26

Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President
Page 2: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

Southeastern Geological Society Officers for 2012

President – Marc Hurst (Independent Geological Services, Inc.)

Vice President – John Herbert (GeoHazards, Inc.)

Secretary/Treasurer – Harley Means (Florida Geological Survey)

Past President – Andy Lawn (HSW Engineering, Inc.)

Field Trip Leaders – Roger Portell and Eugene Henshaw, Jr.

For information regarding the southeastern Geological Society please visit our website at

www.segs.org or mail a request for information to:

SEGS

P.O. Box 1636

Tallahassee, FL 32302

Mission: To advance the science of geology for the membership and the communities of

the membership, to encourage the professional and social relationship of members and to

provide a meeting for the presentation and discussion of subjects of mutual interest.

These ideals are placed into practice through regional meetings and presentations, field

trips to locations of geological interest and volunteer efforts by the membership in their

local communities, on behalf of the geological sciences. The Society is affiliated with the

American Association of Petroleum Geologists and the Gulf Coast Association of

Geological Societies.

Page 3: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

1

SOUTHEASTERN GEOLOGICAL SOCIETY FIELD TRIP GUIDEBOOK 56

SMR AGGREGATES, INC., SARASOTA, FLORIDA

Roger W. Portell¹, Guy H. Means², and Richard C. Hulbert, Jr.¹

¹Florida Museum of Natural History, P.O. Box 117800, University of Florida

Gainesville, FL 32611

²Florida Geological Survey, 903 West Tennessee Street

Tallahassee, FL 32304

Introduction

From the late 1960’s until present, extensive commercial mining has been

conducted northeast of Sarasota, Florida near the Sarasota-Manatee county line. Here, fill

dirt was first exploited but soon demand for sand and shell increased as numerous new

construction projects (e.g., I-75) required large quantities of raw material. The area’s best

known quarries, the APAC Sarasota Mines (formerly called the Newburn Road Pit,

Warren Brothers Pits, Macasphalt Shell Pits) and the SMR Aggregates Quarries (formerly

Wendell Kent Pit, Richardson Road Shell Pits, Quality Aggregates Shell Pits) each mined

numerous phases (Figure 1). Many invertebrate paleontologists and fossil mollusk

collectors have visited these excavations as they contained some of the richest, most

diverse marine shell beds in the world. In the 1990’s the APAC Sarasota Mines ceased

operation and the now water-filled pits have become part of Nathan Benderson Park, a

world class rowing facility. However, 50 years later, along with several name changes,

the SMR Aggregates Quarries still actively mine materials vital to local construction.

Currently, SMR Aggregates excavates to a depth of about 40 feet below land

surface, extending well below the local water table. First, vegetation is scraped off using

large bulldozers then 10 to 24 feet of fill dirt is removed using small draglines thus

exposing Pleistocene to Pliocene shell beds. The rich, marine shell beds (Tamiami

Formation) are excavated up to an additional 25 feet with large backhoes. Mined material

is loaded onto dump trucks, driven a short distance, and dumped into a stationary slurry

system. Shell and sand (175 feet³ per minute) and water (5,580 gallons per minute) are

Page 4: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

2

Page 5: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

3

pumped through a 14 inch pipe to the processing plant. Here, large shells are

mechanically separated into 3, 1, and 0.5 inch size fractions and the residuum (small

shells and sand) are separated into four smaller size fractions. SMR produces nearly two

million tons of products per year, nearly half of which is fill dirt. These materials are

used in the construction of roads, buildup of residential and commercial foundations,

landscaping, and as aggregate in the production of concrete. Today, we will visit the

SMR sand and shell sorting plant and SMR Phase 10, currently the most active portion of

the quarry complex (Figure 2).

Stratigraphy and Age

The “Tamiami limestone” was named and described by Mansfield (1939) for

limestone exposed while digging shallow ditches in Collier and Monroe counties. Parker

and Cooke (1944) revised the name “Tamiami limestone” of Mansfield to the “Tamiami

formation” since they believed the unit contained too much sand to be formally known as

a limestone. Muriel Hunter (1968) formalized the use of five, distinct, stratigraphic

members within the Tamiami Formation which had been used informally in the literature

for a number of years, including the Bayshore clay member, the Murdock Station

member, the Pinecrest sand member (herein the Pinecrest beds), the Buckingham

limestone member, and the Ochopee limestone member.

The Tamiami Formation is “a poorly defined, lithostratigraphic unit containing a

wide range of mixed carbonate/siliciclastic lithologies and associated fossil assemblages”

(Missimer, 1992). It varies noticeably both vertically and laterally, and has been assigned

as many as nine facies or subunits because of this variability. In general, the formation

contains more siliciclastic beds in the northern areas and more carbonates in the southern

areas (Scott, 1997). Limestone members typically are light colored and range from hard

and sandy to soft and clayey with numerous fossils. Clay units are light colored, sandy,

and contain modest amounts of phosphate grains and well-preserved calcitic fossils.

Quartz sand units are well-sorted, slightly phosphatic, locally highly fossiliferous, and

contain little or no heavy minerals. Numerous studies, by Lyons (1991, and references

therein), Scott and Allmon (1992), and Allmon (1993), have been undertaken in an

attempt to better understand this complex geologic formation. Throughout much of its

Page 6: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

4

Page 7: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

5

areal extent (Figure 3), in southern Florida and northward along the flanks of central

Florida, the Tamiami Formation is disconformably overlain by either the lower

Pleistocene Caloosahatchee Formation or various younger deposits (DuBar, 1974) and is

disconformably underlain by sediments attributed to the Miocene Hawthorn Group, Peace

River Formation (Scott, 1988). The thickness of the formation is greatest in the southern

areas and reaches a maximum of approximately 150 feet (Hunter, 1968).

The best known exposures of the Tamiami Formation (especially the Pinecrest

beds) are currently seen in the SMR Aggregates Phase 8 and Phase 10 excavations (now

that the more westward APAC Sarasota pits are water-filled). Petuch (1982) divided the

exposed beds at APAC into 11 biostratigraphic units from top to bottom. Unit 0 was an

unfossiliferous yellow-tan sand, Unit 1 was questionably placed in the lower Pleistocene

Caloosahatchee Formation, Units 2 through 9 the Pinecrest beds, and Units 10 and 11 the

Tamiami Formation. Based on sequence stratigraphic analysis, Zullo and Harris (1992)

placed Petuch Units 0 and 1 in the Caloosahatchee Formation and divided the Tamiami

Formation at APAC and SMR Aggregates into upper and lower parts. They placed

Petuch's Units 2 through 9 into the upper Tamiami Formation and subdivided it into

upper Pinecrest beds (Units 2 and 3) and lower Pinecrest beds (Units 4 through 9).

Petuch's Units 10 and 11 were placed into the lower Tamiami Formation (Figure 4). The

stratigraphic organization used by Zullo and Harris (1992) is herein followed.

Based on 87Sr/86Sr isotope dating of bivalves, paleomagnetism, and invertebrate

and vertebrate biochronology (see below), Jones et al. (1991) estimated the age of

Petuch's Units 2 through 4 as being 2.25 (+ 0.25) Ma and Units 5 through 10 as being 3.0

(+0.5) Ma. The International Stratigraphic Chart (2008) places the boundary between

Pliocene and Pleistocene at 2.588 Ma. Therefore, given the minimum age of 2.0 Ma and

maximum age of 2.5 Ma, Unit 2 through Unit 4 falls within the early Pleistocene Epoch.

Units 5 through 10 with a minimum age of 2.5 Ma and a maximum age of 3.5 Ma

straddles the Pliocene-Pleistocene Boundary, and the underlying Unit 11 is probably late

Pliocene in age.

Page 8: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

6

Figure 3. Map of southern Florida showing the surficial distribution of both the Tamiami

Formation and TQsu (Tertiary/Quaternary shell beds).

Page 9: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

7

Figure 4. Stratigraphic nomenclature of APAC and SMR Aggregates quarries used in

Zullo and Harris (1992) incorporating and slightly modifying APAC stratigraphic units of

Petuch (1982).

Paleontology

Invertebrates. As mentioned above, the APAC Sarasota Mines (formerly

Newburn Road Pit, Warren Brothers Pits, Macasphalt Shell Pits) and SMR Aggregates

Quarries (formerly Wendell Kent Pit, Richardson Road Shell Pits, Quality Aggregates

Shell Pits) contain some of the most species rich and densely packed fossil horizons

known in the world. See Plates 1-10 for a few examples. It has been estimated that the

Pinecrest beds alone may contain over 1000 species of shelled marine mollusks (Allmon

et al., 1993). Surprisingly, these faunas have yet to be adequately monographed.

Based on stratigraphic placement and/or fossil content, Units 0 and 1 were placed

in the Caloosahatchee Formation. Unit 0 is unfossiliferous while Unit 1 contains shells

and shell fragments (e.g., Chione erosa, Macrocallista nimbosa, and Conus adversarius)

in an unconsolidated yellow quartz sand matrix. Petuch (1982) determined deposition of

Page 10: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

8

Unit 1 occurred in a high-energy beach environment. This unit has yet to be observed in

any of the more recent excavations of SMR Aggregates.

Units 2 through 9 represent the Pinecrest beds of the Tamiami Formation and are

comprised mostly of tropical to temperate marine mollusks and other phyla (e.g., corals).

Both calcitic and aragonitic taxa are well-preserved in mostly unconsolidated sediments

that appear only slightly weathered with little to no leaching. Unit differences, both in

lithology and fauna, are likely the result of environmental changes. Based on Pinecrest

taxa that still survive today, Allmon et al. (1993) determined that these units were mostly

deposited at water depths of less than 100 feet.

Unit 2 is a sandy, grey, oyster biostrome made up primarily of the large gryphaeid

oyster Hyotissa haitensis (Plate 1, Figure A). Environment of deposition was most likely

a quiet, offshore, subtidal environment. Some of the gastropod genera collected from this

bed (e.g., Strombus) are indicative of a tropical habitat. Unit 3 is composed of common,

beautifully-preserved, paired, marine mussels, Perna conradiana (Plate 1, Figure B), in a

matrix of fine, clean quartz sand. Other associated bivalve taxa include Raeta undulata

and the razor clam genus Ensis. Unit 4 is a very silty, dark brown, sandy horizon in

which most shells are stained brown or dark blue-grey. This bed has common freshwater

snails (e.g., Stenophysa meigsii, Planorbella spp.), some land snails (e.g., Daedalochila

sp., Euglandina sp.) along with numerous shallow marine and estuarine mollusks (e.g.,

Pyrazisinus scalatus, Anomalocardia sp.), and freshwater and land vertebrates (see

below). Various authors term this unit the “black layer”, bone bed, or Mulinia sapotilla

(Plate 1, Figure C) bed. Unit 5 is a horizon of Vermicularia recta (Plate 1, Figure E), a

colonial gastropod. Many large (12-18 inch tall) clusters were observed in life position

and numerous small to medium sized mollusks were observed interspersed among the

clusters. Unit 6 is another dense layer of Hyotissa haitensis combined with mixed shells.

It often grades into Unit 7 which is the thickest bed and contains the most diverse

assemblage of mixed shells (both tropical and subtropical) and locally abundant large

hermatypic coral heads (e.g., Solenastrea hyades). At the base of this horizon is

commonly a layer of Strombus floridanus (Plate 1, Figure D). Unit 8 is another horizon

Page 11: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

9

of Vermicularia recta in life position but it tends to occur more sporadically than in Unit

5. Unit 9 is another Hyotissa haitensis oyster bed.

Units 10 and 11 are placed in the lower Tamiami Formation. Unit 10 is identified

by the leached nature of its aragonitic shells. Cyclocardia granulata, Mercenaria

tridacnoides (Plate 8, Figure A), and Panopea reflexa are common constituents. The

fauna appears to be a mixture of subtropical to temperate species. Unit 11 preserves

mostly calcitic shelled taxa in a phosphatic, dark grey to brown, sandy clay matrix; all but

the hardiest aragonitic taxa having been dissolved away. Examples of calcitic species

include the large scallop Chesapecten jeffersonius (Plate 8, Figure B), muricid gastropod

Ecphora quadricostata (Plate 8, Figure C), and the large barnacle Chesaconcavus

tamiamiensis (Plate 8, Figure D, E). Disarticulated remains of fossil marine vertebrates

are also very common (see below). Occasionally, highly leached thickets of the

branching coral Septastrea crassa have been observed. Species found within this unit

indicate deposition in a cooler climate than that found in this area today.

Vertebrates. The APAC and SMR shell pits have also produced many

scientifically significant vertebrate fossils over the past five decades. The Vertebrate

Paleontology Division (VP) of the Florida Museum of Natural History (FLMNH) houses

almost 9,000 cataloged specimens from this region. Although some were recovered out

of stratigraphic sequence from spoil piles, intensive prospecting of in-place sections has

revealed that almost all vertebrate fossils derive from either Unit 4 at APAC (or its lateral

equivalents at SMR) or Unit 11. Vertebrate fossils from Unit 4 belong to the late Blancan

Land Mammal Age (earliest Pleistocene) and include the ground sloth Megalonyx

leptostomus, the three-toed horse Nannippus peninsulatus, the primitive cotton rat

Sigmodon medius, and the pond turtle Trachemys platymarginata. Vertebrate fossils

from Unit 11 do not include land mammals, so can not be dated using land mammal

biochronology, but are consistent with the Pliocene age discussed above. A small sample

of late Miocene (early Hemphillian Land Mammal Age, ca. 7.5 to 9 Ma) vertebrate fossils

were recovered from a phosphatic lag deposit below Unit 11 in Quality Aggregates Phase

8A (= Peace River Formation).

Page 12: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

10

The Unit 4 or lateral equivalent vertebrate faunas were evidently deposited during

times when sea level was at or lower than today, as the assemblages represent coastal and

brackish wetland/marshland communities. In 1987 through 1989, FLMNH crews

collected at several vertebrate bone beds within the Macasphalt Shell Pit. A pump was

used to wet screen sediment at the quarry, resulting in recovery of small vertebrate fossils,

such as salamander and snake vertebrae, and numerous bones of small birds and

mammals. The well-studied bird fauna reveals a level of diversity of wetland birds twice

that of modern levels. Among the more common taxa are the grebe Podilymbus

podiceps, 14 species of ducks and geese, the Virginia rail Rallus limicola, a flamingo

Phoenicopterus sp., the spotted sandpiper Actitis macularia, and the red-winged

blackbird Agelaius phoeniceus. About 45 bird species were identified in all, with about a

third representing extinct species. Unit 4 in the Macasphalt Shell Pit produced 17 species

of mammals, all but one extinct species (the lone survivor is the white-tailed deer

Odocoileus virginianus). The extinct mammalian fauna includes the elephant-sized

gomphothere Rhynchotherium sp., two three-toed horses Nannippus peninsulatus and

Cormohipparion emsliei, one-toed horse Equus sp., the large llama Hemiauchenia

blancoensis, the large capybara Neochoerus dichroplax, and two ground sloths

Megalonyx leptostomus and Paramylodon garbanii. Snook (Centropomus) and mullet

(Mugil) are the most common fish.

The Richardson Road Shell Pit 6A assemblage is of similar age to that of Unit 4

from Macasphalt, but contains a much higher percentage of nearshore marine and coastal

species and less than a dozen total fossils of land mammals or reptiles. It was collected

from 1989 to 1992. Richardson Road 6A is thought to represent a catastrophic

assemblage resulting from a red tide that poisoned and killed numerous fish and

shorebirds. Dozens of skeletons and thousands of bones of a new species of cormorant,

Phalacrocorax filyawi, were found at this site, along with the remains of two new species

of gulls (Larus lacus and Larus perpetuus) and several small, sandpiper-like birds.

Several types of marine mammals were present including the extinct phocid seal

Callophoca obscura, the extinct walrus Ontocetus emmonsi, a dugong, and baleen and

toothed whales. A diverse group of nearshore marine fish were also found at Richardson

Page 13: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

11

Road 6A including trunkfish (Lactophrys sp.), searobin (Prionotus sp.), sand seabass

(Diplectrum formosum), black and red drum (Pogonias cromis and Sciaenops oscellata),

spot croaker (Leiostomus xanthurus), silver perch (Bairdiella chrysoura), hogfish

(Orthopristis chrysoptera), lizardfish (Synodus sp.), and Atlantic thread herring

(Opisthonema oglinum).

The Unit 11 vertebrate fauna is strictly marine, apparently representing a time

when sea level was much higher than today. Fossils of shark teeth and baleen whales,

such as the extinct Balaenoptera floridana (Plate 9, Figures A, B) are the two most

common items found. Sperm whale teeth of the genus Physeterula (Plate 9, Figure C) are

also frequently encountered and more specimens (nine) of the walrus Ontocetus emmonsi

(Plate 10, Figure A) have been found in this bed than anywhere else in Florida. Another

significant find is the oldest known record on the extant white shark Carcharodon

carcharias in Florida, from Quality Aggregates Pit 7A. More commonly found shark

species include the tiger shark Galeocerdo cuvier (Plate 10, Figure B) and the broad-

toothed mako Isurus hastalis (Plate 10, Figure C).

Acknowledgments

We thank Eugene Henshaw, Jr. (President), Dave Myers (Mine Supervisor), Steve

Stombaugh (Plant Superintendent), and Nancy Plank (Office Manager) of Schroeder-

Manatee Ranch Aggregates, Incorporated for allowing and assisting RWP to conduct

research and education programs in their quarries over many years. Jim Toomey kindly

accompanied RWP on many of these excursions providing immense help with logistics,

fossil collecting, education, and food and beverage service. Sean Roberts (FLMNH)

assisted with the figures.

Page 14: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

12

References

ALLMON, W. D. 1993. Age, environment and mode of deposition of the densely

fossiliferous Pinecrest Sand (Pliocene of Florida): Implications for the role of biological

productivity in shell bed formation. Palaios, 8:183-201.

ALLMON, W. D., G. ROSENBERG, R. W. PORTELL, AND K. S. SCHINDLER.

1993. Diversity of Atlantic coastal plain mollusks since the Pliocene. Science,

260:1626-1629.

DUBAR, J. R. 1974. Summary of the Neogene stratigraphy of southern Florida. In: R.

Q. OAKS AND J. R. DUBAR (eds.), Post-Miocene stratigraphy central and southern

Atlantic Coastal Plain. Utah State University Press, Logan, pp. 206-231.

HUNTER, M. E. 1968. Molluscan guide fossils in late Miocene sediments of southern

Florida. Transactions of the Gulf Coast Association of Geological Societies, 8: 439-450.

JONES, D. S., B. J. MACFADDEN, S. D. WEBB, P. A. MUELLER, D. A. HODELL,

AND T. M. CRONIN. 1991. Integrated geochronology of a classic Pliocene fossil site in

Florida: Linking marine and terrestrial biochronologies. The Journal of Geology, 99:637-

648.

LYONS, W. G. 1991. Post-Miocene species of Latirus Montfort, 1810 (Mollusca:

Fasciolariidae) of southern Florida, with a review of regional marine biostratigraphy.

Florida Museum of Natural History Bulletin, 35(3):131-208.

MANSFIELD, W. C. 1939. Notes on the upper Tertiary and Pleistocene mollusks of

peninsular Florida. Florida Geological Survey Bulletin 18, 75 p.

Page 15: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

13

MISSIMER, T. M. 1992. Stratigraphic relationships of sediment facies within the

Tamiami Formation of southwestern Florida: Proposed intraformational correlations.

Florida Geological Survey Special Publication 36: 63-92.

PARKER, G. G. AND C. W. COOKE. 1944. Late Cenozoic geology of southern

Florida, with a discussion of the ground water. Florida Geological Survey Bulletin 27,

119 p.

PETUCH, E. J. 1982. Notes on the molluscan paleoecology of the Pinecrest beds at

Sarasota, Florida with the description of Pyruella, a stratigraphically important new genus

(Gastropoda: Melongenidae). Proceedings of the Academy of Natural Sciences of

Philadelphia, 134:12-30.

SCOTT, T. M. 1988. The lithostratigraphy of the Hawthorn Group (Miocene) of Florida.

Florida Geological Survey Bulletin 59, 148 p.

SCOTT, T. M. 1997. Miocene to Holocene history of Florida. In: A. F. RANDAZZO

AND D. S. JONES (eds.), The Geology of Florida. University Press of Florida,

Gainesville, pp. 57-67.

SCOTT, T. M. AND W. D. ALLMON (eds.). 1992. Plio-Pleistocene stratigraphy and

paleontology of southern Florida. Florida Geological Survey Special Publication 36, 194

p.

ZULLO, V. A. AND W. B. HARRIS. 1992. Sequence stratigraphy of marine Pliocene

and lower Pleistocene deposits in southwestern Florida: Preliminary assessment. In: T.

M. SCOTT AND AND W. D. ALLMON (eds.), Plio-Pleistocene stratigraphy and

paleontology of southern Florida. Florida Geological Survey Special Publication 36: 27-

40.

Page 16: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

14

Plate 1. Common fossil bivalves and gastropods found in the upper Tamiami Formation,

Pinecrest beds. A. Hyotissa haitensis (UF 7844). B. Perna conradiana (UF 181257). C.

Mulinia sapotilla (UF 39133). D. Strombus floridanus (UF 188267). E. Vermicularia

recta (UF 40836). A, B, and E at 0.5x. C and D at 1.0x.

Page 17: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

15

Plate 2. Common fossil bivalves and corals found in the upper Tamiami Formation,

Pinecrest beds. A. Trachycardium aclinensis (UF 34582). B. Septastrea marylandica

(UF 143775) covering hermit-crab domicile. C. Lirophora latilirata (UF 31150). D.

Oculina sarasotana (UF 29149). E. Dinocardium robustum (UF 135336). A-E at 1.0x.

Page 18: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

16

Plate 3. Common fossil bivalves found in the upper Tamiami Formation, Pinecrest beds.

A. Arca wagneriana (UF 47688). B. Arcinella cornuta (UF 137039). C. Carolinapecten

eboreus (UF 171097). D. Isognomon kecia (UF 191349) with predatory borehole. E.

Armimiltha disciformis (UF 201809). A, B, D and E at 1.0x. C at 0.75x.

Page 19: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

17

Plate 4. Common fossil gastropods found in the upper Tamiami Formation, Pinecrest

beds. A. Turbinella streami (UF 21464) holotype. B. Fasciolaria apicina (UF 111835).

C. Pleioptygma lineolata (UF 138483). A at 0.5x. B and C at 1.0x.

Page 20: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

18

Plate 5. Common gastropods found in the upper Tamiami Formation, Pinecrest beds. A.

Turritella wagneriana (UF 9742). B. Sinistrofulgur sp. (UF 117535). C-D. Turbo sp.

(UF 131535) shell with associated operculum. E. Xenophora floridana (UF 191888). A,

C-E at 1.0x. B at 0.5x.

Page 21: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

19

Plate 6. Common fossil gastropods found in the upper Tamiami Formation, Pinecrest

beds. A. Hystrivasum locklini (UF 136940). B. Pyruella demistriatum (UF 201962). C.

Cymatosyrinx aclinica (UF 191887). D. Phyllonotus globosus (UF 111794). A-D at

1.0x.

Page 22: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

20

Plate 7. Common fossil gastropods and a crab found in the upper Tamiami Formation,

Pinecrest beds. A. Persephona sp. (UF 177526) leg segment (merus). B. Triplofusus

giganteus (UF 194745). C. Turbinella regina (UF 132121). A at 1.0x. B and C at 0.5x.

Page 23: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

21

Plate 8. Common fossil mollusks and a barnacle found in the lower Tamiami Formation.

A. Mercenaria tridacnoides (UF 138596). B. Chesapecten jeffersonius (UF 188202). C.

Ecphora quadricostata (UF 137294). D, E. Chesaconcavus tamiamiensis in profile and

apertural views, respectively (UF 173872). A, B, D, and E at 0.5x. C at 1.0x.

Page 24: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

22

Plate 9. Common fossil vertebrates (whales) found in the lower Tamiami Formation. A,

B. Balaenoptera floridana. A. left periotic (UF 254920). B. right bulla (UF 256411). C.

Physeterula sp., tooth (UF 136034). A-C at 1.0x.

Page 25: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

23

Plate 10. Representative fossil vertebrates found in the lower Tamiami Formation. A.

Ontocetus emmonsi, upper walrus tusk (UF 61473). B. Galeocerdo cuvier, shark tooth

(UF 234320). C. Isurus hastalis, shark tooth (uncataloged). A at 0.4x. B and C at 1.5x.

Page 26: Southeastern Geological Society Officers for 2012 · Southeastern Geological Society Officers for 2012 President – Marc Hurst (Independent Geological Services, Inc.) Vice President

24

NOTES