74
Solving Op Amp Stability Issues Part 4 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Solving Op Amp Stability Issues Part 4

  • Upload
    etenia

  • View
    119

  • Download
    17

Embed Size (px)

DESCRIPTION

Solving Op Amp Stability Issues Part 4. (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications. 10) Noise Gain and CF (Output Cload). Noise Gain and CF: Programmable Power Supply (PPS) Design Example. Define min and max load condition. Design for: - PowerPoint PPT Presentation

Citation preview

Page 1: Solving Op Amp Stability  Issues Part 4

Solving Op Amp Stability IssuesPart 4

(For Voltage Feedback Op Amps)Tim Green & Collin WellsPrecision Analog Linear Applications

1

Page 2: Solving Op Amp Stability  Issues Part 4

2

10) Noise Gain and CF(Output Cload)

Page 3: Solving Op Amp Stability  Issues Part 4

3

R_I

set 5

.76k

Ohm

R_I

flag

100k

Ohm

R_T

flag

100k

Ohm

Vena

ble

4V

+

-

+

Iset

En

IflagIflag

Tflag

U1 OPA567Vout

V+ 5VVdac 2.5VCLoad 10uF

+

VG1

RLoad 10MOhm

A+Iout 250nA

2.5V

R_I

set 5

.76k

Ohm

R_I

flag

100k

Ohm

R_T

flag

100k

Ohm

Vena

ble

4V

+

-

+

Iset

En

IflagIflag

Tflag

U1 OPA567Vout

V+ 5VVdac 2.5VCLoad 10uF

+

VG1

RLoad 1.25Ohm

A+Iout 2A

2.5V

Noise Gain and CF: Programmable Power Supply (PPS) Design Example

Design for:250nA< Iout <2ACload = 10μF

Check for stability at Iout range

DC and Transient Analysis Circuit

1) Define min and max load condition

Page 4: Solving Op Amp Stability  Issues Part 4

4

Original Transient AnalysisT

Vout[1]: RLoad=10M[Ohm]

Vout[2]: RLoad=1.25[Ohm]

Time (s)0.00 1.00m 2.00m

VG1

-10.00m

10.00m

Vout[1]

2.47

2.53

Vout[2]

2.47

2.52

PPS Original Transient Analysis

Vout[2]: RLoad=1.25[Ohm]

Vout[1]: RLoad=10M[Ohm]

Page 5: Solving Op Amp Stability  Issues Part 4

Noise Gain and CF Compensation Design Steps1) Define min and max load condition

2) SPICE simulation for Loaded Aol curves (min and max load)

3) Plot Desired 1/b on Loaded Aol curves (min and max load)A) Use Noise Gain and CF Compensation

4) From Desired 1/b detemine fp3, fp4, and Mid-Band Gain

5) Compute values for RF, CF, Rn, Cn based on plotted fp3, fp4, Mid-Band Gain

6) SPICE simulation w/final compensation for Loop Gain (Aolb) Magnitude and Phase

7) Adjust Compensation if greater Loop Gain (Aolb) phase margin desired

8) Check closed loop AC response for VOUT/VINA) Look for peaking which indicates marginal stabilityB) Check if closed AC response is acceptable for end application

9) Check Transient response for VOUT/VIN A) Overshoot and ringing in the time domain indicates marginal stability

5

Page 6: Solving Op Amp Stability  Issues Part 4

6

2) Loop Gain Check for Loaded Aol

Rse

t 5.7

6kO

hm

R_I

flag

100k

Ohm

R_T

flag

100k

Ohm

Vena

ble

4V+

-

+

Iset

En

IflagIflag

Tflag

U1 OPA567Vout

V+ 5VVdac 2.5V

LT 1TH

CT 1TF

+ VG1

CLoad 10uFRLoad 10MOhm

A+Iout

Vout = Loaded Aol

Page 7: Solving Op Amp Stability  Issues Part 4

7

T

Loaded Aol_A: 10M[Ohm]

fp2_A

Loaded Aol_B: 1.25[Ohm]

fp1_B

fp2_B

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Vol

tage

(V)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

Mid-Band Gain = 30dB

Loaded Aol CurvesDesired 1/b Curve

Desired 1/b

fp410.6kHz

fp3336Hz

fz2

fp2_B

fp2_Afp1_B

fp1_A

fz1

Loaded Aol_B: 1.25[Ohm]

Loaded Aol_A: 10M[Ohm]

2),3),4) Loaded Aol and Desired 1/βOn Loaded Aol Curves add Desired 1/β:Noise Gain & CF Compensation1) fp3=336Hz2) fp4=10.6kHz3) Mid-Band Gain = 30dB

Page 8: Solving Op Amp Stability  Issues Part 4

8

Rse

t 5.7

6kO

hm

R_I

flag

100k

Ohm

R_T

flag

100k

Ohm

Vena

ble

4V

+

-

+

Iset

En

IflagIflag

Tflag

U1 OPA567Vout

V+ 5VVdac 2.5V

LT 1TH

CT 1TF

+ VG1

CLoad 10uFRLoad 1.25Ohm

RF 100kOhmRn 3.16kOhmCn 150nF

CF 150pF

A+

Iout

VFB

Loop Gain (Aolb) = VoutLoaded Aol = Vout/VFB1/b = 1/VFB

5) Noise Gain and CF Compensation

pF150CF*CFk100π*2

1kHz6.10

π*RF*CF214fp

nF150Cn*Cnk16.3π*2

1Hz336

π*Rn*Cn213fp

k16.3Rn6.31dB30Rn

k100

dB30RnRF band Gain Mid

Cn& CF for values reasonable use to

100kΩRFSet

:Curve β1 Desired

Noise Gain & CF Compensation1) fp3=336Hz2) fp4=10.6kHz3) Mid-Band Gain = 30dB

Loop Gain (Aolβ), Loaded Aol, 1/ β Circuit

Page 9: Solving Op Amp Stability  Issues Part 4

9

5) Final Compensation: 1/β & Loaded AolT

Loaded Aol_A: 10M[ohm]

Loaded Aol_B: 1.25[ohm]

1/b

fp3317Hz

fp411.28kHz

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Vol

tage

(V)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

fp411.28kHz

fp3317Hz

Loaded Aol and 1/b

1/b

Loaded Aol_B: 1.25[ohm]

Loaded Aol_A: 10M[ohm]

Page 10: Solving Op Amp Stability  Issues Part 4

10

T

Loop Gain_A (Aolb)]: 10M[Ohm]

Loop Gain_B (Aolb): 1.25[Ohm]

Loop Gain_A (Aolb): 10M[Ohm]

Loop Gain_B (Aolb): 1.25[Ohm]

Vol

tage

(V)

-100-80-60-40-20

020406080

100120140

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Vol

tage

(V)

-90

-45

0

45

90

135

180

Phase Buffer19 degrees

Phase Buffer31 degrees

Loop Gain Magnitude and PhaseFinal Compensation

Magnitude Loop Gain_A 10M[Ohm] A:(fcl_A =12.53k; -105.53m)

Phase Loop Gain_A 10M[Ohm] A:(fcl_A=12.53k; 57.49)

Magnitude Loop Gain_B 1.25[Ohm] A:(fcl_B=212.7k; 1.43f)

Phase Loop Gain_B 1.25[Ohm] A:(fcl_B=212.7k; 68.01)

fcl_B

fcl_B

fcl_A

fcl_A

Loop Gain_A (Aolb): 10M[Ohm]

Loop Gain_B (Aolb): 1.25[Ohm]

Loop Gain_B (Aolb): 1.25[Ohm]

Loop Gain_A (Aolb)]: 10M[Ohm]

6) Final Compensation: Loop Gain (Aolβ)

Phase Margin

Phase Margin

Page 11: Solving Op Amp Stability  Issues Part 4

11

7) Final Compensation: Vout/Vin AC Closed Loop

Vout/Vin AC Closed Loop and Transient Circuit

Rse

t 5.7

6kO

hm

R_I

flag

100k

Ohm

R_T

flag

100k

Ohm

Vena

ble

4V

+

-

+

Iset

En

IflagIflag

Tflag

U1 OPA567Vout

V+ 5VVdac 2.5V

CLoad 10uFRLoad 10MOhm

RF 100kOhmRn 3.16kOhmCn 150nF

CF 150pF

A+

Iout

Rsource 50Ohm

+

Vin

250nA2.5V

Note for Non-Inverting Noise Gain Compensation:1) Rsource < 1/10*Rn OR2) Add capacitor (>10*Cn) at U1, +input, to ground

to lower impedance to < 1/10*Rn at fp3 for effective Non-Inverting Noise Gain Compensation

Page 12: Solving Op Amp Stability  Issues Part 4

12

T

-3dB17.48kHz10M[ohm]

-3dB357.86kHz1.25[ohm]

10M[Ohm]

1.25[Ohm]

Vol

tage

(V)

-120

-100

-80

-60

-40

-20

0

20

40

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Vol

tage

(V)

-270

-225

-180

-135

-90

-45

0

Vout/Vin AC Closed LoopFinal Compensation

-3dB357.86kHz1.25[ohm]

-3dB17.48kHz10M[ohm]

10M[Ohm]

1.25[Ohm]

8) Final Compensation: Vout/Vin AC Closed Loop

Page 13: Solving Op Amp Stability  Issues Part 4

13

9) Final Compensation: Transient AnalysisT

Vout[1]: 10M[Ohm]

Vout[2]: 1.25[Ohm]

Time (s)0.0 500.0u 1.0m 1.5m 2.0m

Vin

-10.00m

10.00m

Vout[1]

2.49

2.51

Vout[2]

2.49

2.51

Transient AnalysisFinal Compensation

Vout[2]: 1.25[Ohm]

Vout[1]: 10M[Ohm]

Page 14: Solving Op Amp Stability  Issues Part 4

14

11) Output Pin Compensation (Output Cload)

Page 15: Solving Op Amp Stability  Issues Part 4

15

Output Pin Compensation – Design Example

Vcc 15V

Vee 15V

VOUT

++

-

Ref

Sense

U1 INA152

Rs 100mOhmV+ 28V

Rload 800mOhm

CL 10nF

A+

AM1

Vin+

Vin-

+

VG1

24.888865V

28V

31.111081A

3.111587V

Page 16: Solving Op Amp Stability  Issues Part 4

16

INA152 Transient Analysis – No CompensationT

Time (s)0.00 500.00u 1.00m

VG1

-100.00m

100.00m

VOUT

3.08

3.13

INA152 Transient ResponseNo Compensation: CL = 10nF

Page 17: Solving Op Amp Stability  Issues Part 4

17

Aol Test Circuit for Difference Amp

1VGVOUTAol

:Aol

dB62121

k40k40k40

2R1R1R

:/1

b

b

b

-

+

INA152 Op Amp

R1 40kOhm R2 40kOhm

R3 40kOhm R4 40kOhmRef

Sense

VOUT

VM

VP

VIN+

VIN-

+V

-V

Vcc 15V

+VG1 0

LT 1TH

Vcc 15V

INA152_TG

3

2 5

6

1

7

4DC = 0VAC = 1Vpk

At DC LT = Short

At any frequency of interest LT forces op amp open loop and VM is esentially 0V AC.VP = VG1 since VIN+ and Ref are connected to VG1

Therefore:Aol = VOA/VG1

-15V

15V

0V

0V

0V

0V

0V

0V

0V

Page 18: Solving Op Amp Stability  Issues Part 4

18

INA152 Aol

Vcc 15

VOUT

++

-

Ref

Sense

U1 INA152

LT 1T

+VG1

Vee 15

Aol = VOUT/VG1DC = 0VAC = 1Vpk

-60.92uV

Page 19: Solving Op Amp Stability  Issues Part 4

19

INA152 AolT

Gai

n (d

B)

-60-40-20

020406080

100120

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Pha

se [d

eg]

-270-225-180-135-90-45

0

INA152 Aol

Page 20: Solving Op Amp Stability  Issues Part 4

Output Pin Compensation Design Steps1) SPICE simulation for Loaded Aol curves (min and max load)

2) Measure Zo in SPICE

3) Determine if CLoad is on resistive portion of Zo

4) Plot Loaded Aol Original and Loaded Aol New for Ouptut Pin Compensation

5) Compute Rco and Cco and check Loaded Aol New in SPICE

6) SPICE simulation w/final compensation for Loop Gain (Aolb) Magnitude and Phase

7) Adjust Compensation if greater Loop Gain (Aolb) phase margin desired

8) Check closed loop AC response for VOUT/VINA) Look for peaking which indicates marginal stabilityB) Check if closed AC response is acceptable for end application

9) Check Transient response for VOUT/VIN A) Overshoot and ringing in the time domain indicates marginal stability

20

Page 21: Solving Op Amp Stability  Issues Part 4

21

1) INA152 Loaded Aol

Vcc 15

VOUT

++

-

Ref

Sense

U1 INA152

LT 1T+VG1

CL 10n

Vee 15 Loaded Aol = VOUT/VG1

DC = 0VAC = 1Vpk

-60.92uV

Page 22: Solving Op Amp Stability  Issues Part 4

22

1) INA152 Loaded AolT

Loaded Aol

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Gai

n (d

B)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

fcl1/b

Loaded Aol

INA152 Loaded AolCload = 10nF

STABLE

Page 23: Solving Op Amp Stability  Issues Part 4

23

2) INA152 ZO Test

-

+

INA152 Op Amp

R1 40kOhm R2 40kOhm

R3 40kOhm R4 40kOhmRef

Sense

VOA

VM

VP

VIN+

VIN-

+V

-V

Vcc 15V

LT 1TH

IT 0

Vee 15V

INA152_TG

3

2 5

6

1

7

4

At DC LT = Short

At any frequency of interest LT forces op amp open loopSince IT = 1ApkZo = VOA

DC = 0AAC = 1Apk

Page 24: Solving Op Amp Stability  Issues Part 4

24

2) TINA SPICE ZO Test Circuit

Vcc 15

VOUT

++

-

Ref

Sense

U1 INA152

LT 1T

IT 0

Vcc 15

-60.922037uV

Page 25: Solving Op Amp Stability  Issues Part 4

25

2) INA152 ZO MagnitudeT

Zo_Lof = 14.8k

Zo_Hif = 638.74

Frequency (Hz)100m 1 10 100 1k 10k 100k 1M

Gai

n (d

B)

100

1k

10k

100k

INA152 Zo Magnitude

Zo_Hif = 638.74

Zo_Lof = 14.8k

Page 26: Solving Op Amp Stability  Issues Part 4

26

2) INA152 ZO Pole and ZeroT

-3dB3.69Hz

+3dB83.77Hz

Frequency (Hz)100m 1 10 100 1k 10k 100k 1M

Gai

n (d

B)

40

60

80

100

INA152 Zo MagnitudePole and Zero Frequency

+3dB83.77Hz

-3dB3.69Hz

Page 27: Solving Op Amp Stability  Issues Part 4

27

T

Zo

Zo_Hif = 638.74CL=10nF

CL=100nF

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Gai

n (d

B)

100m

1

10

100

1k

10k

100k

1M

10M

100M

Zo_Hif = 638.74

CL=100nF

CL=10nF

Zo

INA152 CL and Zo

3) INA152 ZO and CL +ZZM1

C1 10nF

+ZZM2

C2 100nF

Note :For both capacitive values of CLthe load impedance interacts with Zo in its “high frequency” Zo resistive region (Zo_Hif).

Page 28: Solving Op Amp Stability  Issues Part 4

28

4) INA152 Loaded Aol: Original and New

Add Cco = 10x CL then fp3 will move one decade to the left of fp2Add Rco to create fz1Keep fz1 < 10*fp3 for overall best loop gain phase margin

T

Loaded AolOriginal

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Gai

n (d

B)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

fp3

Loaded AolOriginal

fcl

1/b

fp2

fp1

fz1

Loaded Aol New

INA152Loaded AolOriginal and New

Page 29: Solving Op Amp Stability  Issues Part 4

29

kHz6.10nF1001502

11fz

CcoRco211fz

kHz02.2nF100)15074.638(2

13fp

Cco)RcoHif_Zo(213fp

New AolLoaded :onCompensati PinOutput

-

+

AolZo_Hif 638.74Ohm

CL 10nF

Cco 100nF

Rco 150Ohm

VOUT

INA152 Internal Op Amp Equivalent

5) Compute Rco and CcoNot seen by Output Pin CompensationLoaded Aol New

Page 30: Solving Op Amp Stability  Issues Part 4

30

5) Compute Rco and Cco and check in SPICE

Vcc 15

VOUT

++

-

Ref

Sense

U1 INA152

LT 1T+VG1

CL 10n

Vee 15

Rco 150

Cco 100n

Loaded Aol = VOUT/VG1

DC = 0VAC = 1Vpk

-60.92uV

Page 31: Solving Op Amp Stability  Issues Part 4

31

5) Compute Rco and Cco and check in SPICET

-20dB/decade

-40dB/decade

-20dB/decade-40dB/decade

fp3fz1

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Gai

n (d

B)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

INA152 Loaded AolOutput Pin Compensation

fz1fp3

-40dB/decade-20dB/decade

-40dB/decade

-20dB/decade

fcl1/b 6dB

Page 32: Solving Op Amp Stability  Issues Part 4

32

6),7) Loop Gain Check

Vcc 15V

Vee 15V

VOUT

++

-

Ref

Sense

U1 INA152Rs 100mOhmV+ 28V

Rload 800mOhm

CL 10nF

A+

AM1

Vin+

Vin-

Rco 150Ohm

Cco 100nF

LT 1TH

CT 1TF+VG1

Loop Gain (Aolb) = VOUT24.89V

28V

31.11A

3.11V

Page 33: Solving Op Amp Stability  Issues Part 4

33

6),7) Loop Gain CheckT

VOUT

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

VOUT

-180

-135

-90

-45

0

45

90

135

180

INA152 Loop GainOutput Pn Compensation

VOUT: VOUT A:(102.46k; -12.27f)

VOUT: VOUT A:(102.46k; 47.11)

fcl

a

Loop Gain Phase Margin = 47 degrees

Page 34: Solving Op Amp Stability  Issues Part 4

34

8) Closed Loop AC Response

Vcc 15V

Vee 15V

VOUT

++

-

Ref

Sense

U1 INA152Rs 100mOhmV+ 28V

Rload 800mOhm

CL 10nF

A+

AM1

Vin+

Vin-

+

VG1

Rco 150Ohm

Cco 100nF

24.89V

28V

31.11A

3.11V

Page 35: Solving Op Amp Stability  Issues Part 4

35

8) Closed Loop AC ResponseT

VOUT

-120

-100

-80

-60

-40

-20

0

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

VOUT

-270

-225

-180

-135

-90

-45

0

INA152 Closed Loop AC ResponseVOUT/VG1Output Pin Compensation

Page 36: Solving Op Amp Stability  Issues Part 4

36

9) Transient Analysis

Vcc 15V

Vee 15V

VOUT

++

-

Ref

Sense

U1 INA152Rs 100mOhmV+ 28V

Rload 800mOhm

CL 10nF

A+

AM1

Vin+

Vin-

+VG1

Rco 150Ohm

Cco 100nF

24.89V

28V

31.11A

3.11V

Page 37: Solving Op Amp Stability  Issues Part 4

37

9) Transient AnalysisT

Time (s)0.00 500.00u 1.00m 1.50m 2.00m

AM1

31.00

31.22

VG1

-100.00m

100.00m

VOUT

3.09

3.13

Vin+

27.90

28.10

Vin-

24.80

24.98

Page 38: Solving Op Amp Stability  Issues Part 4

38

9) Transient Analysis

T

Time (s)900.00u 1.00m 1.10m 1.20m

AM1

31.00

31.22

VG1

-100.00m

100.00m

VOUT

3.09

3.13

Vin+

27.90

28.10

Vin-

24.80

24.98

T

Time (s)400.00u 500.00u 600.00u 700.00u

AM1

31.00

31.22

VG1

-100.00m

100.00m

VOUT

3.09

3.13

Vin+

27.90

28.10

Vin-

24.80

24.98

Zoom on VOUT Rising Edge

Zoom on VOUT Falling Edge

Page 39: Solving Op Amp Stability  Issues Part 4

39

12) Riso with Dual Feedback (Output Cload)

- Zo, 1/b, Aol Technique

Page 40: Solving Op Amp Stability  Issues Part 4

Riso with Dual Feedback- Zo, 1/b, Aol Technique1) Given: Op Amp and Cload2) Determine Op Amp Zo

A) Measure in SPICE OR Data Sheet Curve3) Create External Zo Model for Loop Gain Analysis only4) If large RF value to be used model Cin_eq4) Set Riso = 1/10*Ro 1/β_Hif ≈ 20dB5) SPICE simulation: Aol, 1/β FB#1A) FB#1 gives: 1/β_Lof and fz1 6) Draw 1/β FB#2 (1/β_Hif ≈ 20dB from Step 4)A) fp1=10*fz1B) fz3=1/10*fp1C) fp1<1/10*fcl7) Choose RF and CF so standard values yield fz38) SPICE simulation: Loop Gain (Aolβ) Magnitude & Phase A) Adjust compensation for more Loop Gain (Aolβ) phase margin if needed9) Check closed loop AC response for VOUT/VIN A) Look for peaking which indicates marginal stability B) Check if closed AC response is acceptable for end application10) Check Transient response for VOUT/VIN A) Overshoot and ringing in the time domain indicates marginal stability   40

Page 41: Solving Op Amp Stability  Issues Part 4

41

1) Riso w/Dual Feedback

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm

CL 10uF

Vout

CF 82nF

-

+ +U1 OPA177E

Vref 5V

VFB

FB#1

FB#2

5V

5V

5V

Dual Feedback:FB#1 through RF forces accurate Vout across CLFB#2 through CF dominates at high frequency for stabilityRiso provides isolation between FB#1 and FB#2

Page 42: Solving Op Amp Stability  Issues Part 4

T

60 ohms

Zo M

agni

tude

(ohm

s)

60.000

60.138

60.276

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Zo P

hase

[deg

]

-4.11

-2.05

0.00

60 ohms

Zo for OPA177

42

2) OPA177 Zo – SPICE Measurement

ic)(Logarithm Vout (ohms)Zout ic)(Logarithm Vout to (dB)ut Convert Vo

VoutZoZo unloaded for0A ValueDC IG1

GeneratorCurrent ACis IG1 Analysis ACSPICE Run:Test Zo SPICE

VCC 12V

VEE 12V

Vout -

+ +U1 OPA177E

LT 1TH

IG1

CT 1TF

Zo (dB) = VoutZo (ohms):Change y-axis to Logarithmic

61nV

Page 43: Solving Op Amp Stability  Issues Part 4

43

3) Riso w/Dual Feedback – Zo External Model

Zo External Model:VCVS1 ideally isolates U1 so U1 only provides data sheet Aol at VOASet Ro to match measured RoAnalyze with unloaded Ro (largest Ro) which creates worst instabilityUse 1/β on Aol stability analysis1/ β, taken from VOA, will include the effects of Zo, Riso, and CL

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm

CL 10uF

Vout

CF 82nF

-

+ +U1 OPA177E

VFB

-

+

-

+

VCVS1 1

Vref 5V

Ro 60Ohm

VOA

Op AmpZo External

Page 44: Solving Op Amp Stability  Issues Part 4

44

3) Zo External Model, FB#1 and FB#2 Analysis

FB#1 and FB#2 1/ β Analysis:There is only one net voltage fed back as β to the –input of the op ampβ_net = β_FB#1 + β_FB#2 This implies that the largest β will dominate → smallest 1/ β will dominateAnalyze FB#1 with CF = open since it will only dominate at high frequenciesAnalyze FB#2 with CL = short since it is at least 10x CF

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm

CL 10uF

Vout

CF 82nF

-

+ +U1 OPA177E

VFB

-

+

-

+

VCVS1 1Vref 5V

Ro 60Ohm

VOA

FB#1

FB#2

Page 45: Solving Op Amp Stability  Issues Part 4

45

4) OPA177 Input Capacitance

-

+ +

U1 OPA177E

Ccm+ 1.5pF

Ccm- 1.5pF

Cdif f 1pF

VCC 12V

VEE 12V

IN-

IN+ OPA177Equivalent Input Capacitance Model

OPA177 Input Capacitance:Ccm- and Ccm+ are common mode input capacitanceCdiff is differential input capacitanceCcm and Cdiff can usually be found in op amp data sheetFor OPA177 Ccm and Cdiff are found inside the SPICE macromodel

***************************** OPA177 "E" - ENHANCEMENTS***************************** OUTPUT SUPPLY MIRRORFQ3 0 20 POLY(1) VLIM 0 1DQ1 20 21 DXDQ2 22 20 DXVQ1 21 0 0VQ2 22 0 0FQ1 3 0 POLY(1) VQ1 0.976E-3 1FQ2 0 4 POLY(1) VQ2 0.976E-3 -1* QUIESCIENT CURRENTRQ 3 4 3.0E4* DIFF INPUT CAPACITANCECDIF 1 2 1.0E-12* COMMON MODE INPUT CAPACITANCEC1CM 1 99 1.5E-12C2CM 2 99 1.5E-12

Page 46: Solving Op Amp Stability  Issues Part 4

46

4) Cin_eq Equivalent Input Capacitance for Loop Gain Analysis

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm

CL 10uF

Vout

CF 82nF

-

+ +U1 OPA177E

Vref 5V

VFB

Ccm- 1.5pF

Cdiff 1pF

Ccm+ 1.5pF

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm

CL 10uF

Vout

CF 82nF

-

+ +U1 OPA177E

Vref 5V

VFB

Cin_eq 2.5pF

Cin_eq:Equivalent Input Capacitancefor Loop Gain Analysis

pF5.2pF1pF5.1eq_Cin)Cdiff//()Ccm(eq_Cin

Input Capacitance and Loop Gain Analysis:Final Loop Gain circuit break needs to break both FB#1 and FB#2Loop Gain circuit break will need to be made on op amp –inputFor some op amps feedback elements can interact with input capacitance and add zero or pole to 1/βFor Loop Gain analysis break loop at –input but add Cin_eq

Page 47: Solving Op Amp Stability  Issues Part 4

47

5) 1/β FB#1 Analysis

dB01Lof_1

MHz4.6k10pF5.22

1RFeq_Cin2

12fpz

Hz241)660(F102

1)RisoRo(CL2

11fpz

b

b

Riso)(Ro 10RF:For

FB#1 of analysis for open an as viewed be can FB#2sfrequencie highat dominate only willFB#2 then CF10CL For

: AnalysisFB#1 1 VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm

CL 10uF

Vout -

+ +

U1 OPA177E

L1 1

TH

C1 1TF

+

Vtest

VFB

-

+

-

+VCVS1 1Vref 5V

Ro 60Ohm

VOA

Cin_eq 2.5pFCF Open FB#1

Aol=VOA1/b=VOA/VFB

5V

5V

5V

5V

Set Riso = 1/10*Ro 1/β_Hif ≈ 20dB

Page 48: Solving Op Amp Stability  Issues Part 4

48

T

Aol

fz1

fz2

1/b FB#1

fz145deg241Hz

fz2135deg6.4MHz

1/b FB#1

Vol

tage

(V)

-100-80-60-40-20

020406080

100120140

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M 100M

Vol

tage

(V)

0

45

90

135

180

1/b_Lof

Aol and 1/b FB#1

1/b FB#1

1/b FB#1

fz2

fz1

fz2135deg6.4MHz

fz145deg241Hz

Aol

5) 1/β FB#1 SPICE Results

TINASPICEPost Processing Math Anomaly

C

Page 49: Solving Op Amp Stability  Issues Part 4

T

Aol

fz1241Hz

fz26.4MHz

1/b FB#1

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M 100M

Vol

tage

(V)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

Aol, 1/b FB#1, 1/b FB#2, 1/b

1/b FB#1

1/b FB#2

1/b

fcl

Aol

fp12.42kHz

1/b_Hif

1/b_Lof

fz3200Hz

fz26.4MHz

fz1241Hz

6) Add FB#2: Draw Desired 1/β FB#2on Aol & 1/β FB#1 Curves

49

fcl1011fp:Set

1fp1013fz:Set

1fz101fp:Set

FB#2β1 and FB#1

β1 of onintersecti byset _fp1

β1

FB#2 byset fz3 and _Hifβ1

FB#1 byset fz1 and _Lofβ1

:Note β1

Set Riso = 1/10*Ro 1/β_Hif ≈ 20dB

Page 50: Solving Op Amp Stability  Issues Part 4

50

7) 1/β FB#2 Analysis

RF 10kOhm

Riso 6Ohm Vout Ro 60OhmVOA

CF 82nF

CL Short

VFB

CF Hif Short

Hz194)k10(nF822

1RFCF2

13fz

dB8.20116

660Riso

RisoRoHif_1

b

b

Hifat short CF

FB#2 of analysis forshort as viewed be can CFFB#2 for impedancelow like look willCL then CF10CL For

: AnalysisFB#2 1

For 1/β FB#2 SPICE Analysis:Set Vref = 0VElse OPA177 VOA will saturate with Vout = 5V into a short

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm Vout -

+ +U1 OPA177E

L1 1

TH

C1 1TF

+

Vtest

VFB

-

+

-

+VCVS1 1Vref 0V

Ro 60Ohm

VOA

CF 82nF

CL Short

Cin_eq 2.5pF

FB#2

Aol=VOA1/b=VOA/VFB

652.05mV

30.49nV

9.88uV

59.29mV

Set Riso = 1/10*Ro 1/β_Hif ≈ 20dB

Page 51: Solving Op Amp Stability  Issues Part 4

51

7) 1/β FB#2 SPICE ResultsT

Aol

1/b FB#2

20.8dB

fz3194Hz

fz345deg194Hz

Vol

tage

(V)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M 100M

Vol

tage

(V)

-90

-45

0

Aol and 1/b FB#2

fz3194Hz

20.8dB

1/b FB#2

Aol

1/b_Hif

fz345deg194Hz

Page 52: Solving Op Amp Stability  Issues Part 4

52

T

Aol

1/b

fz1241Hz

fp12.4kHz

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M 100M

Vol

tage

(V)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

fp12.4kHz

fz1241Hz

Aol and 1/b Complete

1/b

Aol

7) SPICE 1/β Complete

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm Vout -

+ +U1 OPA177E

L1 1

TH

C1 1TF

+

Vtest

VFB

-

+

-

+VCVS1 1

Vref 5V

Ro 60Ohm

VOA

CF 82nFCin_eq 2.5pF

CL 10uF

Loop Gain (Aolb)=VFB1/b=VOA/VBAol=VOA

5V

5V

5V

5V

Page 53: Solving Op Amp Stability  Issues Part 4

53

T

VFB

-120-100

-80-60-40-20

020406080

100120

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M 100M

VFB

-90

-45

0

45

90

135

Loop Gain (Aolb) Complete

fcl

VFB: VFB A:(55.26k; 5.52f)

VFB: VFB A:(55.26k; 82.4)

a

8) SPICE Loop Gain Complete

VCC 12V

RF 10kOhm

VO

VEE 12V

Riso 6Ohm Vout -

+ +U1 OPA177E

L1 1

TH

C1 1TF

+

Vtest

VFB

-

+

-

+VCVS1 1

Vref 5V

Ro 60Ohm

VOA

CF 82nFCin_eq 2.5pF

CL 10uF

Loop Gain (Aolb)=VFB

5V

5V

5V

5V

Loop Gain Phase Margin = 82 degrees

Page 54: Solving Op Amp Stability  Issues Part 4

54

9) SPICE AC Closed Loop

VCC 12V

RF 10kOhm

VEE 12V

Riso 6Ohm Vout -

+ +U1 OPA177E

Vref 5V

VOA

CF 82nF

CL 10uF

+

VG1

5V

5V

Page 55: Solving Op Amp Stability  Issues Part 4

55

9) SPICE AC Closed LoopT

VOA: fpcl_VOA due to fcl

Voutfp1_outdue to Riso & CL Vout

fp2_outdue to fpcl_VOA

VOA

Vout

Gai

n (d

B)

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M 100M

Pha

se [d

eg]

-360

-315

-270

-225

-180

-135

-90

-45

0

AC Closed Loop Response

Voutfp2_outdue to fpcl_VOA

VOA: fpcl_VOA due to fcl

Voutfp1_outdue to Riso & CL

Vout

VOA

Page 56: Solving Op Amp Stability  Issues Part 4

56

10) SPICE Transient Analysis

T

Time (s)0.00 1.00m 2.00m

VG1

-10.00m

10.00m

VOA

4.99

5.01

Vout

4.99

5.01

Tranisent Analysis

VCC 12V

RF 10kOhm

VEE 12V

Riso 6Ohm Vout -

+ +U1 OPA177E

Vref 5V

VOA

CF 82nF

CL 10uF

+

VG1

5V

5V

Page 57: Solving Op Amp Stability  Issues Part 4

57

13) Discrete Difference Amplifier(Output Cload)

Page 58: Solving Op Amp Stability  Issues Part 4

58

Difference Amp w/CLoad: No Compensation

-

++

4

3

51

2

U1 OPA2376

V1 5VCLoad 470pF

VOUT

+

VIN

RI 18kOhm

RF 18kOhm

RA 18kOhm

RB 18kOhmVoffset 2.5V

2.5V

Page 59: Solving Op Amp Stability  Issues Part 4

59

Difference Amp w/CLoad: No CompensationT

Time (s)0 5u 10u 15u

VIN

0

10m

20m

VOUT

2.3

2.4

2.5

2.6

2.7

Transient AnalysisDIfference Amp w/CLoadNo Compensation

Page 60: Solving Op Amp Stability  Issues Part 4

Discrete Difference Amplifier Compensation Design Steps

1) SPICE simulation for Loaded Aol curves

2) Plot Desired 1/b on Loaded Aol curvesA) Use Noise Gain Compensation

3) From Desired 1/b determine fp and 1/β_Hif

4) Compute values for Rn, Cn based on fp and 1/β_Hif

5) SPICE simulation w/final compensation for Loop Gain (Aolb) Magnitude and Phase

6) Adjust Compensation if greater Loop Gain (Aolb) phase margin desired

7) Add Rnp-Cnp to +input of Difference Amplifier for flat VOUT/VIN ResponseA) Look for peaking which indicates marginal stabilityB) Check if closed AC response is acceptable for end application

8) Check Transient response for VOUT/VIN A) Overshoot and ringing in the time domain indicates marginal stability

60

Page 61: Solving Op Amp Stability  Issues Part 4

61

1) Loaded Aol: No Compensation

-

++

4

3

51

2

U1 OPA2376

V1 5VCLoad 470pF

VOUT

RI 18kOhm RF 18kOhm

RA 18kOhm

RB 18kOhmVoffset 2.5V

LT 1TH

CT 1TF+

Vtest

V+

Vos

Loaded Aol = VOUT/Vos

44.14uV2.5V

Page 62: Solving Op Amp Stability  Issues Part 4

62

1) Loaded Aol: No CompensationT

Loaded AolCLoad = 470pF

-20dB/decade

-40dB/decade

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

LoadedAol

-40

-20

0

20

40

60

80

100

120

140Difference Amp No CompLoaded Aol

40dB/decade Rate-of-Closure

-40dB/decade

-20dB/decade

Loaded AolCLoad = 470pF

1/b = 6dB fcl

Page 63: Solving Op Amp Stability  Issues Part 4

63

2), 3) Plot 1/β on Loaded Aol T

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

LoadedAol

-40

-20

0

20

40

60

80

100

120

140Loaded AolAdd Noise Gain Compensation 1/b

Noise Gain Compensation 1/b

Original 1/b1/b_Lof=6dB

fp=30kHz 1/b_Hif=26dB

Page 64: Solving Op Amp Stability  Issues Part 4

64

capacitor value standard 5.6nF Cn Use

resistor value standard 909 Rn Use

: AnalysisonCompensati Gain Noise From

b

b

nF84.5CnkHz30Cn)909(2

1RnCn21fp

25.902Rn95.19Rnk18

RnRFHif_1

2k18k181

RIRF1

RIRIRFLof_1

4) Compute Rn and Cn

-

++

4

3

51

2

U1 OPA2376

V1 5VCLoad 470pF

VOUT

RI 18kOhm RF 18kOhm

RA 18kOhm

RB 18kOhmVoffset 2.5V

LT 1TH

CT 1TF+

Vtest

V+

Vos

Rn 909OhmCn 6.8nFVFB

Loaded Aol = VOUT/Vos1/b= 1/VFBLoop Gain (Aolb)=VOUT

kHz30fp95.19dB26Hif_1

2dB6Lof_1

bb

:1/β onCompensati Gain Noise From

Page 65: Solving Op Amp Stability  Issues Part 4

65

5),6) Loop Gain CheckT

VOUT

-60

-40

-20

0

20

40

60

80

100

120

140

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

VOUT

-45

0

45

90

135

Loop Gain (Aolb)Noise Gain Compensation

VOUT: VOUT A:(261.59k; 4.68f)

VOUT: VOUT A:(261.59k; 81.77)

fcl

a

Loop Gain Phase Margin = 81 degrees

Page 66: Solving Op Amp Stability  Issues Part 4

66

7) VOUT/Vin_diff: Noise Gain Compensation

-

++

4

3

51

2

U1 OPA2376

V1 5VCLoad 470pF

VOUT

RI 18kOhm RF 18kOhm

RA 18kOhm

RB 18kOhm

Voffset 2.5V

+

Vin_dif f

Rn 909OhmCn 5.6nFVFB 2.5V

2.5V

Page 67: Solving Op Amp Stability  Issues Part 4

67

7) VOUT/Vin_diff: Noise Gain Compensation T

Actual VOUT / Vin_diff ?????????

VOUT

-60

-40

-20

0

20

40

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

VOUT

-270

-225

-180

-135

-90

-45

0

45

90

?????????Actual VOUT / Vin_diff

Desired Vout / Vin_diff

VOUT / Vin_diffNoise Gain Compensation

Page 68: Solving Op Amp Stability  Issues Part 4

68

7) Rnp-Cnp Compensation plus Noise Gain Compensation = FLAT VOUT/Vin_diff Response

Rnp 909Ohm

Cnp 5.6nF

-

++

4

3

51

2

U1 OPA2376

V1 5VCLoad 470pF

VOUT

RI 18kOhm RF 18kOhm

RA 18kOhm

RB 18kOhm

Voffset 2.5V

+

Vin_diff

Rn 909OhmCn 5.6nFVFB 2.5V

2.5V

Add Rnp-Cnp Compensation:Rnp = Rn Cnp = Cp

1) This will balance the differential gain so inverting and non-inverting gain paths have the same gain over frequency for a flat differential gain of VOUT/Vin_diff.

2) No Effect on Loop Gain (Aolβ)

Page 69: Solving Op Amp Stability  Issues Part 4

69

7) Rnp-Cnp Compensation plus Noise Gain Compensation = FLAT VOUT/Vin_diff ResponseT

-3dB307kHzVOUT

-60

-40

-20

0

20

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

VOUT

-225

-180

-135

-90

-45

0

VOUT / Vin_diffRnp-Cnp Compensation plusNoise Gain Compensation

-3dB307kHz

Page 70: Solving Op Amp Stability  Issues Part 4

70

7) Rnp-Cnp Compensation plus Noise Gain Compensation = Improved CMRR

Rnp 909Ohm

Cnp 5.6nF

-

++

4

3

51

2

U1 OPA2376

V1 5VCLoad 470pF

VOUT

RI 18kOhm RF 18kOhm

RA 18kOhm

RB 18kOhm

Voffset 2.5V

+

VCM

Rn 909OhmCn 5.6nFVFB 1.25V

2.5V

Page 71: Solving Op Amp Stability  Issues Part 4

71

T

Frequency (Hz)1 10 100 1k 10k 100k 1M

VOUT

-100

-80

-60

VOUT A:(600k; -68.72)

VOUT/VCM (Common Mode Rejection Ratio)Rnp-Cnp Compensation plusNoise Gain Compensation

a

7) Rnp-Cnp Compensation plus Noise Gain Compensation = Improved CMRR

OPA2367CMRR = 40dB @ 600kHz

Difference AmpNoise Gain CompensationRnp-Cnp CompensationCMRR = 69dB @ 600kHz

Page 72: Solving Op Amp Stability  Issues Part 4

72

7) Rnp-Cnp Compensation plus Noise Gain Compensation = Improved CMRR

OPA2367CMRR = 40dB @ 600kHz

Difference AmpNoise Gain CompensationRnp-Cnp CompensationCMRR = 69dB @ 600kHz

Page 73: Solving Op Amp Stability  Issues Part 4

73

Rnp 909Ohm

Cnp 5.6nF

-

++

4

3

51

2

U1 OPA2376

V1 5VCLoad 470pF

VOUT

RI 18kOhm RF 18kOhm

RA 18kOhm

RB 18kOhm

Voffset 2.5V

+

Vin_diff

Rn 909OhmCn 5.6nFVFB 2.5V

2.5V

8) Transient Analysis: Rnp-Cnp Compensation plus Noise Gain Compensation

Page 74: Solving Op Amp Stability  Issues Part 4

74

T

Time (s)0.00 1.00m 2.00m

VOUT

2.47

2.48

2.49

2.50

2.51

2.52

2.53

Vin_diff

-20m-15m-10m

-5m0

5m10m15m20m

Transient AnalysisDifference Amp Noise Gain CompensationRnp-Cnp Compensation

8) Transient Analysis: Rnp-Cnp Compensation plus Noise Gain Compensation