038 11.11723 50 12.017 15.525 7.918 6.60924 4 3.190 7.489 1.934 3.44325 2526 45

    Daily 81-day Avg

  • Previous Solar Cycles by Percentile Solar Cycle 19

    Apr 1954 to Oct 1964

    50

    100

    150

    200

    250

    300

    350

    400

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 19

    19

    Est %

    Est 81 day Avg

    Act 81 day Avg

    End of cycle

  • Previous Solar Cycles by Percentile Solar Cycle 20

    Oct 1964 to Mar 1976

    50

    100

    150

    200

    250

    300

    350

    400

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 20

    20

    Est %

    Est 81 day Avg

    Act 81 day Avg

    End of cycle

  • Previous Solar Cycles by Percentile Solar Cycle 21

    Mar 1976 to Jul 1986

    50

    100

    150

    200

    250

    300

    350

    400

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 21

    21

    Est %

    Est 81 day Avg

    Act 81 day Avg

    End of cycle

  • Previous Solar Cycles by Percentile Solar Cycle 22

    Jul 1986 to Aug 1996

    50

    100

    150

    200

    250

    300

    350

    400

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 22

    22

    Est %

    Est 81 day Avg

    Act 81 day Avg

    End of cycle

  • Previous Solar Cycles by Percentile Solar Cycle 23

    Aug 1996 to Nov 2008

    50

    100

    150

    200

    250

    300

    350

    400

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 23

    23

    Est %

    Est 81 day Avg

    Act 81 day Avg

    End of cycle

  • Previous Solar Cycles by Percentile Solar Cycle 24

    Nov 2008 to xx

    50

    100

    150

    200

    250

    300

    350

    400

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 24

    24

    Est %

    Est 81 day Avg

    Act 81 day Avg

    Current Time

  • Previous Solar Cycles by Percentile Solar Cycle 19 Geomagnetic

    0

    50

    100

    150

    200

    250

    300

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Geo

    mag

    netic

    Days into the Solar Cycle 19

    19

    Est avg ap

  • Previous Solar Cycles by Percentile Solar Cycle 20 Geomagnetic

    0

    50

    100

    150

    200

    250

    300

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 20

    20

    Est avg ap

  • Previous Solar Cycles by Percentile Solar Cycle 21 Geomagnetic

    0

    50

    100

    150

    200

    250

    300

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 21

    21

    Est avg ap

  • Previous Solar Cycles by Percentile Solar Cycle 22 Geomagnetic

    0

    50

    100

    150

    200

    250

    300

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 22

    22

    Est avg ap

  • Previous Solar Cycles by Percentile Solar Cycle 23 Geomagnetic

    0

    50

    100

    150

    200

    250

    300

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 23

    23

    Est avg ap

  • Previous Solar Cycles by Percentile Solar Cycle 24 Geomagnetic

    0

    50

    100

    150

    200

    250

    300

    0 365 731 1096 1461 1826 2192 2557 2922 3287 3653 4018 4383

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle 24

    24

    Est avg ap

  • Predicting Solar Cycles Not as easy as it would appear at first!

    With only a few cycles, one could get the wrong idea Consequences could be dramatic if the fuel is not enough to

    support the mission!

  • Solar Flux

    Next 2 Solar Cycles using Percentiles

    50

    70

    90

    110

    130

    150

    170

    190

    210

    230

    250

    Nov-08 Nov-13 Nov-18 Nov-23 Nov-28 Nov-33 Nov-38 Nov-43

    Sola

    r Fl

    ux (S

    FU)

    Days into the Solar Cycle

    Cycle 2481 day Avg

    Cycle 24NOAA 45 Day

    Predict

    Cycle 26Predictions

    NOAAMonthly Predict

    Cycle 25Predictions

    Schatten 04/14 Schatten 11/08

  • Next 2 Solar Cycles using Percentiles Geomagnetic

    0

    20

    40

    60

    80

    100

    120

    Nov-08 Nov-13 Nov-18 Nov-23 Nov-28 Nov-33 Nov-38 Nov-43

    Geo

    mag

    netic

    Days into the Solar Cycle

    Cycle 24ap Avg

    NOAA 45 DayPredict

    Cycle 26Predictions

    NOAAMonthly Predict

    Cycle 25Predictions

    Schatten 04/14 Schatten 11/08

  • Summary

    Modeling Atmospheric Drag is extremely difficult Texts go only so far Many factors affect accuracy

    OD absorbs some of the errors but not all Largest contributors (roughly in decreasing order)

    Predicted indices Biggest influence for long range studies as well!

    Attitude Use of indices Observational data (qty, quality, geographic location, type, etc)

    Short term effect Mathematical technique

    Need to understand what the assumptions are!

    So what about the original problem?

  • Questions?