78
Small Modular Reactors in Latin America Julio Vergara Aimone LAS-ANS, Río de Janeiro, July 20 th , 2014

Small Modular Reactors in Latin America - LAS/ANSlas-ans.org.br/PDF2014/Panel 2 - Julio Vergara - July21 1500-1730.pdf · Small Modular Reactors in Latin America Julio Vergara Aimone

Embed Size (px)

Citation preview

Small Modular Reactors in Latin America

Julio Vergara Aimone

LAS-ANS, Río de Janeiro, July 20th, 2014

Introduction

J. Vergara

Nuclear power may satisfy the needs of certain

countries that would need so. Their suitability

depends –generally– on the following:

Energy dependence and availability.

Real and external costs of electricity.

System size and demand projection.

Coherent unit power plant rating.

Human, physical and legal infrastructure.

Introduction

Which countries in L.A. need nuclear power?

J. Vergara

Country M# PIBp/#

tCO2/#

(%)

GW

TWh kWh/#

47 8900

90%

1.4

1150 53

14

15 7600

93%

2.1

1250 18

5

29 9200

80%

1.5

1300 37

9

10 4500

70%

1.5

640 6

2

16 18000

99%

6.0

3800 62

17

29 11350

99%

5.4

3400 98

28

197 10300

98%

2.1

2500 480

114

7 5300

94%

0.8

1250 8

9

3 13300

97%

2.3

2800 10

3

41 15500

95%

4.5

3000 121

33

109 13400

93%

4.0

2300 250

62

11 5900

86%

2.5

1350 15

6

590 10400

91%

2.7

2150 1250

320

Introduction

Different economic, energy and social realities

J. Vergara

Hu

ma

n D

eve

lop

me

nt

Ind

ex

HD

I

0

0.2

0.4

0.6

0.1

0.3

0.5

0.8

0.7

1.0

0.9

Electricity Consumption kWh / #

5.000 0 30.000 25.000 20.000 10.000 15.000

USA

Island Canada Australia

Niger

Ethiopia

Congo

India

China

Korea Rusia

South Africa

Netherlands Japan

Gabon

France

S.Arabia

Egypt

Africa

OECD

South américa

Ex-URSS

Asia

Argentine

Colombia Brazil

Chile

Perú

Introduction

Electricity generation and human development

J. Vergara

100

1000

1 10 100 1000 10000 1

10

100000

Per cápita Energy Consumption (kWh/d/#)

Density #/m2

Corea

Brasil

Rusia Argentina

Canadá

AFRICA

AdS

OECD

ASIA

EUA

Ecuador

Finlandia

España

Singapur Arabia

Nigeria

Australia

Alemania

Bangladesh

Sudáfrica

India

Japón Venezuela Chile

PWR

Dominant Density Strip

China

Introduction

Society demands increasingly dense systems

J. Vergara

210 m

110 m

1300 MW

110 m

120 m

1320 MW

One 165 MW module One 1600 MW module

50.000 a 100.000 W/m2

Nuclear Island and turbomachinery

Nuclear energy is –by far– very concentrated

Introduction

J. Vergara

The low density of renewables sits in their source

Introduction

Size of the Sun for just 500 kWe

Reactor diameter: 308 m

Total diameter: 1874 m

p-p y C-N-O density: 10 W/m3

RF Sun: 0.7·109 m

J. Vergara

Gro

ss

In

tern

al P

rod

uc

t / C

ap

ita

US$ (ppp) / #

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000Chile Argentina Brazil Colombia Peru

Nuclear benefits from economic growth

Introduction

Year

J. Vergara

Em

iss

ion

s f

rom

ele

ctr

icit

y

Nuclear reduces greenhouse gases emissions

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,5019

90

19

91

19

92

19

93

19

94

19

95

19

96

19

97

19

98

19

99

20

00

20

01

20

02

20

03

20

04

20

05

20

06

20

07

20

08

20

09

Argentina Chile Brasil Colombia Peru

kg CO2/kWh

Año

Introduction

J. Vergara

Name Type Designer Gross/Net Power (MWe) Construction/ Operation

1) Atucha NPP, Lima, Buenos Aires (ARGENTINA, Nucleoeléctrica Argentina S.A.).

J.D. Perón PHWR KWU 357/335 1968/1974

N. Kirchner PHWR KWU 745/692 1981/2013

Carem-25 PWR CNEA 27/25 2012/2017

2) Embalse NPP, Embalse, Córdova (ARGENTINA, Nucleoeléctrica Argentina S.A.).

Embalse CANDU AECL 648/600 1974/1984

3) Almirante Álvaro Alberto NPP, Angra dos Reis, Rio de Janeiro (BRASIL, Eletrobras Eletronuclear S.A.)

Angra I PWR Westinghouse 640/609 1971/1985

Angra II PWR Siemens 1350/1275 1976/2001

Angra III PWR Siemens 1350/1245 2010/2016

4) Laguna Verde NPP, Veracruz (MÉXICO, Comisión Federal de Electricidad)

LV 1 BWR-5 General Electric 700/682 1976/1990

LV 2 BWR-5 General Electric 700/682 1977/1995

Introduction

Four nuclear power plants in Latin America, so far

J. Vergara

País Nombre Propósito Potencia Operador y Lugar

Argentina

RA-0 Critical facility 10 W Universidad UNC, Córdova

RA-1 Research and training 40 kW CNEA, CAC, Buenos Aires

RA-3 Isotope production 10 MW CNEA, CAE, Buenos Aires

RA-4 Critical facility 10 W Universidad UNR, Rosario

RA-6 Multipurpose and research 500 W CNEA, CAB, Bariloche

RA-8 CAREM emulator 10 W CNEA-CTP, Pilcaniyeu

RA-10 (*) Multipurpose and research 30 MW CNEA, CAE, Buenos Aires

Brasil

IEA-R1 Isotope production 5 MW IPEN/CNEN Sao Paulo

MB-01 Critical facility 100 W IPEN/CNEN Sao Paulo

IPR-R1 Research and training 100 kW CDTN/CNEN Belo Horizonte

Argonaut Research and training 500 W IPEN/CNEN Sao Paulo

RBM (*) Multipurpose and research 30 MW CNEN, Iperó-Aramar-Sao Paulo

Chile RECH-1 Isotope production 5 MW CCHEN, CEN La Reina, Santiago

RECH-2 In reserve 10 MW CCHEN, CEN Lo Aguirre, Santiago

Colombia IAN R-1 Resources research 20 kW INGEOMINAS, Bogotá

México TRIGA Multipurpose and research 1 MW ININ, Ciudad de México

Perú RP-10 Isotope production 10 MW IPEN Centro RACSO, Carabayllo

RP-0 Critical facility 10 W IPEN, San Borja, Lima

Introduction

But a large stock of research capabilities

J. Vergara

Issues Chile Brasil Argentina Colombia México Perú

National position D A A NC A NC

Nuclear safety A A A N A A

Integral management A A A A A A

Budget and funding D A D NC A D

Legislative work D A A NC A N

Safeguards A A A A A A

Regulatory framework N N A NC N N

Radiological Protection A A A A A A

Power network D A A D A D

Human resource development N A A D A D

Stakeholder involvement D A A D A D

Sites and installations N A A NC A NC

Environmental Protection A A A A A A

Emergency planning N N N N N N

Physical protection (security) N N N N N N

Fuel cycle D A A D A D

Waste management N A A N A N

Industrial involvement D A A D A D

Acquisitions A A A N A N

Introduction

Infrastructure level for nuclear power in the region

J. Vergara

Latin America has a moderate nuclear ambition.

Current nuclear operating countries entered

the field in a very different political context,

realized mainly by strong State´s will.

Would they have entered today, in open mar-

kets, with internet and social networks?

What would SMRs change today?

What went misplaced in classical reactors?

Is it reasonable to think about SMRs in LA?

Introduction

J. Vergara

Wind ~320 GW Minihydro ~ 50 GW Biomass ~ 80 GW Geothermal ~ 11 GW Solar PV ~140 GW Tide ~ 0.5 GW

Energy Use

World´s installed electric capacity : ~ 5400 GW

~ 3500 GW

~ 955 GW

~ 372 GW

~ 605 GW

~ 15600 TWh

~ 3350 TWh

~ 2500 TWh

~ 1230 TWh

51%

40%

77%

23%

Fossil

Hydro

Nuclear

Renewables ~ 605 GW Renewables

Renewable energies have the momentum today

Introduction

Renewables grew 10X in 1 decade

J. Vergara

Capacity (GW) Generation Share (%)

Operable Reactors (#)

Reactors iniciating construction (#)

APS-1

20

0

10

5

15

25

0

50

100

150

200

250

300

350

400

450

500

19

54

19

56

19

58

19

60

19

62

19

64

19

66

19

68

19

70

19

72

19

74

19

76

19

78

19

80

19

82

19

84

19

86

19

88

19

90

19

92

19

94

19

96

19

98

20

00

20

02

20

04

20

06

20

08

20

10

20

12

TMI-2

Chernobyl-4 Fukushima 1

Nuclear power has been fairly stagnant

Introduction

J. Vergara

Introduction

Underrated Latin America respect to the World

Indexes World Latin America Ratio

Population 7200 MM 590 MM 8.2%

Gross Product 70000 b$ 6130 b$ 8.7%

Capacities World Latin America Ratio

Power 5400 GW 320 GW 5.9%

Nuclear Power 372 GW 6 GW 1.6%

Indexes World Latin America Ratio

Product/# 9700 $/# 10400 $/# 107%

Electricity/# 3000 kWh/# 2100 kWh/# 70%

Emissions/# 4.5 tCO2/# 2.7 tCO2/# 60%

The Dominant Reactor

J. Vergara

PWR unit

1000 to 1600 MWe

Steam

Water

The Dominant Reactor

PWR: Nuclear power dominant design

J. Vergara

Fission

Reactors

Thermal Epithermal Fast

No Mod.

PWR PHWR

CANDU BWR

CGR CO2

HTGR He

RMBK FBR

espectra

moderator

coolant

name

Water Gas Metal Salt Heavy Light Light

Light Water Graphite Heavy Water

LFTR ACR

The Dominant Reactor

Nuclear systems fall into different categories

J. Vergara

Water Water UO2 (LEU) 252 273 USA, France,

Japan, Russia

Pressurized Water

(PWR-VVER)

373 437 TOTAL

No Liquid

Sodium PuO2 y UO2 1 2 Russia, France

Fast Spectrum

(FBR)

Graphite Water UO2 (LEU) 10 15 Russia Boiling Water and

graphite (LWGR)

Graphite CO2 U (natural),

UO2 (LEU) 8 15

United

Kingdom

Gas-graphite (GCR,

AGR & Magnox)

Heavy

Water

Heavy

Water

UO2 (natural),

UO2 (SEU) 24 48

Canada, India,

Korea, China,

Argentine

Pressurized

Heavy Water

(PHWR-CANDU)

Water Water UO2 (LEU) 78 84 USA, Germany,

Japan, Sweden

Boiling Water

(BWR)

Moderator Coolant Fuel GW # countries Reactor Type

The PWR is and will be the dominant reactor

The Dominant Reactor

LMR

J. Vergara

Three new reactor

systems classes

Different reactor categorization models

Evolutive Innovative (≈ 1000+ MW) (≈ 300- MW)

Long-Term (P ≈ variable)

The Dominant Reactor

J. Vergara

Several categories

in energy services

Power H2O, CH2, H2 Heat

Propulsion

The Dominant Reactor

Different reactor categorization models

J. Vergara

EUA Francia Japón Rusia Corea India Canadá China Reino Unido Ucrania Suecia Alemania España Bélgica Rep. Checa Taiwán Suiza Finlandia Hungría Eslovaquia Pakistán Bulgaria Brasil Sudáfrica México Rumania Argentina Irán Eslovenia Holanda Armenia

0 10 20 30 40 50 60 70 80 100 90 # Country GW % 100 58 50 33 23 21 20 17 16 15 10 9 8 7 6 5 5 4 4 4 3 2 2 2 2 2 2 1 1 1 1

437 (372 GW)

Current size of the nuclear power sector

19 77 2

16 30 4

14 2

17 48 39 16 20 51 34 19 36 32 45 54 5

33 2 7 3

19 5 1

36 4

27

The Dominant Reactor

J. Vergara

China

Rusia

India

Corea

EUA

Japón

Taiwán

Pakistán

Eslovaquia

Ucrania

EAU

Argentina

Brasil

Finlandia

Francia

0 5 10 15 20 30 # Country GW 25

30

10

6

5

4

2

2

2

2

2

2

1

1

1

1

Current expansion of the nuclear power sector

71 (69 GW)

The Dominant Reactor

J. Vergara

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

275

Initial License:

~30 years.

160

The fleet is rather old most need to re-license

The Dominant Reactor

Issues of the classical reactor

J. Vergara

200

Nuclear

0 50 150 250

Coal

Gas

Offwind

100 Mills/kWh

Nuclear

Coal

Gas

Offwind

Nuclear

Gas

Offwind

Coal

N. A

me

rica

Eu

rop

e

Asi

a P

acif

ic

@10% OCDE 2010

Not quite “too cheap to meter” but not that bad

Issues of the classical reactor

J. Vergara

200

Nuclear

0 50 150 250

Coal

Gas

Offwind

100 Mills/kWh

Nuclear

Coal

Gas

Offwind

Nuclear

Gas

Offwind

Coal

N. A

me

rica

Eu

rop

e

Asi

a P

acif

ic

@5% OCDE 2010

Not quite “too cheap to meter” but not that bad

Issues of the classical reactor

J. Vergara

kgCeq /kWh

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

1990

A.

1990

B.

2005

-20

Lignite Coal

1990

A.

1990

B.

2005

-20

Oil

1990

A.

1990

B.

2005

-20

Gas

1990

A.

1990

B.

2005

-20

Solar PV 19

90 A

. 19

90 B

. 20

05-2

0

Biomass

Hig

h

Lo

w

Wind

L 2

5% J

ap

L 1

0% S

ui

L 1

0% B

e L

35%

O. B

e L

30%

O. U

K

Nuclear

Hig

h

Lo

w

Optimal for climate change avoidance / mitigation

Issues of the classical reactor

Hydro

Rep

resa

Br.

R

epre

sa A

l. R

epre

sa C

a.

Pas

ada

Su

i

J. Vergara

No resource limitations in the mid term

U (LWR), current use

U (LWR), recycling

U-Th (FBR), recycling

Pu-Th (FBR), recycling

Fuel Type

U (LWR) + Pu (FBR)

D-T ó D-D (Fusion)

Known Resources

320 yr

370 yr

17.000 yr

10.000 yr

500 yr

~inexhaustible

8.300 yr

9.400 yr

35.000 yr

250.000 yr

12.500 yr

~inexhaustible

Total Resources

Issues of the classical reactor

J. Vergara

No real problems with mortality and morbility

Number of Fatalities per GW-yr (1969-1996, including Chernobyl and Fukushima Dai-ichi) 101

10-2

10-3

10-1

100

Coal Nucleoelectric Hydropower Oil Natural Gas LPG Gas

Mean Value (1969-1986)

Severe Accidents in the Energy Sector, PSI, 1998

Issues of the classical reactor

J. Vergara

Immediate Accidents Fatalities (1969-1996, including Chernobyl and Fukushima Dai-ichi) 8000

7000

3000

2000

1000

0 Coal Nucleoelectric Hydropower

4000

5000

6000

Oil Natural Gas

Max. fatalities (1969-1996)

Min. fatalities (1969-1986)

Fritzsche (1969-1986)

Severe Accidents in the Energy Sector, PSI, 1998

LPG Gas

Issues of the classical reactor

No real problems with mortality and morbility

J. Vergara

Mortality of other energy forms in recent years

2010, Anacortes refinery, USA (10)

2010, Deepwater Horizon plataform, USA (11)

2010, Dosquebradas gaspipe, Colombia (39)

2011, Coal mine collapse, Pakistan (45)

2011, Coal mine well, Mexico (14)

2012, Amuay refinery, Venezuela (41)

2012, Panzhihua mine, Sichuan, China (41)

2012, Pemex gas plant, Mexico (26)

2012, Methane gas in Komi, Rusia (18)

2013, Oil cargo train derailing, Canada (52)

2014, Methane gas in Manisa, Turkey (301)

Issues of the classical reactor

J. Vergara

Knock-Nevis

564000 DWT, 458 x 69 x 30T m

4 trips-year of Knock Nevis (ULCC

of 564.000 DWT).

6 trips-year of Berge Stahl (OBC

of 365.000 DWT).

8 trips-year of scarse LNGCs

200 trips-year of a 90-wagon train.

Berge Stalh

365000 DWT, 343 x 63 x 25T m

Fuel transport (i.e. 600 MW of fossil energy)

Issues of the classical reactor

Just a few tons (trucks) of nuclear fuel

needed for the same power demand

J. Vergara

95-96% of this can be recycled

5% remaining is “HLW”

Historical global volume (1954-2012)

250.000 tons NSF

95% U

½% MA

<1% Pu <4% FP

Nuclear wastes are messy, however not decisive

Issues of the classical reactor

J. Vergara

Science

Fiction

1950 1970 1990 2010 2030 2050 2070

Year

Commercial

Reactors

Advanced

Reactors

Advanced

Concepts

Proto-

types

Generation I

Generation II

Generation III, III+

Generation IV

Fusion

VVER, CANDU,

PWR, MAGNOX,

RBMK, BWR

EPR, mPower,,

AP1000, WSMR

APR1400,…..

LFR, VHTR,

SCWR, MFR,

SFR, MSR,...

Obninsk, Calder Hall,

Shippingport, STR-I,...

1960 1980 2000 2020 2040 2060

DEMO, PROTO

2080

Advanced

Reactors

EPR, mPower,,

AP1000, WSMR

APR1400,…..

Generation III, III+

What is the problem then?

Issues of the classical reactor

J. Vergara

Model Type Manufacturer/Designer Power MW

APWR PWR Mitsubishi 1700

EPR PWR Areva 1600

VVER 1500 PWR Gidropress 1500

APR 1400 PWR KNHP 1450

VVER 1200 PWR Gidropress 1200

AP 1000 PWR Westinghouse 1114

ATMEA 1 PWR Areva-Mitsubishi 1100

VVER 1000 PWR Gidropress 1000

ACP 1000 PWR CNNC 1000

OPR 1000 PWR KNHP 950

What is the problem then?

Issues of the classical reactor

J. Vergara

Model Type Manufacturer/Designer Power MW

ESBWR BWR General Electric 1550

ABWR BWR General Electric 1300

SWR1000 (Kerena) BWR Areva 1250

ACR1000 PHWR AECL 1080

CANDU 9 PHWR AECL 600

EC6 PHWR Candu 600

CANDU 6 PHWR AECL 600

SBWR BWR General Electric 600

BN 600 LMR OKBM 560

BN 800 LMR OKBM 880

What is the problem then?

Issues of the classical reactor

J. Vergara

Edificio del reactor

Edificio del combustible

Edificios de salvaguardias

Edificio de Diesel Gen.

Edificio Auxiliares

Edificio Desechos Reactor EPR

What is the problem then?

Issues of the classical reactor

J. Vergara

1114 MW (under construction in China and USA)

AP1000 Reactor

What is the problem then?

Issues of the classical reactor

J. Vergara

ESBWR

APR1400

ABWR

APWR

ACR-1000

What is the problem then?

Issues of the classical reactor

J. Vergara

It seems to be in the reactor scale.

Although generation capacity is not suppos-

ed to be subject to economies of scale.

But. a $10 billion unit scares investors out.

It is an economic (risk) problem, on top of a

large array of underlying issues.

Need to eliminate the chance of an accident

imposing evacuation (any postulated accid-

ent should only impact the reactor site).

What is the problem then?

Issues of the classical reactor

J. Vergara

Chilean Hidroaysén (a 2.75 GW environment-

ally superb austral hydro plant) was drained.

Chilean Rio Cuervo (a 1 GW austral hydro

plant) would probably follow Hidroaysén.

Chilean Castilla project (a 2.2 GW coal-fired

station; Elke Batista´s) did not succeed.

PV, wind, bio plants, Diesels, CSP, and most

low scale gadgets, grow like mushrooms.

Scale is not limited to nuclear power

Issues of the classical reactor

Technology Trends

J. Vergara

IPWRs

100-300 MWe

Expected mid-term trend in generation III

Technology Trends

PWR unit

1000 to 1600 MWe

J. Vergara

Model Type Manufacturer/Designer Power MW

IMR IPWR CRIEPI 350

IRIS IPWR IRIS Consortium 335

VBER300 PWR OKBM 325

AHWR PHWR BARC 300

GT-MHR HTGR GA-OKBM 265

EM2 HTGR GA 240

HTR PM HTGR INET 210

Westinghouse SMR IPWR Westinghouse 200

mPower IPWR Babcock & Wilcox 180

Ideal to replace fossil-fueled units, without GHGs

A selection of Generation III innovative concepts

Technology Trends

J. Vergara

Model Type Manufacturer/Designer Power MW

HI-SMUR IPWR Holtec Int. 160

KALIMER LMR KAERI 150

SMART IPWR KAERI 100

CNP100 IPWR CCNC 100

MRX LWR JAERI 100

MASLWR IPWR NuScale Power 45

KLT 40 PWR OBKM 35

CAREM IPWR CNEA-INVAP 27

4S LMR CRIEPI 10

Ideal to replace fossil-fueled units, without GHGs

A selection of Generation III innovative concepts

Technology Trends

J. Vergara

SMART Reactor

Desalination

Plant

Electricity

Generation

90 MWe + 40000 ton/day

100 MWe

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

mPower Reactor

180 MWe Unit

1080 MWe Plant

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

mPower Reactor

180 MWe Unit

720 MWe Plant

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

Westinghouse SMR

A sabotage threat is

reduced, the size of

the container is also

reduced and it can

be isolated from the

ground motions.

200 MWe

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

145 MWe Unit Holtec HI-SMUR

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

Plant: 540 MWe (12#) NuScale

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

ACP 100 100 MW, CNCC

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

27 MWe Unit Future size up to 300 MW

CAREM 25

Conjunto Argentino de REactores Modulares

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

Floating nuclear systems: remote markets

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

Unidades de 50-200 MWe @ 50-100 m

No le faltará un sumidero de refrigeración

FlexBlue

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

Planta de 800 MWe

FlexBlue

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

FlexBlue Unidad de 50-200 MWe

This image could include 4# with 340 + 360 MWe

A selection of Generation III innovative reactors

Technology Trends

J. Vergara

Atribute Unit BWR PWR SMR

Power (Pt) MWt 3400 3350 450

Pressure (p) MPa 7,2 15,5 15,5

Max. Temp. (Tm) ºC 290 325 325

H2O Velocity (v) m/s 4,8 4,8 2,5

H2O Volumen (V) m3 350 270 90

Max Linear Heat q´ kWt/m 42 48 30

LOCA Max. Area m2 1,3 1,0 0,005

S/Vol dome Ratio 1/m 0,99 1,22 1,67

V/Pt Ratio m3/MWt 0,10 0,08 0,21

S/Vol/Pt Ratio 1/GWtm 0,29 0,37 4,17

Better cooling margins with innovative reactors

Technology Trends

J. Vergara

Atribute Unit BWR PWR SMR

Power (Pt) MWt 3400 3350 450

Pressure (p) MPa 7,2 15,5 15,5

Max. Temp. (Tm) ºC 290 325 325

H2O Velocity (v) m/s 4,8 4,8 2,5

H2O Volumen (V) m3 350 270 90

Max Linear Heat q´ kWt/m 42 48 30

LOCA Max. Area m2 1,3 1,0 0,005

S/Vol dome Ratio 1/m 0,99 1,22 1,67

V/Pt Ratio m3/MWt 0,10 0,08 0,21

S/Vol/Pt Ratio 1/GWtm 0,29 0,37 4,17

Better cooling margins with innovative reactors

Technology Trends

Fukushima Innovative

2,1X

14,0X

1.6X

250,0X

1,4X

Improves

Water Reserve

Extracción de calor

Cooling Potential

Water loss

Energy density

Property

J. Vergara

Pending issues for superior nuclear systems:

Improved economic and financial results.

Enhanced safety (avoid criticality risks, reduce

decay heat and confine radioactive materials).

Reduced wastes and emissions (heat lost,

wastes, GHGs, self consumption, etc.).

A critical issue today is economics, to regain

competitiveness and momentum.

Future reactors need to improve even further

Technology Trends

J. Vergara

INSs are safe in PSA terms (CDF < 10-8). But,

these would not convince further if these are

reduced to, say 10-10), specially if somebody

makes a mistake, in another plant.

Wastes and other emissions can be reduced

(cogenerating, raising temperature, recycling,

transmuting, etc). Probably, the public would

not hesitate if wastes 90% or the efficiency

5%. Those are good to do, but not decisive.

Future reactors need to improve even further

Technology Trends

J. Vergara

Power (MWe)

Operacional effect

200 800 1400 1800 400 600 1000 1200 1600 0

Cost

Architecture effect

Safety and simplicity effect

$

kWe

Scope

Effect

Innovative reactors

Evolutive reactors

Traditional Reactors

Units

Produced

Technology Trends

Economies of scale benefiting clients & developers

J. Vergara

Power

Unit Cost

Vessels/unit

Constr. time

Plant type

Ocupation

Effects

4 x 300 MW

1500 MM$/#

1

2-3 years

Standardized

Income

Learning

1200 MW

5000 MM$

6

5-6 years

Specific

Interests

Little

Technology Trends

Economies of scale benefiting clients & developers

J. Vergara

2028 2026 2024 2018 2016 2022 2020

4000

2000

0

-2000

M US$

2030

Año

Technology Trends

Economies of scale benefiting clients & developers

J. Vergara

Gen IV reactors offer improvements in some areas

Science

Fiction

1950 1970 1990 2010 2030 2050 2070

Year

Commercial

Reactors

Advanced

Reactors

Advanced

Concepts

Proto-

types

Generation I

Generation II

Generation III, III+

Generation IV

Fusion

VVER, CANDU,

PWR, MAGNOX,

RBMK, BWR

EPR, mPower,,

AP1000, WSMR

APR1400,…..

LFR, VHTR,

SCWR, MFR,

SFR, MSR,...

Obninsk, Calder Hall,

Shippingport, STR-I,...

1960 1980 2000 2020 2040 2060

DEMO, PROTO

2080

Technology Trends

Advanced

Concepts

Generation IV

LFR, VHTR,

SCWR, MFR,

SFR, MSR,...

Gen V ??

ATW, HYPER,…

J. Vergara

Key: design more economical nuclear systems

Ref: Breakthrough LWRG3 HTGR SaltTR SCWR Na-FR Pb-FR GC-FR MS-FR

SAFE

TY

Low pressure no no yes no yes no yes yes

Resistent FAs no yes yes si yes yes yes yes

Safe coolant yes yes yes no no no yes yes

Natural conv. yes yes yes no yes yes no yes

MO

DU

LA-

RIT

Y Components yes yes yes no yes no yes no

Reactor no no no no yes no no no

Lower size. yes no yes no yes no no no

EFICIENCY 36% 45% 46% 45% 40% 45% 48% 50%

MA

DU

RIT

Y Prototype yes yes yes no yes yes no yes

Demonstrator no no no no yes no no no

Off-the-shelf yes yes yes no no no no no

Increm. R&D yes no yes no yes no no no

Technology Trends

J. Vergara

Radiotoxicidad (Sv/a) por TWeh 1012

1011

1010

1009

1007

1005

1008

1006

100 101 102 103 105 104 106 107

Años

Reciclaje múltiple MOX

Ciclo Abierto en LWR

LWR y FR MIX con Am y Cm

Reciclaje único y MIX en LWR

LWR y FR quemando Pu

FR con Pu

FR con Pu REF: NATU

116.6 tU

MOX

ADS Pyro Repo-

sitory

Fabri-

cation

Fabri-

cation

Reprocess

and mixing

LWR

ISF

MOX

NSF

Pu + AM

Pu E

Further reactor designs and advanced fuel cycles

Technology Trends

Conclusions

J. Vergara

Country M# PIBp/#

tCO2/#

(%)

GW

TWh kWh/#

47 8900

90%

1.4

1150 53

14

15 7600

93%

2.1

1250 18

5

29 9200

80%

1.5

1300 37

9

10 4500

70%

1.5

640 6

2

16 18000

99%

6.0

3800 62

17

29 11350

99%

5.4

3400 98

28

197 10300

98%

2.1

2500 480

114

7 5300

94%

0.8

1250 8

9

3 13300

97%

2.3

2800 10

3

41 15500

95%

4.5

3000 121

33

109 13400

93%

4.0

2300 250

62

11 5900

86%

2.5

1350 15

6

590 10400

91%

2.7

2150 1250

320

Different economic, energy and social realities

Conclusions

Potential options

for SMRs in Latin

America

J. Vergara

Potential options for SMRs in Latin America

Conclusions

Country Option Possibilities in the nuclear field

Argentina Active Current, in addition to Large reactors

Colombia Unknown Possibly beyond 2040-50

Chile Unknown Possibly beyond 2020

Brasil Active SMRs in subs, but focus in large reactors

México Unknown Focus in large-sized reactors

Perú Unknown Possibly beyond 2030

J. Vergara

Nuclear power is a reality worldwide, growing

generally at a modest pace (except in China,

were its pace is also comparatively modest).

Nuclear power offers several advantages -not

clearly recognized by society- in: GHG emis-

sions, plant factor, cost stability once running,

technology push, etc. (not guaranteed).

Only 3 nuclear power operating countries in

the region, mostly considering large reactors.

Conclusions

Potential options for SMRs in Latin America

J. Vergara

However, the bet is in renewable energies, that

has grown from 60 to 600 GW in a decade and

will double the nuclear capacity by 2020.

Nuclear power is stagnant in 370 MW and it is

not known whether it will stay, raise or decline.

SMRs may restore confidence in nuclear tech-

nology as it reduces some of the fears brought

by society about conventional nuclear power.

Conclusions

Potential options for SMRs in Latin America

J. Vergara

SMRs offer advantages over current reactors

provided they are not treated as miniaturized

large reactors and their features are displayed.

Only Argentina is active in pursuing SMRs in

the region, perhaps for export opportunities

rather than achieving modular NPPs. Brazil

used to be involved in the former W-IRIS.

Only 3 nuclear power operating countries in

the region, mostly considering large reactors.

Conclusions

Potential options for SMRs in Latin America

J. Vergara

It is hoped that SMRs will be selected, in the

same fashion renewables are today, based on:

Capital intensity and associated risks.

Overlapped cash flow profile and chance of

cooperative agreements with communities.

Reactor stealth for reduced exposition.

Enhanced safety and resilience to accidents

if they occurred, for public acceptability.

New energy services (hydrogen, heat, water).

Conclusions

Potential options for SMRs in Latin America

PhD, Nuclear Materials, MIT; MBA, UAI; MSc, Nuclear

Engineering, MIT; MSc, Naval Architecture & Marine

Engineering, MIT; MSc Materials Engineering, MIT;

Naval Engineer and BSc in naval Engineering, APN.

Professor of Sustainable Energy, Nuclear Engine-

ering, and Design, PUC; former Professor of Mana-

gement of technology and Innovation, UDD & UAI.

Listed in Marquis´ “Who´s Who in the World” and

“Who´s Who in Science and Engineering”. Former

Consultant to the IAEA. Board Member, CCHEN.

Speaker: Julio Vergara Aimone