23
Developed as part of the OEH funded Pilot “Small wind site assessment” Course. August 2011 Based on the Midwest Renewable Energy Association Small Wind Supplement. 1 Small Wind Site Assessment Supplement: A brief explanation of your small wind site assessment 1. Wind Basics When talking about generating energy from the wind, there are some basic principles that need to be understood: The site needs to have a good wind resource; otherwise the wind turbine cannot work at its designed efficiency and will not produce the expected amount of power. A good wind resource includes a sufficiently high wind speed and minimal turbulence. Details about what makes a good wind resource will be discussed later in this document. The surrounding terrain should be relatively free of clutter; wooded and urban areas are considered very cluttered. This is why you see wind farms in wide open fields and in the water. Typically, wind turbines have two or three blades. Regardless of the number of blades on a wind turbine, the energy generated is directly proportional to the “swept area”; the area that is encompassed by the blades when they are spinning. Power is actually proportional to the square of the blade length: P ~ (Blade Length)². Increases in blade length significantly increase the power output. Wind turbines need to be on tall towers. Because of the friction between the wind and the earth, wind speed increases rapidly with increasing distance from the ground, especially in the first 20m. Also, obstructions around the turbine, such as trees or buildings cause turbulence, which not only reduces the efficiency of the turbine; it also shortens its life due to additional wear and tear. A general rule for tower height is that the bottom of the turbine rotor should be at least 10m above the tallest obstruction within 150m or the nearby prevalent tree height. For trees, this means the mature tree height over the 20 to 30 year life of the turbine, not the tree height when the assessment was done. For residential or small business sized wind systems, towers of 30m or 36m are usually optimal. The longer the distance to connect to the grid, the higher the cost due to the labor cost of trenching, the cost of the longer wire, and because a larger diameter wire (more expensive) will have to be used to minimize line losses. While the viable grid connection cost of each project varies, small wind projects turbines located 500m from the grid (or from the rest of the Stand Alone Power System [SAPS] for an off grid system) are very unlikely to be cost effective. The site for the wind system must be accessible, either for a crane or with space enough to tilt up a tower. Most wind systems (except tiltup towers), even residential sizes, need a crane during installation to raise the tower and/or to lift and place the turbine on top of the tower. Currently, the majority of small wind systems in Australia are part of a Stand Alone Power Supply (SAPS) system, including a large battery bank, a generator, and other components. These are also known as Remote Area Power Supply (RAPS), or simply ‘offgrid’ systems. Excess energy that can not be used on site or stored in the

Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

1

Small  Wind  Site  Assessment  Supplement:    A  brief  explanation  of  your  small  wind  site  assessment  

1. Wind  Basics  When  talking  about  generating  energy  from  the  wind,  there  are  some  basic  principles  that  need  to  be  understood:  

• The  site  needs  to  have  a  good  wind  resource;  otherwise  the  wind  turbine  cannot  work  at  its  designed  efficiency  and  will  not  produce  the  expected  amount  of  power.  A  good  wind  resource  includes  a  sufficiently  high  wind  speed  and  minimal  turbulence.  Details  about  what  makes  a  good  wind  resource  will  be  discussed  later  in  this  document.  

• The  surrounding  terrain  should  be  relatively  free  of  clutter;  wooded  and  urban  areas  are  considered  very  cluttered.  This  is  why  you  see  wind  farms  in  wide  open  fields  and  in  the  water.  

• Typically,  wind  turbines  have  two  or  three  blades.  Regardless  of  the  number  of  blades  on  a  wind  turbine,  the  energy  generated  is  directly  proportional  to  the  “swept  area”;  the  area  that  is  encompassed  by  the  blades  when  they  are  spinning.  Power  is  actually  proportional  to  the  square  of  the  blade  length:  P  ~  (Blade  Length)².  Increases  in  blade  length  significantly  increase  the  power  output.  

• Wind  turbines  need  to  be  on  tall  towers.  Because  of  the  friction  between  the  wind  and  the  earth,  wind  speed  increases  rapidly  with  increasing  distance  from  the  ground,  especially  in  the  first  20m.  Also,  obstructions  around  the  turbine,  such  as  trees  or  buildings  cause  turbulence,  which  not  only  reduces  the  efficiency  of  the  turbine;  it  also  shortens  its  life  due  to  additional  wear  and  tear.  A  general  rule  for  tower  height  is  that  the  bottom  of  the  turbine  rotor  should  be  at  least  10m  above  the  tallest  obstruction  within  150m  or  the  nearby  prevalent  tree  height.  For  trees,  this  means  the  mature  tree  height  over  the  20  to  30  year  life  of  the  turbine,  not  the  tree  height  when  the  assessment  was  done.  For  residential  or  small  business  sized  wind  systems,  towers  of  30m  or  36m  are  usually  optimal.  

• The  longer  the  distance  to  connect  to  the  grid,  the  higher  the  cost  due  to  the  labor  cost  of  trenching,  the  cost  of  the  longer  wire,  and  because  a  larger  diameter  wire  (more  expensive)  will  have  to  be  used  to  minimize  line  losses.  While  the  viable  grid  connection  cost  of  each  project  varies,  small  wind  projects  turbines  located  500m  from  the  grid  (or  from  the  rest  of  the  Stand  Alone  Power  System  [SAPS]  for  an  off  grid  system)  are  very  unlikely  to  be  cost  effective.    

• The  site  for  the  wind  system  must  be  accessible,  either  for  a  crane  or  with  space  enough  to  tilt  up  a  tower.  Most  wind  systems  (except  tilt-­‐up  towers),  even  residential  sizes,  need  a  crane  during  installation  to  raise  the  tower  and/or  to  lift  and  place  the  turbine  on  top  of  the  tower.  

• Currently,  the  majority  of  small  wind  systems  in  Australia  are  part  of  a  Stand  Alone  Power  Supply  (SAPS)  system,  including  a  large  battery  bank,  a  generator,  and  other  components.  These  are  also  known  as  Remote  Area  Power  Supply  (RAPS),  or  simply  ‘off-­‐grid’  systems.  Excess  energy  that  can  not  be  used  on  site  or  stored  in  the  

Page 2: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

2

batteries  is  ‘dumped’  (converted  into  heat)  to  prevent  damage  to  the  wind  turbine  or  batteries.  

• For  grid  connected  systems,  the  electricity  generated  by  the  wind  system  will  be  used  directly  by  the  loads  at  the  site  and  that  any  excess  will  be  exported  to  the  utility  power  grid.  When  the  utility  grid  goes  down  (during  a  power  outage)  the  wind  system  also  shuts  down,  for  safety  reasons,  and  no  energy  will  be  delivered.  This  is  not  a  significant  concern  in  areas  where  power  outages  are  rare.  

2. Wind  System  Siting  Considerations  a.  Prevailing  Wind  Direction  and  Turbulence  The  turbine  should  be  located  where  it  can  intercept  the  good  quality  wind,  based  on  the  prevailing  wind  directions  at  the  site  and  on  the  locations  of  the  highest  obstructions  within  150m.  More  intercepted  wind  means  more  electricity  produced.  Obstructions,  such  as  buildings,  rough  terrain,  and  tall  trees  disrupt  the  flow  of  the  wind  and  create  turbulence.  Turbulence  not  only  reduces  the  amount  of  energy  that  can  be  extracted,  but  also  creates  a  harsher  environment  for  the  wind  turbine,  especially  the  rotor  blades,  and  this  may  shorten  the  life  of  the  system.  The  best  sites  for  wind  systems  are  on  wide  open  land  and  on  the  tops  of  smooth  ridges  and  large  bodies  of  water.  If  wide  open  land  is  not  available,  it  is  best  to  site  the  turbine  where  obstructions  do  not  block  the  wind  from  prevailing  wind  directions  and/or  significantly  above  the  tallest  obstruction;  so  the  tower  height  must  be  sufficiently  tall  to  place  the  rotor  above  the  turbulence.  Tower  heights  are  addressed  later  in  the  report.    b.  Additional  Factors  There  are  several  additional  factors  to  be  taken  into  account  when  siting  a  wind  system.  The  primary  requirement  is  that  the  turbine  is  able  to  intercept  the  most  wind  with  the  least  turbulence  as  stated  above.  The  other  considerations  include:  

• Length  of  the  wire  run  to  the  inverter  or  battery  bank  –  the  shorter  the  better  for  cost  and  for  line  losses.  

• Convenience  of  location  to  the  property  owner  -­‐  to  make  sure  that  the  wind  system  does  not  interfere  with  day  to  day  activities  or  impact  their  lifestyle  too  much.  

• Accessibility  to  the  system  by  a  crane  -­‐  which  is  needed  for  raising  the  tower  and  placing  the  turbine  on  top  of  the  tower  and  in  case  of  major  maintenance  or  repair.  

• Accessibility  issues  for  installation  and  maintenance  include  steep  ridges,  low  overhead  power  lines,  dense  woods,  crossing  streams,  etc.  

• Local  zoning  regulations  for  setback  distance  requirements  from  roads,  overhead  utility  lines,  and  property  lines.  

 Based  on  these  considerations,  the  assessor  will  determine  the  best  location(s)  for  a  wind  system  on  the  property.    

Page 3: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

3

3. Wind  Resource  a.  Wind  Map  When  considering  a  wind  system  it  is  important  to  know  what  kind  of  wind  energy  resource  is  available.  Wind  maps  for  the  majority  of  the  Australia  are  available  through  state  or  federal  governments.    Several  private  companies,  such  as  3-­‐Tier,  also  offer  on-­‐line  estimates  of  wind  energy  resources.    Companies  that  specialize  in  developing  Geographic  Information  System  (GIS)  databases  of  wind  information  develop  such  maps.  These  databases  include  wind  speed  information  for  the  state  compiled  from  the  historic  climatological  data  of  weather  satellites  and  stations,  airports,  monitoring  towers,  military  sources,  etc.  They  may  also  include  wind  directional  data,  elevation  and  topography  data.  Average  annual  wind  speeds  are  provided  in  these  databases  at  various  heights  typical  to  wind  turbine  hub  heights  above  ground,  and  the  maps  have  a  resolution  ranging  from  90m  to  3,000m.  Lower  resolution  wind  maps  are  available  on  some  state  and  federal  government  agency  websites,  including  NSW  Department  of  Trade  and  Investment  (NSW),  Sustainability  Victoria  (Victoria),  the  Department  of  Climate  Change  and  Energy  Efficiency  (Australia),  etc.    In  order  to  estimate  the  wind  energy  resource  for  the  sites  and  tower  heights  recommended  in  the  report,  the  mean  wind  speed  at  the  latitude  and  longitude  of  the  site  from  the  nearest  map  height  above  hub  height  is  retrieved  from  the  wind  map  data  base.  This  value  is  then  extrapolated  down  to  the  tower  heights  recommended  in  the  report.    A  copy  of  the  appropriate  wind  map  and  a  close  up  image  of  the  site  specific  wind  map  should  be  included  with  the  assessment  report.    b.  Weather  Stations  Weather  stations  such  as  the  Bureau  of  Meteorology,  also  record  wind  speed,  however  the  height  of  these  wind  monitoring  stations  (typically  10m)  does  not  provide  accurate  indications  of  wind  speeds  and  so  can  not  be  used  for  extrapolation  of  wind  speeds  to  a  wind  turbine  hub  height.      c.  Topography  The  topography  around  a  site  can  affect  the  wind  flow.  The  tops  of  hills  and  wide  open  farmland  are  obviously  better  sites  for  wind  systems  than  sites  located  in  low  spots  or  down  in  valleys.      Small  changes  in  elevation  can  sometimes  be  allow,  or  require,  changes  in  tower  height.    For  example,  if  an  assessor  specifies  two  potential  sites  on  a  property  and  one  of  the  sites  is  6m  higher  in  elevation,  then,  all  other  factors  being  equal,  the  owner  may  have  the  option  of  using  the  lower  site  and  installing  a  6m  taller  tower  than  that  required  at  the  higher  site  to  get  the  same  output  from  a  wind  turbine.    The  site  assessment  report  includes  two  topographical  maps.  The  first  is  a  close  up  of  the  property,  which  may  show  local  elevation  variations  on  the  property.  The  second  is  a  smaller  scale  map  (i.e.  the  map  shows  a  larger  area),  which  reveals  how  the  contours  of  the  surrounding  area  may  affect  the  wind  at  a  particular  site.    

Page 4: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

4

d.  Wind  Shear    Wind  speed  increases  with  rising  elevation  above  ground  level.  At  ground  level,  friction  caused  by  the  interaction  of  the  wind  with  vegetation,  trees,  buildings  and  topography  of  the  land  decreases  the  wind  speed.  At  higher  elevations  above  the  ground,  the  wind  moves  unimpeded  and  its  speed  increases.    The  power  output  from  a  wind  turbine  is  proportional  to  the  wind  speed  cubed  (e.g.  wind  speed  ×  wind  speed  ×  wind  speed)  so  small  increases  in  wind  speed  produce  large  increases  in  power  output.    If  the  wind  speed  and/or  wind  direction  is  not  consistent  on  the  blades  as  they  spin  from  the  lowest  position  to  the  highest,  then  the  energy  in  the  wind  is  not  being  converted  efficiently  and  it  also  imposes  more  stress  on  the  wind  turbine.  The  change  in  wind  speed  with  height  above  ground  is  called  wind  shear  and  is  caused  by  both  the  natural  friction  of  the  wind  with  the  ground  (ground  drag),  and  by  turbulence  which  is  created  when  the  wind  encounters  local  obstructions  such  as  trees,  buildings,  etc.      It  is  important  to  note  that  closer  to  the  ground  (under  20m)  the  wind  speed  changes  very  rapidly  (high  wind  shear)  with  minor  changes  in  height.  As  height  increases  above  20m,  the  rate  at  which  the  wind  speed  changes  with  increased  height  is  reduced  (lower  wind  shear).                                    

 

 

 

 

 

 

 

For  example,  the  graph  below  shows  how  the  wind  speed  changes  as  the  height  above  the  ground  increases,  at  a  specific  site  (it  is  important  to  note  that  the  actual  wind  shear  and  wind  speeds  will  vary  considerably  from  one  site  to  the  next).    

Graph  1.    Wind  Shear  Graph  form  Danish  Wind  Association  

Page 5: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

5

 Therefore,  adding  height  to  the  tower  reduces  the  wind  shear  on  the  blades  and  will  allow  the  turbine  to  operate  more  efficiently  and  with  less  maintenance.  The  larger  the  turbine  and  the  longer  the  blade  length,  the  more  critical  it  is  to  have  the  rotor  further  away  from  the  ground  onto  the  more  vertical  (and  more  consistent)  part  of  the  wind  shear  curve.    The  wind  shear  exponent  describes  the  increase  in  wind  speed  with  height.  Shear  value  reflects  the  macro  effects  of  terrain  more  than  50m  from  the  wind  turbine  location.  The  table  below  shows  the  typical  wind  shear  exponent  (alpha  values)  as  a  function  of  the  site’s  surface  characteristics.    

Table  1.    Wind  Shear  Exponent  and  Surface  Characteristics  

Surface  Description   Wind  Shear  α  

Smooth  Hard  Ground,  Lake,  or  Ocean   .20  

           Level  country  with  foot-­‐high  grass    Tree  lines  >  300m  away  

0.25  

Level  and  uniform  open  terrain  with  crops    with  occasional  trees  and  buildings  150m-­‐300m  

0.30  

Terrain  is  open  with  scattered  Trees/buildings  <150m   0.35  

Terrain  is  less  open,  not  densely  treed;  Trees/buildings  <150m;  or,    Mixed  densely  treed  areas  &  open  areas;  Tree  lines  >  150m  away  

0.4  

Mixed  densely  treed  areas  &  farm  fields,  Trees/buildings  <150m   0.45  

Densely  Wooded   0.50  

Urban  areas  with  tall  buildings    0.60  assumed  but  cannot  tell  without  

monitoring  

 While  wind  maps  do  take  into  account  wind  shear  values  based  on  the  general  ground  cover  and  topography  of  a  local  area;  one  of  the  purposes  of  the  site  visit  is  to  estimate  a  more  site-­‐specific  value.    The  estimated  wind  shear  factor  value  should  be  specified  in  the  site  assessment  report.    e.  Turbulence  Turbulence  is  created  when  the  wind’s  flow  is  disrupted  by  encountering  local  obstructions  such  as  trees  and  buildings.  If  a  wind  turbine  is  located  in  turbulent  flow,  it  cannot  operate  efficiently,  resulting  in  lower  than  expected  energy  outputs.  Additionally,  increased  wear  and  tear  on  the  turbine  blades  can  significantly  reduce  turbine  life.  To  avoid  this  turbulent  flow  a  wind  system  can  be  placed  upwind  of  the  obstacles  towards  the  prevailing  wind  direction,  or  a  far  enough  distance  away  from  the  obstructions  (20  times  the  obstruction  height),  or  on  a  tower  that  is  tall  enough  to  get  the  rotor  clear  of  the  turbulence.  The  “turbulence  intensity  (TI)  factor”  is  a  parameter  that  indicates  how  gusty  a  wind  site  is.  The  following  are  the  common  TI  factors  used  in  assessment  reports.    

Page 6: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

6

Site  Quality   Terrain   Turbulence  Intensity  Factor  

Good   Well  Exposed   15%  

Average  Some  Ground  Clutter,  

Scattered  Trees,  Buildings  

20%  

Poor  

Many  Trees  or  Buildings,  Lower  Elevation  than  Surroundings  

25%  

Very  Poor   Urban  or  wooded   30%  

 In  the  site  assessment  report  the  assessor  should  determine  a  TI  factor  based  on  the  site  specific  obstructions.    f.  Estimating  Wind  Speed  at  Tower  height  Once  the  estimated  mean  wind  speed  is  retrieved  from  the  wind  map,  or  the  measured  mean  wind  speed  is  derived  from  monitoring,  the  wind  speed  at  the  recommended  tower  heights  may  be  estimated  by  extrapolation  using  the  following  equation  (ref.  The  Wind  Power  Book  by  Jack  Park):    V  =  (H/H0)aV0  where:    V     =  the  wind  speed  at  the  desired  height  (the  tower  height)  Vo     =  the  wind  speed  at  the  map  height  Ho     =  the  height  at  which  the  map  mean  wind  speed  was  measured  or  estimated  (usually  40  

to  80m)  H     =  the  tower  height(s)  specified  in  report  (turbine  hub  height)  a     =  the  wind  shear  exponent    The  values  for  the  average  annual  wind  speed  for  the  site  at  the  recommended  tower  heights  will  be  given  in  the  site  assessment  report.  These  will  be  the  wind  speeds  used  to  calculate  the  average  annual  energy  output  of  the  potential  wind  turbine  options.    g.  Wind  Rose  Because  most  sites  will  have  some  sort  of  obstructions,  either  trees  or  buildings,  the  direction(s)  of  the  prevailing  winds  become  an  import  factor  in  determining  where  to  site  a  turbine.    A  diagram  called  a  wind  rose  is  normally  available  to  site  assessors  from  a  number  of  potential  sources,  including  wind  maps  and  BoM  data  sets.  A  wind  rose  diagram  illustrates  the  prevailing  wind  directions  at  a  site  and  the  relative  strength  of  the  wind  from  each  direction.  For  the  optimal  turbine  performance  it  is  best  to  capture  the  winds  coming  from  all  directions,  but  if  there  are  tall  obstructions  at  the  site,  the  wind  rose  helps  to  determine  where  to  position  the  wind  system  so  it  will  be  upwind  of  these.    The  site  assessment  report  should  contain  the  appropriate  wind  rose  for  the  site.    Visual  indicators  such  as  “tree  flagging”  and  wear  and  tear  on  one  side  of  a  building  can  also  

Page 7: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

7

be  signs  of  a  prevailing  wind  direction  at  a  site.  Tree  flagging  is  indicated  by  the  deformity  of  tree  growth  on  one  side  of  the  tree.  The  lack  of  these  visible  signs  does  not  imply  that  there  is  not  a  good  wind  resource  at  a  site.    h.  Displacement  Height  Due  to  the  friction  created  by  surface  of  the  earth,  the  wind  speed  at  ground  level  is  effectively  zero.  At  some  sites,  there  are  so  many  obstructions  in  the  immediate  surroundings  that  they  create,  in  effect,  a  new  “ground  level”.  This  is  common  in  urban  areas  or  in  densely  wooded  areas  where  the  average  building  or  tree  height  appears  to  the  wind  profile  as  the  ground  level,  which  means  that  the  wind  shear  curve  in  shown  in  the  graph  above  begins  not  at  ground  level,  but  at  this  new  “displacement  height”.  In  these  cases  the  site  assessor  must  adjust  the  wind  speed  accordingly,  resulting  in  lower,  but  more  accurate,  wind  speeds  and  energy  production  estimates  for  wind  system  performance.    Displacement  Height  relevance  should  be  determined  prior  to  the  site  visit  and  confirmed  on  the  site  visit.    If  wind  is  displaced  at  the  site,  the  site  assessor  will  determine  the  displacement  height  and  use  the  displacement  height  in  the  wind  speed  calculations.  

4. Wind  System  Towers  There  are  several  types  of  towers  that  can  be  used  for  residential  size  wind  systems  20KW  and  under:    a.    Guyed  Lattice  towers  

• Usually  have  three  sets  of  guy  wires.  • Least  expensive  type  of  tower.  • Guy  wires  holding  up  this  tower  have  a  radius  of  50%-­‐  75%  of  the  tower  height  from  

the  base.  • Requires  climbing  the  tower  for  maintenance.  • Usually  installed  with  a  crane  

 b.  Tilt-­‐up  towers  

• Usually  made  from  tubular  steel  sections  • Have  four  sets  of  guy  wires.  • Usually  cheaper  to  purchase  and  install  than  guyed  lattice  towers.  • Can  not  be  climbed  so  must  be  lowered  and  raised  for  all  maintenance  • Guy  wires  have  a  radius  of  40%  -­‐  75%  of  the  tower  height  from  the  base.  • Requires  relatively  flat  terrain  for  the  length  of  the  tower  in  at  least  one  direction  

from  the  base  of  the  tower,  in  order  to  lower  the  tower  to  the  ground.  This  is  not  a  task  to  be  taken  lightly,  and  requires  2-­‐3  trained  personnel  (owner  can  be  trained).  See  photo  below.  

• Requires  a  large  area  that  must  remain  free  of  permanent  obstacles  for  the  life  of  the  system.    

On  the  above  guyed  and  tilt-­‐up  towers,  guy  wires  are  not  visually  intrusive  when  viewed  from  a  distance.    c.  Free-­‐standing  towers  –  Lattice  and  Monopole  

• Have  no  guy  wires.  

Page 8: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

8

• Small  footprint  of  approximately  10%  of  the  tower  height  depending  on  the  strength  and  gauge  of  the  tower  steel.  There  is  less  of  a  footprint  with  a  heavier  duty  tower.  Good  for  tight  spaces.  

• Significantly  more  expensive  than  guyed  or  tilt-­‐up;  contains  more  steel  and  weighs  more  than  the  other  types.  

• More  visible  on  the  landscape.  • Requires  climbing  the  tower  for  maintenance.  • Requires  a  substantial  foundation.  • Installed  with  a  crane.  • Normally,  only  free-­‐standing  towers  are  used  for  larger  sized  wind  systems,  35kW  to  

100kW.  • Monopoles  are  usually  only  used  for  larger  turbines  since  they  are  significantly  more  

costly  than  the  free-­‐standing  lattice  towers  and  require  an  even  larger  and  deeper  foundation.  

 d.  Other  tower  variations  -­‐  such  as  tripod  towers  and  centre  pivot  towers  

• are  much  more  expensive  than  the  above  options  

Figure  1.    Tower  Figures  

                                                   

Freestanding     Guyed  Lattice         Guyed  Tilt-­‐Up           Monopole  

Page 9: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

9

5. Minimum  Tower  Height  The  minimum  tower  height  determination  is  a  critical  part  of  a  wind  site  assessment.  One  of  the  biggest  mistakes  that  can  be  made  when  installing  a  wind  system  is  to  install  the  turbine  on  a  tower  that  is  too  short  for  the  site.  

The  goal  is  to  position  the  entire  rotor  (the  area  swept  out  by  the  blades)  in  an  area  of  good  quality  wind.  If  the  wind  speed  and/or  wind  direction  is  not  consistent  on  the  blades  as  they  spin,  the  energy  in  the  wind  is  not  being  used  effectively  and  it  imposes  more  wear  and  tear  on  the  turbine,  resulting  in  more  maintenance  and  a  reduced  turbine  life.  By  increasing  the  tower  height,  the  rotor  can  be  positioned  above  the  most  severe  effects  of  wind  shear  and  turbulence  caused  by  obstructions  and  the  local  ground  cover.  

To  ensure  that  the  rotor  is  above  the  worst  of  the  wind  shear  and  turbulence,  it  is  suggested  to  use  a  minimum  tower  height  of  at  least  10m  above  any  obstacles  within  150m,  or  10m  above  the  prevailing  mature  tree  height  for  the  area.    

   The  site  assessment  report  should  recommend  the  minimum  tower  height,  for  each  recommended  location,  based  on  the  surrounding  obstructions  and  the  prevailing  wind  directions.      Keep  in  mind  that  this  is  the  minimum  height.  Wind  speed  increases  with  increasing  distance  from  the  ground,  so  a  taller  tower  will  increase  the  wind  speed  at  the  turbine  height.  The  energy  generated  by  a  wind  turbine  is  proportional  to  the  cube  of  the  wind  speed,  P  ~  (Wind  Speed)3,  so  any  increase  in  wind  speed  makes  a  significant  increase  in  power  output.  For  this  reason,  tower  heights  taller  than  the  minimum  that  is  recommended  in  the  assessment  report  should  always  be  considered.  

Renewable  Energy  Credits  based  on  estimated  production.  So,  the  cost  of  increasing  tower  height  will  be  at  least  partially  offset  by  the  increase  in  the  amount  of  the  incentive,  and  the  owner  will  enjoy  higher  energy  outputs  for  the  life  of  the  system.  

Towers  often  come  in  heights  that  are  multiples  of  6m  ,  and  heights  of  24m,  30m,  and  36m  are  commonly  installed  in  locations  which  have  shelter  belts,  treed  areas,  and  rolling  hills.  A  

Page 10: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

10

few  turbine  manufacturers  offer  slightly  different  tower  heights  such  as  32m  and  38m,  and  if  applicable,  these  will  be  noted  in  the  wind  assessment  report.  

Page 11: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

11

6. Wind  Turbines  Currently  there  is  no  internationally  recognised  standardised  rating  system  for  small  wind  turbines  (although  this  standardisation  is  in  progress).    

For  example,  visit  the  Small  Wind  Certification  Council  webpage  for  the  latest  updates:      

www.smallwindcertification.org/  

Some  manufactures  rate  their  wind  turbines  based  on  the  output  at  11  m/s  (25  mph),  while  others  may  rate  their  turbine  at  18m/s.  For  that  reason  a  turbine  rated  a  6kW  may  actually  produce  more  energy  than  a  turbine  rated  at  10kW  at  the  same  location,  so  it  is  important  to  look  at  a  turbine’s  annual  energy  output  (AEO)  rather  than  its  name  plate  rating.  Until  a  standard  rating  is  adopted,  your  assessor  should  rate  turbines  based  on  their  output  at  11m/s.  

One  good  indicator  of  energy  production  is  turbine  rotor  diameter.  The  available  power  in  the  wind  changes  proportionately  to  the  blade  length  squared  so  usually  the  turbine  with  the  longest  blades  will  generate  more  energy  at  a  given  site.  

In  the  US,  most  states  or  utilities  offering  incentives  for  wind  turbines  will  only  fund  turbines  that  have  a  proven  track  record  to  ensure  that  the  customer  is  getting  a  reliable  wind  system.  The  following  is  a  list  of  turbines  currently  funded  by  some  states  offering  incentives.    Note  Australia  does  not  yet  have  a  list  of  approved  wind  systems,  but  the  Clean  Energy  Council  is  working  towards  this.    

All  wind  systems  require  preventative  maintenance  and  an  inspection  twice  every  year.  Generally,  turbines  with  gear  boxes  require  more  maintenance  than  the  others  because  there  are  more  moving  parts.    For  a  very  helpful  resource  that  compares  the  performance  of  reliable  wind  systems,  visit  the  website  of  Home  Power  magazine  and  look  up  their  yearly  articles  on  how  to  buy  a  wind  system.    

2009:  How  to  Buy  a  Wind-­‐Electric  System    2010:  Wind  Generator  Buyer’s  Guide  2011:  Is  Wind  Electricity  Right  for  You  

   The  US  National  Renewable  Energy  Laboratory  also  has  up  to  date  information  on  small  wind  system  testing:      

http://www.nrel.gov/wind/smallwind/    The  assessor  based  on  the  site  conditions  should  determine  the  best  turbine  options  for  a  specific  site  and  the  desires  of  the  client  as  discussed  during  the  site  visit.    

Page 12: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

12

7. Wind  System  Outputs  Once  the  mean  wind  speed  at  the  recommended  tower  height(s)  is  estimated  by  the  assessor,  the  expected  power  output  of  the  various  turbines  recommended  for  a  client  can  be  computed.  The  estimated  energy  outputs  of  a  turbine  can  be  predicted  based  on  a  manufacturer’s  power  curve  for  their  turbine.  A  power  curve  shows  how  much  energy  a  turbine  will  produce  at  varying  wind  speeds.  The  outputs  are  calculated  using  software  such  as  the  “7th  Wind  Turbine  Performance  Model”,  an  Excel  spread  sheet  developed  by  Seventh  Generation  Energy  Systems  and  used  by  US  State  Public  Benefits  renewable  energy  programs  (www.seventhwindsoftware.com/pages/about.aspx).    The  inputs  for  the  software  model  include:  

• the  elevation  of  the  site  • estimated  mean  wind  speed  from  the  wind  map  or  other  source  • the  estimated  distribution  of  wind  speeds  • estimated  wind  shear  • estimated  turbulence  intensity,  expressed  as  a  percentage    • the  tower  height  • the  manufacturers’  power  curve  for  the  turbine  • the  turbine  rating  at  11  m/s  (25  mph)  

 The  turbine’s  calculated  energy  output  is  also  de-­‐rated  by  5%  if  it  is  an  inverter-­‐based  machine.    In  some  cases  in  the  US,  the  following  components  are  required  as  part  of  the  wind  system  to  make  verify  the  actual  performance  of  the  wind  system  and  compare  it  to  the  site  assessment.    While  this  has  not  yet  been  a  requirement  in  Australia,  it  is  very  good  practice  for  any  wind  system  installation,  as  this  enables  the  customer  and  installer  to  accurately  monitor  the  performance  of  the  system  based  on  the  actual  wind  speed  data  recorded.    Wind  Speed  Logger  and  Anemometer:  A  cup  anemometer  is  mounted  on  the  tower  one  rotor  diameter  below  the  top  of  the  tower.  The  anemometer  should  be  installed  on  at  least  a  four  foot  boom  in  the  approximate  direction  of  the  annual  prevailing  winds  and  be  connected  to  a  wind  speed  data  logger  of  the  owner's  choice.    System  Performance  Meter:  A  kilowatt-­‐hour  interval  meter  are  installed  between  the  inverter  and  the  AC  circuit  breaker  for  the  system.    The  “Turbulence  Intensity  Factor”  and  the  “Wind  Shear  Factor”  are  both  determined  by  the  site  assessor  based  on  the  obstructions  and  ground  cover  at  the  site,  and  are  included  in  the  site  assessment  report.    The  assessment  report  will  provide  a  table  of  the  estimated  annual  outputs  for  a  selection  of  wind  turbines  for  the  wind  system  site(s)  identified  on  the  property.    The  wind  speeds  and  turbine  output  values  presented  in  the  site  assessment  are  computed  using  the  best  tools  available  to  the  assessor  at  the  time;  however,  they  should  not  be  interpreted  as  a  guarantee  of  the  average  annual  wind  speed  or  the  average  output  of  a  particular  wind  turbine  at  your  site.  

Page 13: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

13

8. Up-­‐front  subsidies  and  Revenue  Incentives  Some  state  and  federal  programs  offer  incentives  for  installing  renewable  energy  systems.  These  incentives  may  reduce  the  up  front  or  overall  cost  of  a  wind  system,  provide  an  ongoing  income  stream,  and/or  reduce  your  energy  expenditure.        Your  site  assessor  should  include  a  description  of  the  incentives  available  for  you  in  your  site  assessment  report  and  you  can  also  check  the  relevant  websites  of  state  and  federal  government  agencies  for  more  information.    a.  Selling  the  energy  from  your  wind  turbine      Each  state  has  a  cap  on  the  size  of  the  turbine  eligible  for  Feed  in  Tariffs.  Unfortunately,  at  this  time,  while  most  states  in  Australia  offer  Feed-­‐n  Tariffs  for  solar  energy,  few  offer  Feed-­‐in  tariffs  for  wind  energy.  

 • Under  a  gross  metered  feed-­‐in  tariff  (such  as  that  previously  available  in  NSW),  all  

energy  produced  receives  a  fixed  payment  per  kWh,  regardless  of  the  energy  used  on  site  by  the  owner.  

 • Net  metering  feed-­‐in  tariff:  States  can  also  have  net  feed-­‐in  Tariffs  where,  for  all  

energy  generated,  that  is  used  on  site  at  the  time  is  treated  differently  to  excess  which  is  exported  to  the  grid.  Generated  energy  used  on  site  is  effectively  worth  the  avoided  cost  of  not  importing  that  energy  from  the  grid.  Energy  exported  to  the  grid  is  eligible  for  the  FiT,  which  may  be  higher  than  the  value  of  energy  used  locally.      

 • Power  purchase  agreements:  Where  no  Feed-­‐in  Tariff  is  available  for  wind  turbines,  

or  for  turbines  that  exceed  the  maximum  capacity  eligible  for  a  FiT,  a  Power  Purchase  Agreement  will  be  required.  A  PPA  is  a  contract  that  provides  the  owner  of  the  renewable  energy  generator  with  wholesale  value  for  any  electricity  that  is  put  back  on  to  the  grid.  This  will  usually  be  much  less  than  the  value  of  the  retail  cost  of  energy.        

The  assessor  should  note  which  utility  is  servicing  the  site,  and  who  the  customer’s  current  retailer  is.    b.  The  Small  Scale  Renewable  Energy  Scheme  and  Solar  Credits  Scheme.    The  Renewable  Energy  Target  (RET)  scheme  was  established  to  encourage  additional  generation  of  electricity  from  renewable  energy  sources  to  meet  the  Government’s  commitment  to  achieving  a  20%  share  of  renewables  in  Australia’s  electricity  supply  in  2020.    As  of  1  January  2011,  the  Renewable  Energy  Target  was  split  into  two  parts,  the  Large-­‐scale  Renewable  Energy  Target  (LRET)  and  the  Small-­‐scale  Renewable  Energy  Scheme  (SRES).      Each  Small  scale  Technology  Certificate  created  from  an  eligible  energy  source  can  be  sold  for  to  liable  parties  (energy  retailers)  via  a  clearing  house.    

Page 14: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

14

One  STC  is  defined  as:  1  MWh  of  renewable  electricity  deemed  to  be  generated  by  small  generation  units.  The  owner  of  a  small  wind  system  is  an  eligible  party  to  create,  and  sell  STCs  .    Support  to  households,  businesses  and  community  groups  that  install  solar  panels,  wind  and  hydro  electricity  systems  is  boosted  by  Solar  Credits  Scheme.  Solar  Credits  work  by  multiplying  (by  three)  the  number  of  STCs  created  by  these  systems  for  the  first  1.5  kilowatts  (kW)  of  capacity  installed  for  systems  connected  to  a  main  electricity  grid  and  up  to  the  first  20  kW  of  capacity  for  off-­‐grid  systems.      

Page 15: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

15

9. Costs  The  installed  cost  for  a  wind  system  includes  the  all  the  materials,  labour  and  related  costs  for  installing  a  “turnkey”  wind  system.  This  includes  all  the  costs  that  go  into    having  the  foundation  for  the  tower  and  the  guy  wire  anchors  poured  tower  assembly,  crane  rental  for  raising  the  tower  and  attaching  the  turbine  (if  required),  trenching,  installing  the  balance  of  plant  (BOP  -­‐  inverter,  switching,  etc)  components,  and  all  wiring.  You  may  be  able  to  save  on  some  of  these  costs  by  doing  some  of  the  work  (e.g.  tower  assembly,  trenching  and  excavation),  where  you  have  the  tools  and  skills  to  do  this  yourself.  These  options  should  be  discussed  and/or  arranged  with  your  installer.  Note,  however,  that  some  incentive  programs  may  not  allow  owner  installation,  and  this  should  be  researched  as  well.    The  installed  cost  for  a  wind  system  can  vary  widely  because  of  the  many  factors  that  must  be  accounted  for  depending  on  the  site.  These  factors  include,  but  are  not  limited  to:  

• Soil  Type  –  affects  the  size  and  type  of  foundation  • Tower  type  and  height  • Distance  from  the  installer’s  place  of  business  • Wire  run  length  • Excavation  and  trenching  difficulties  • Accessibility  issues  –  open  or  cluttered,  flat  or  hilly,  wooded,  fences,  crane  

difficulties,  hilly  areas,  wet  soils,  etc.  • Choice  of  make,  model  and  system  type  

 For  this  reason  the  costs  in  assessment  reports  are  ballpark  cost  estimates  and  should  not  be  considered  as  any  sort  of  bid.  Contact  installers  in  your  area  for  actual  quotes.    Other  Financial  Considerations:  

• Maintenance:  In  addition  to  installation  costs,  the  owner  of  a  wind  system  should  expect  to  set  aside  funds  for  ongoing  maintenance.  This  amount  may  not  be  required  every  year,  but  down  the  road  replacement  parts  may  be  needed,  e.g.  new  blades  or  electronic  components,  and  even  the  most  robust  wind  turbine  will  typically  need  at  least  one  overhaul  during  the  course  of  its  20+  year  design  life.  Your  installer  should  be  able  to  advise  you  on  an  approximate  cost  for  annual  maintenance,  but  a  good  estimate  is  normally  about  1-­‐3%  of  the  installed  cost  per  year.  Some  maintenance  can  be  performed  by  the  system  owner.  The  installer  may  offer  a  service  contract,  which  may  also  be  linked  to  the  warranty.  

• Insurance:  You  will  need  to  check  if  your  insurer  covers  damage  caused  to  (or  by)  the  wind  turbine  in  the  event  of  a  storm  or  accident.    

• Loan  interest:  It  is  common  for  turbine  manufacturers  and/or  hence  installers,  to  ask  for  a  down-­‐payment  to  begin  turbine  and  tower  manufacturing  processes.  The  delivery  times  for  turbines  may  vary  from  weeks  to  months  from  the  time  of  down  payment.    Most  incentives  can  only  be  received  after  the  project  is  complete;  therefore,  if  a  turbine  owner  takes  advantage  of  a  loan  to  finance  their  project,  there  may  be  interest  payments  from  the  time  of  down-­‐payment  until  project  completion.    One  option  for  protection  against  extra  interest  charges  due  to  late  delivery  is  for  the  installer  to  confirm  a  delivery  date  and  request  that  if  that  date  is  not  met,  compensation  will  be  made  for  additional  interest  costs  or  other  out  of  pocket  costs  incurred.  

Page 16: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

16

10.  Other  Considerations    a.  Soil  Type  The  type  of  soil  at  a  site  will  determine  the  level  of  difficulty  of  installing  the  tower  foundation  and/or  anchors.  If  a  site  has  shallow  bedrock  or  very  sandy  or  marshy  soil,  the  foundation  cost  will  be  affected.  For  this  reason  the  installer  may  request  a  soil  test.    b.  Aircraft  Small  wind  turbines  should  be  located  to  avoid  flight  pathway  obstruction.  The  relevance  of  this  issue  will  depend  on  the  proposed  height  of  a  small  wind  turbine,  and  its  proximity  to  an  airport.  It  may  also  be  a  consideration  where  a  small  wind  turbine  is  installed  in  areas  where  aerial  agricultural  spraying  is  undertaken.    The  Civil  Aviation  Safety  Authority  is  responsible  for  aircraft  safety  and  your  site  assessor  will  advise  of  any  considerations  that  need  to  be  made  for  a  small  wind  turbine  at  your  site.    c.  Electrical  Supply  and  BOP  In  order  to  connect  a  wind  energy  system  to  the  grid,  the  power  produced  by  the  system  must  be  meet  the  strict  safety  and  power  quality  requirements  of  the  distribution  business..    Electronic  and  electrical  components,  including  the  inverter,  the  wiring,  disconnect  switches,  circuit  breakers,  etc,  are  called  the  Balance  of  Plant  (BOP)  components  and  usually  reside  next  to  an  existing  switch  board  in  the  house  or  garage.  Components  are  often  located  inside  a  building.    Your  assessor  will  examine  your  main  switch  board  or  to  determine  the  capacity  of  your  supply  and  the  availability  of  circuit  breaker/fuse  spaces  for  connecting  the  wind  system.  The  installer,  or  the  installer’s  electrician,  will  need  this  information  and  may  recommend  a  service  upgrade  if  necessary  to  meet  the  various  electrical  standards  and  regulations.      d.  Zoning  Because  wind  systems  are  a  relatively  new  issue  for  planning  authorities,  some  municipalities  have  no  zoning  ordinance  for  wind  systems  while  others  may  have  old,  overly  restrictive  ordinances.  Common,  acceptable  restrictions  include  a  setback  distance  equal  to  the  extended  height  of  the  wind  system  from  roads  and  property  lines.  The  site  assessor  will  often  try  to  site  the  wind  system  to  meet  this  common  setback  restriction.    In  NSW  there  are  state-­‐wide  planning  provisions  for  small  wind,  in  the  State  Environmental  Planning  Policy  (Infrastructure)  2007,  and  can  be  found  (and  is  also  included  in  Section  1.13  below):      www.legislation.nsw.gov.au/maintop/view/inforce/epi+641+2007+cd+0+N  

Page 17: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

17

11.    Educational  Opportunities  Alternative  Technology  Association  offers  independent  guidance  and  support  to  members  relating  to  small  wind  systems  and  other  renewable  energy  systems.    TAFE  offers  courses  in  Renewable  Energy  Technology  and  workshops  on  wind  system  installation  and  maintenance.    Helpful  Websites:    

• Clean  Energy  Council  (www.cleanenergycouncil.org.au)  • Alternative  Technology  Association  (www.ata.org.au)  • NSW  Renewable  Energy  Precincts  

(http://www.environment.nsw.gov.au/climatechange/renewableprecincts.htm)  • American  Wind  Energy  Association  (www.awea.org)  • Danish  Wind  Industry  Association  (www.windpower.org)  • Midwest  Renewable  Energy  Association  (www.the-­‐mrea.org):  Hands-­‐on  workshops  

in  Wind,  PV,  Solar  Hot  water,  and  more.  • RENEW  Wisconsin  (www.renewwisconsin.org):  Fact  sheets  covering  all  issues  with  

small  wind  (in  toolbox  mentioned  above).  • Focus  on  Energy  (www.focusonenergy.org):  Great  for  lots  of  information  on  

Renewable  Energy.  • Home  Power  Magazine/Website  (www.homepower.com):  Case  studies  and  stories  

of  renewable  energy  installations  around  the  country.    

Page 18: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

18

12.    Questions  for  Potential  Installers  When  selecting  turbines  and  installers,  it  is  important  to  conduct  background  research.    You  will  be  entering  a  long-­‐term  relationship  with  this  manufacturer  and  installer  and  should  conduct  your  research  upfront  with  these  important  questions:    1    

• How  long  has  your  company  been  in  business?  

• How  long  is  the  warranty  period  for  the  turbine?  What  does  the  warranty  cover?  What  is  excluded?  Is  an  extended  warranty  available?    

• What  rate  of  warranty  work  has  this  turbine  required?  What  problems  in  the  field  have  been  identified?  How  has  the  company  dealt  with  them?  Who  does  the  work  to  remedy  the  problem?  Who  pays  for  the  work?    

• Are  there  any  local  installers  who  can  install  this?  

• How  long  has  this  turbine  been  offered  as  a  production  model,  available  for  sale  to  ordinary  consumers,  e.g.  not  in  the  prototype  or  beta-­‐testing  stage?  How  long  was  the  prototype  tested?  Who  did  this  testing?  How  many  beta  versions  were  sent  to  the  field  for  feedback?    

• How  many  production  models  have  been  sold  to  ordinary  consumers?      How  many  of  the  turbines  sold  are  still  running?  

• What  design  changes  or  updates  has  this  turbine  seen,  and  when?    If  the  model  has  never  been  updated,  why  not?    

• Does  the  wind  turbine  comply  with  any  endorsed  international  safety  and  performance  standards?      

• What  is  the  annual  energy  output  for  the  turbine  in  average  wind  speeds  of    4-­‐7  m/s?    How  was  this  information  developed?    Has  this  ever  been  verified  by  an  independent  testing  or  reviewing  agency  from  real-­‐life  installations?      

• Is  there  a  performance  guarantee  for  turbine  output?    

• How  does  one  shut  down  the  turbine  in  the  event  of  high  winds,  when  leaving  on  vacation  for  a  week  or  so,  or  to  perform  maintenance?  Is  the  shutdown  mechanism  reliable  at  any  speed?    What  are  the  guidelines  for  shutting  down  the  turbine  in  high  winds?  

• What  maximum  wind  speed  is  the  turbine  designed  for?  What  about  the  tower?  Has  this  been  certified  by  a  professional  engineer?    

• Has  the  turbine  ever  gone  through  a  reliability  test?  By  whom?  What  were  the  results?    

• What  is  the  sound  profile  for  the  wind  turbine  at  various  wind  speeds  and  distances  form  the  tower?  Who  performed  acoustic  tests?    

1 Sagrillo, M, Woofenden, I. 2009. “How to Buy a Wind Generator.” Home Power.

Page 19: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

19

13.      NSW  small  wind  planning  provisions  Extract  from  State  Environmental  Planning  Policy  (Infrastructure)  2007  

From  http://www.legislation.nsw.gov.au/maintop/view/inforce/epi+641+2007+cd+0+N    

Current  version  for  2  March  2011  to  date  (accessed  31  May  2011  at  10:21)  

Part  3  Division  4  

Division  4  Electricity  generating  works  or  solar  energy  systems  

33      Definitions  

In  this  Division:  

electricity  generating  works  has  the  same  meaning  as  it  has  in  the  Standard  Instrument.  

Note.    

The  term  electricity  generating  works  is  defined  by  the  Standard  Instrument  as  follows:  

electricity  generating  works  means  a  building  or  place  used  for  the  purpose  of  making  or  generating  electricity.  

small  wind  turbine  means  a  wind  turbine  that  has  a  generating  capacity  of  no  more  than  100kW.  

small  wind  turbine  system  means  a  system  comprising  one  or  more  small  wind  turbines  each  of  which  feed  into  the  same  grid  or  battery  bank.  

prescribed  residential  zone  means  any  of  the  following  land  use  zones  or  a  land  use  zone  that  is  equivalent  to  any  of  those  zones:  

a) Zone  R1  General  Residential,  b) Zone  R2  Low  Density  Residential,  c) Zone  R3  Medium  Density  Residential,  d) Zone  R4  High  Density  Residential,  e) Zone  R5  Large  Lot  Residential,  f) Zone  RU5  Village.  

prescribed  rural  zone  means  any  of  the  following  land  use  zones  or  a  land  use  zone  that  is  equivalent  to  any  of  those  zones:  

a) Zone  RU1  Primary  Production,  b) Zone  RU2  Rural  Landscape,  c) Zone  RU3  Forestry,  d) Zone  RU4  Rural  Small  Holdings.  

prescribed  rural,  industrial  or  special  use  zone  means  any  of  the  following  land  use  zones  or  a  land  use  zone  that  is  equivalent  to  any  of  those  zones:  

a) RU1  Primary  Production,  b) RU2  Rural  Landscape,  c) RU3  Forestry,  d) RU4  Rural  Small  Holdings,  e) IN1  General  Industrial,  f) IN2  Light  Industrial,  g) IN3  Heavy  Industrial,  

Page 20: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

20

h) IN4  Working  Waterfront,  i) SP1  Special  Activities,  j) SP2  Infrastructure.  

 

34      Development  permitted  with  consent  

1) Development  for  the  purpose  of  electricity  generating  works  may  be  carried  out  by  any  person  with  consent  on  any  land  in  a  prescribed  rural,  industrial  or  special  use  zone.  

(5) Without  limiting  subclause  (1),  development  for  the  purpose  of  a  small  wind  turbine  system  may  be  carried  out  by  any  person  with  consent  on  any  land.  

(6) However,  subclause  (5)  only  applies  in  relation  to  land  in  a  prescribed  residential  zone  if:  a) the  small  wind  turbine  system  has  the  capacity  to  generate  no  more  than  10kW,  and  b) the  height  of  any  ground-­‐mounted  small  wind  turbine  in  the  system  from  ground  level  

(existing)  to  the  topmost  point  of  the  wind  turbine  is  no  more  than  18m.    

37      Complying  development  

(1)  Small  wind  turbine  systems  Development  for  the  purpose  of  a  small  wind  turbine  system  is  complying  development  on  any  land  if:  

a) the  development  complies  with  clause  20B,  and  b) the  land  is  not  in  a  heritage  conservation  area,  and  c) the  system  is  installed  no  less  than:  

i) 25  metres—in  the  case  of  a  system  that  has  a  source  sound  power  level  of  0–70  dB(A),  or  

ii) 40  metres—in  the  case  of  a  system  that  has  a  source  sound  power  level  of  71–80  dB(A),  or  

iii) 126  metres—in  the  case  of  a  system  that  has  a  source  sound  power  level  of  81–90  dB(A),  or  

iv) 200  metres—in  the  case  of  a  system  that  has  a  source  sound  power  level  of  more  than  91  dB(A),  or  

v) 200  metres—in  the  case  of  a  system  that  has  an  unknown  source  sound  power  level,  

from  any  dwelling  that  is  not  owned  or  occupied  by  the  owner  of  the  system,  and  d) the  system  is  located  clear  of  any  works,  including  power  lines,  of  any  relevant  network  

operator  (within  the  meaning  of  the  Electricity  Supply  Act  1995)  and  complies  with  any  requirements  of  the  network  operator  that  relate  to  clearance  from  those  works,  and  

e) the  system  is  installed  in  accordance  with  the  manufacturer’s  specifications  or  by  a  person  who  is  endorsed  for  the  design  and  installation  of  small  wind  turbine  systems  under  the  Clean  Energy  Council’s  wind  endorsement  scheme,  and  

f) in  the  case  of  any  ground-­‐mounted  small  wind  turbine  in  the  system—the  turbine  does  not  penetrate  any  obstacle  limitation  surface  shown  on  any  relevant  Obstacle  Limitation  Surface  Plan  that  has  been  prepared  by  the  operator  of  an  aerodrome  or  airport  operating  within  2  kilometres  of  the  proposed  development  and  reported  to  the  Civil  Aviation  Safety  Authority,  and  

g) in  the  case  of  land  in  a  prescribed  residential  zone:  i) the  system  has  the  capacity  to  generate  no  more  than  10kW,  and  ii) if  the  system  is  ground-­‐mounted:  

Page 21: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

21

(A) the  development  will  result  in  no  more  than  one  small  wind  turbine  being  situated  on  the  lot  concerned,  and  

(B) the  small  wind  turbine  has  a  height  of  not  more  than  18m  above  ground  level  (existing),  and  

(C) the  small  wind  turbine  is  not  installed  forward  of  any  existing  building  line  on  the  lot  concerned  that  faces  a  primary  road,  and  

iii) if  the  system  is  not  ground-­‐mounted:  (A) the  development  will  result  in  no  more  than  2  small  wind  turbines  being  

situated  on  the  lot  concerned,  and  (B) each  small  wind  turbine  does  not  protrude  more  than  3m  above  any  building  to  

which  it  is  attached  (as  measured  from  the  point  of  attachment),  and  (C) each  small  wind  turbine  is  not  attached  to  a  wall  or  roof  facing  a  primary  road,  

and  h) in  the  case  of  land  in  a  prescribed  rural,  industrial  or  special  use  zone:  

i) the  system  has  the  capacity  to  generate  no  more  than  100kW,  and  ii) if  the  system  is  ground-­‐mounted:  

(A) the  development  will  result  in  no  more  than  3  small  wind  turbines  being  situated  on  the  lot  concerned,  and  

(B) each  small  wind  turbine  has  a  height  of  not  more  than  35m  above  ground  level  (existing),  and  

iii) if  the  system  is  not  ground-­‐mounted:  (A) the  development  will  result  in  no  more  than  4  small  wind  turbines  being  

situated  on  the  lot  concerned,  and  (B) each  small  wind  turbine  does  not  protrude  more  than  5m  above  any  building  to  

which  it  is  attached  (as  measured  from  the  point  of  attachment),  and  i) in  the  case  of  land  in  any  land  use  zone  other  than  a  land  use  zone  referred  to  in  

paragraph  (g)  or  (h):  i) the  system  has  the  capacity  to  generate  no  more  than  100kW,  and  ii) if  the  system  is  ground-­‐mounted:  

(A) the  development  will  result  in  no  more  than  2  small  wind  turbines  being  situated  on  the  lot  concerned,  and  

(B) each  small  wind  turbine  has  a  height  of  not  more  than  26m  above  ground  level  (existing),  and  

iii) if  the  system  is  not  ground-­‐mounted:  (A) the  development  will  result  in  no  more  than  4  small  wind  turbines  being  

situated  on  the  lot  concerned,  and  (B) each  small  wind  turbine  does  not  protrude  more  than  5m  above  any  building  to  

which  it  is  attached  (as  measured  from  the  point  of  attachment).    

39      Exempt  development  

(1)  Small  wind  turbine  systems  Development  for  the  purpose  of  a  small  wind  turbine  system  is  exempt  development  on  land  in  a  prescribed  rural  zone  if:  

a) it  complies  with  clause  20  (other  than  clause  20  (2)  (f)),  and  b) the  system  is  ground-­‐mounted,  and  c) each  small  wind  turbine  has  a  height  of  not  more  than  35m  from  ground  level  (existing),  

and  

Page 22: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

22

d) each  small  wind  turbine  is  installed  no  less  than  200m  from  any  dwelling  that  is  not  owned  or  occupied  by  the  owner  of  the  system,  and  

e) the  development  will  result  in  no  more  than  2  small  wind  turbines  being  situated  on  the  lot  concerned,  and  

f) each  small  wind  turbine  is  located  clear  of  any  works,  including  power  lines,  of  any  relevant  network  operator  (within  the  meaning  of  the  Electricity  Supply  Act  1995)  and  complies  with  any  requirements  of  the  network  operator  that  relate  to  clearance  from  those  works,  and  

g) each  small  wind  turbine  does  not  penetrate  any  obstacle  limitation  surface  shown  on  any  relevant  Obstacle  Limitation  Surface  Plan  that  has  been  prepared  by  the  operator  of  an  aerodrome  or  airport  operating  within  2  kilometres  of  the  proposed  development  and  reported  to  the  Civil  Aviation  Safety  Authority,  and  

h) the  system  is  installed  in  accordance  with  the  manufacturer’s  specifications  or  by  a  person  who  is  endorsed  for  the  design  and  installation  of  small  wind  systems  under  the  Clean  Energy  Council’s  wind  endorsement  scheme,  and  

i) if  the  land  contains  a  State  or  local  heritage  item  or  is  in  a  heritage  conservation  area—the  system  is  not  visible  from  any  road  at  the  point  where  the  road  adjoins  the  property  boundary  concerned.  

 

(1A)  Wind  monitoring  towers  The  installation  of  a  wind  monitoring  tower  used  in  connection  with  investigating  or  determining  the  feasibility  of  a  small  wind  turbine  system  that  has  a  generating  capacity  of  no  more  than  1  MW  is  exempt  development  on  any  land  if:  

a) it  complies  with  clause  20  (other  than  clause  20  (2)  (f)),  and  b) the  tower  is  located  clear  of  any  works,  including  power  lines,  of  any  relevant  network  

operator  (within  the  meaning  of  the  Electricity  Supply  Act  1995)  and  complies  with  any  requirements  of  the  network  operator  that  relate  to  clearance  from  those  works,  and  

c) the  tower  does  not  penetrate  any  obstacle  limitation  surface  shown  on  any  relevant  Obstacle  Limitation  Surface  Plan  that  has  been  prepared  by  the  operator  of  an  aerodrome  or  airport  operating  within  2  kilometres  of  the  proposed  development  and  reported  to  the  Civil  Aviation  Safety  Authority,  and  

d) the  tower  is  installed  in  accordance  with  the  manufacturer’s  specifications  or  by  a  person  who  is  endorsed  for  the  design  and  installation  of  small  wind  turbine  systems  under  the  Clean  Energy  Council’s  wind  endorsement  scheme,  and  

e) if  the  land  contains  a  State  or  local  heritage  item  or  is  in  a  heritage  conservation  area—the  tower  is  not  visible  from  any  road  at  the  point  where  the  road  adjoins  the  property  boundary  concerned,  and  

f) in  the  case  of  land  in  a  prescribed  residential  zone:  i) there  is  no  other  wind  monitoring  tower  installed  on  the  lot  concerned,  and  ii) the  height  of  the  tower  from  ground  level  (existing)  to  the  topmost  point  of  the  

tower  is  no  more  than  18m,  and  iii) the  tower  is  installed  no  less  than  18m  from  any  dwelling  that  is  not  owned  or  

occupied  by  the  owner  of  the  tower,  and  g) in  the  case  of  land  in  a  prescribed  rural,  industrial  or  special  use  zone:  

i) there  are  no  more  than  2  other  wind  monitoring  towers  installed  on  the  lot  concerned,  and  

ii) the  height  of  the  tower  from  ground  level  (existing)  to  the  topmost  point  of  the  tower  is  no  more  than  35m,  and  

iii) the  tower  is  installed  no  less  than  35m  from  any  dwelling  that  is  not  owned  or  occupied  by  the  owner  of  the  tower,  and  

Page 23: Small%Wind%Site%Assessment%Supplement Abriefexplanation … · 2012. 3. 15. · Developed!as!part!of!the!OEHfunded!Pilot!“Small!wind!siteassessment”Course.! August!2011! Basedonthe!Midwest!Renewable!Energy!AssociationSmall!WindSupplement

 Developed  as  part  of  the  OEH  funded  Pilot  “Small  wind  site  assessment”  Course.   August  2011  Based  on  the  Midwest  Renewable  Energy  Association  Small  Wind  Supplement.      

23

h) in  the  case  of  land  in  any  land  use  zone  (other  than  a  land  use  zone  referred  to  in  paragraph  (f)  or  (g)):  i) there  is  no  more  than  one  other  wind  monitoring  tower  installed  on  the  lot  

concerned,  and  ii) the  height  of  the  tower  from  ground  level  (existing)  to  the  topmost  point  of  the  

tower  is  no  more  than  26m,  and  iii) the  tower  is  installed  no  less  than  26m  from  any  dwelling  that  is  not  owned  or  

occupied  by  the  owner  of  the  tower,  and  i) the  tower  is  demolished  within  30  months  after  the  construction  or  installation  is  

completed.    

(2)    Development  for  the  purpose  of  a  wind  monitoring  tower  used  in  connection  with  the  investigation  or  determination  of  the  feasibility  of  a  wind  farm  that  has  a  generating  capacity  of  more  than  1  MW  is  exempt  development  if:  

a) it  complies  with  clause  20,  and  b) the  tower:  

i) is  erected  in  accordance  with  the  manufacturer’s  specifications,  and  ii) has  a  height  of  not  more  than  110m,  and  iii) is  removed  within  30  months  after  its  erection  is  completed,  and  

c) the  site  of  the  tower:  i) is  enclosed  by  a  fence  that  prevents  unauthorised  entry  to  the  site,  and  ii) is  not  within  100m  of  any  public  road,  and  iii) is  not  within  1km  of  any  other  wind  monitoring  tower  or  a  school,  and  iv) is  not  within  1km  of  any  dwelling  except  with  the  prior  written  permission  of  the  

owner  of  the  dwelling,  and  v) is  not  within  500m  of  any  State  heritage  item,  and  vi) does  not  affect  a  significant  view  to  or  from  any  such  item  that  is  identified  in  a  

conservation  management  plan  (as  defined  by  clause  3  of  the  Heritage  Regulation  2005)  for  the  item,  and  

d) before  the  tower  is  erected,  the  Civil  Aviation  Safety  Authority  (established  under  the  Civil  Aviation  Act  1988  of  the  Commonwealth)  is  notified  in  writing  of:  i) the  tower’s  “as  constructed”  longitude  and  latitude  co-­‐ordinates,  and  ii) the  ground  level  elevation  at  the  base  of  the  tower,  referenced  to  the  Australian  

Height  Datum,  and  iii) the  height  from  ground  level  (existing)  to  the  topmost  point  of  the  tower  (including  

all  attachments),  and  iv) the  elevation  to  the  top  of  the  tower  (including  all  attachments),  referenced  to  the  

Australian  Height  Datum,  and  v) the  date  on  which  it  is  proposed  to  remove  the  tower.