39
 Soil Mechanics I Origin of  soil and grain size 1

SM 03 Mechanical Analysis of Soil

Embed Size (px)

DESCRIPTION

Soil MechanicsBasics

Citation preview

  • SoilMechanicsICE225CE 225

    Originofsoilandgrainsize

    1

  • 2WhySoilproblemsareUNIQUE?

    Soildoesnotpossessalinearoruniquestressstrainrelationshipp

    Soilbehaviordependsonpressure,time,andenvironmentThesoilatessentiallyeverylocationisdifferentI l ll h f il i l d i d dInnearlyallcasesthemassofsoilinvolvedisundergroundandcannotbeseeninitsentiretybutmustbeevaluatedonthebasisofsmallsamplesobtainedfromisolatedlocations

    Mostsoilsareverysensitivetodisturbancefromsampling,and thus the behavior measured by a laboratory test may beandthusthebehaviormeasuredbyalaboratorytestmaybeunlikethatoftheinsitusoil

  • Soilparticlesize 3

    Soilsaregenerallycalledgravel,sand,siltorclay.

    Gravelsarepiecesofrocks.

    Sandparticlesaremadeofmostlyquartzandfeldspar.

    Siltsaremicroscopicsoilfractionsthatcontainveryfinep yquartzgrainsandsomeflakeshapedparticles.

    Claysaremostlyflakeshapedmicroscopic/submicroscopicparticlesofmica,claymineralsetc.

    No.200 No.4 3in.

    cobblessandfines gravel

    .075mm 4.75mm 75mm

  • Clays 4

    Whatmakesclayssuchinterestinganddangeroussoilsforfoundations?

    Thissimpleexperimentshows the range ofshowstherangeofstrengthforasingleclaysample

  • Clays 5

    Thetermclayreferstoanumberofearthymaterialsthatarecomposedofmineralsrichinalumina,silicaandwater.Clayisnotasinglemineral,butanumberofminerals.

    Whenmostclaysarewet,theybecomeplastic meaningthatcanbeformedandmoldedintoshapes.

    Whenclayisfired,thewaterisdrivenoffandtheybecomey , yashardasstone.

    Clay is easily found all over the world. As a result, nearly allClayiseasilyfoundallovertheworld.Asaresult,nearlyallcivilizationshaveusedsomeformofclayforeverythingfrombrickstopotterytotabletsforrecordingbusinesstransactionstransactions.

  • Soilcomposition 6

    Thecompositionofsoilandrockisquitedifferentfromthatofothercivilengineeringmaterials.g g

    Engineeringpropertiesofsoilsvarysignificantlyfromplace to place and even across a single building siteplacetoplace,andevenacrossasinglebuildingsite.

    Soilisaparticulatematerialthatconsistsofindividualparticles.

    Soil can contain all three phases of matter (solidSoilcancontainallthreephasesofmatter(solid,liquid,andgas)simultaneously,andthesethreephasescanbepresentinvaryingproportions.p p y g p p

  • Soilasaparticulatematerial 7

    Mostcivilengineeringmaterialsconsistofacontinuousmassheldtogetherwithmolecularbonds.

    Incontrast,soilisaparticulatematerialthatconsistsofindividualparticlesassembledtogether.g

    Itsengineeringpropertiesdependlargelyontheinteractionbetween these particles, only secondarily on their internalbetweentheseparticles,onlysecondarilyontheirinternalproperties.

  • Thethreephases 8

    Soilisdifferentfrommostcivilengineeringmaterialsinthatitcansimultaneouslycontainsolid,liquid,andy , q ,gasphases.

    The liquid and gas phases are contained in the voidsTheliquidandgasphasesarecontainedinthevoidsorporesbetweenthesolidparticles.

    The three phases often interact and these Thethreephasesofteninteract,andtheseinteractionshaveimportanteffectsonsoilsbehavior.

  • Soilcomposition 9

    Thesoiliseithercoarseorfinegrained.

    Coarse grained are visible to the naked eye: G (gravels) + SCoarsegrainedarevisibletothenakedeye:G (gravels) S(sands)

    Finegrainedareinvisibletothenakedeye:M (silts)+C (Clays)

    Coarsegrainedsoilsarealsocalledgranularandfinegrainedsoilsarecommonlyreferredtoascohesive.

    ThenamegravelcomesfromFrenchwordgreve.ItssymbolisG.

    ThesymbolSforsandcomesfromFrenchwordsable.

    ThesymbolMforSiltcomesfromSwedishwordmjala.

  • Mechanicalanalysis 10

    Mechanicalanalysisisthedeterminationofthesizerangeofparticlespresentinasoil,expressedasapercentage of the total drypercentageofthetotaldryweight.

    Two methods used:Twomethodsused: Sieveanalysis:forparticlesizeslargerthan0.075mmingdiameter.

    Hydrometeranalysis:forparticlesizessmallerthan0.075mmindiameter.

  • Sieveanalysis 11

  • Sievedesignation larger 12

    SieveslargerthantheNo.4sievearedesignatedbythesizeoftheopeningsinthesieve.

    Commonlyusedlargersievesizes: 3in. 2in. 1.5 in.1.5in. 1in. 3/4in. 1/2in. 3/8in.

  • Sievedesignation smaller 13

    Smallersievesarenumberedaccordingtoth b f i

    10openingsthenumberofopeningsperinch.

    Commonly used smaller

    perinch

    Commonlyusedsmallersizesieves: No.4

    1 inch

    No.10 No.20 No 40No.40 No.60 No.140

    N 200No. 10 sieve

    No.200

  • USstandardsievesizes 14

    SieveNo. Opening(mm) SieveNo. Opening(mm)

    3inch 76.200 20 0.8502inch 50.800 25 0.710c 50 800 5 0 01.5inch 38.100 30 0.6001inch 25.400 35 0.5003/4 inch 19.000 40 0.4253/4inch 19.000 40 0.4253/8inch 9.520 50 0.355

    4 4.750 60 0.2505 4 000 70 0 2125 4.000 70 0.2126 3.350 80 0.1807 2.800 100 0.1508 2 360 120 0 1258 2.360 120 0.12510 2.000 140 0.10612 1.700 170 0.09014 1 400 200 0 07514 1.400 200 0.07516 1.180 270 0.05318 1.000

  • 15

    Book:GeotechnicalEngineering(CODUTO)Page115

  • 16

    Coarsegravel19 0 75 0

    Finegravel4 75 19 0 mm 19.0 75.0mm4.75 19.0mm

    Coarse SandM di S dFi S d CoarseSand2.00 4.75mm

    MediumSand0.425 2.00mm

    FineSand0.075 0.425mm

  • Sieveanalysis 17

    Soilusedinsieveanalysisisovendriedandalllumpsarebroken.

    Thesoilisthenshakenthroughastackofsieveswithopeningofdecreasingsizefromtoptobottom.p g g p

    Apanisplacedbelowthestack. Breaking lumps in clayey soils may be difficult Breakinglumpsinclayeysoilsmaybedifficult.

    Inthiscase,thesoilmaybemixedwithwatertomakeaslurry and then washed through sievesslurryandthenwashedthroughsieves.

    Portionsretainedoneachsievearecollectedseparatelyandovendried.

    Massretainedoneachsieveisdetermined.

  • Sieveanalysis calculations 18

    Determinethemassofsoilretainedoneachsieve(i.e.M1,M2,...,Mn)andinthepan(i.e.Mp).

    Determinethetotalmassofthesoil:M=M1 +M2 +...+Mn+Mp.

    Determinethecumulativesoilmassretainedaboveeachsieve.Fortheith sieve,itis(Mi)retained =M1 +M2 +...+Mi.

    Themassofsoilpassingtheith sieveis(Mi)passing=M (M1 +M2 +...+Mi).

    Thepercentofsoilpassingith sieve(orpercentfiner)isF=(Mi)passing/M100.

  • D10,D30,andD6019

    DeterminingD10,D30,andD60

    p

    a

    s

    s

    i

    n

    g

    60

    P

    e

    r

    c

    e

    n

    t

    30

    10D60D30D10

    Grain Diameter

  • Cu andCc20

    C ffi i f if iD Coefficient of UniformityHigh Values Indicate Well-Graded Soil10

    60

    DDCu =

    Coefficient of CurvatureValues Between 1-3 ( )

    230

    DDDCc = Indicate Well-Graded Soil( )1060 DD

    Alsocalledcoefficientofgradation,Cz

  • Cu andCc21

    D

    10

    60

    DDCu =

    2D( )1060

    30

    DDDCc =

  • Cu andCc22

  • Grainsizedistributioncurve 23

    A fi i d ilA:finegrainedsoilsCu =5Cc =0.8

    B i d ilB:coarsegrainedsoils

    Cu =13Cc =0.83

  • Grainsizedistributioncurve 24

    C l d d

    Cu =1.63Cc =0.96

    C:poorlygradedoruniformlygraded

  • Grainsizedistributioncurve 25

    D ll d d il

    Cu =190Cc =1.18

    D:wellgradedsoils

    E:gapgradedsoils

    Cu =111C = 0 18Cc =0.18

  • Grainsizedistributioncurve 26

    Wellgraded poorlygradedsoil (uniformlygraded)soil

  • 27Grain-size distribution curve

    3/4 in No 4 No 10 No 40 No 200 Hydrometer3 in

    80

    1003/4 in. No. 4 No. 10 No. 40 No. 200 Hydrometer 3 in.

    60

    s

    s

    i

    n

    g

    D10 =0.10D30 =0.18

    40

    P

    e

    r

    c

    e

    n

    t

    p

    a

    s

    D60 =0.25

    Cu = 2.50

    0

    20Cu 2.50Cc =1.30

    0.0010.010.1110

    Grain diameter (mm)

    GRAVEL SANDSILT or CLAY

    Coarse Fine Coarse Medium Fine

  • 28

  • Hydrometeranalysis 29

    Basedontheprincipalofsedimentationofsoilgrainsinwater.

    Particlesinwatersettleatdifferentvelocities,dependingontheirshape,size,weight,andviscosity of waterviscosityofwater.

    Particlesareassumedtobespheresandtheirvelocities can be expressed by Stokes law.velocitiescanbeexpressedbyStokeslaw.

    2

    18Dv ws

    =where v = velocity(cm/s)

    s = densityofsoilparticles(g/cm3) = density of water (g/cm3)w = densityofwater(g/cm3) = viscosityofwater(gsec/cm2)D = diameterofsoilparticles(cm)

  • Hydrometeranalysis 30

  • StokesLaw 31

    2

    18Dv ws

    = where v = velocity s = densityofsoilparticlesw = densityofwater = viscosityofwaterD = diameterofsoilparticles

    L1818 LDi

    p

    tLvD

    wsws

    ==1818

    tLv ==

    TimeDistance where

    wss G = ( ) tL

    GD

    ws 1

    18=

  • StokesLaw 32

    IfLisincm,tisinmin,w ing/cm3, ingsec/cm2,andDinmm,thenequationcanbewrittenas

    ( )( )

    18mm = LD ( ) 60110 tG ws LL30

    ( ) tLK

    tL

    GD

    ws

    == 1

    30

    ( )130 where, = sG

    K Assumingw =1g/cm3

  • Stokeslaw 33

    ValuesofKforseveralspecificgravityofsolidsandtemperaturecombinations

  • Hydrometeranalysis 34

    Whenahydrometerisplacedinthesoilsuspensionatatimet,measuredfromthestartofsedimentation it measures the sp gravity in thesedimentation,itmeasuresthesp.gravityinthevicinityofitsbulbatadepthL.

    Hydrometersaredesignedtogivetheamountofsoil,ingrams,thatisstillinsuspension.Theyarecalibratedforsoilsthathaveasp.gravityGsof2.65(forotherGsvalues,correctionisrequired).

    Byknowingtheamountofsoilinsuspension,L,andt,wecancalculatethe%ageofsoilbyweightfinerthan a given diameterthanagivendiameter.

    ForASTM152Hhydrometer(cm)16402916(cm) RL = (cm)164.029.16 (cm) RL =

    whereR=hydrometerreadingcorrectedformeniscus

  • Particleshape 35

    Theshapeofsilt,andgravelsvariesfromveryangulartowellrounded.

    Angularparticlesarefoundneartherockfromwhichtheyaref d hil d d ti lformed,whileroundedparticlesarefoundfartherawayfromtheirorigin.

    Angularparticleshaveagreaterstrengththansmoothones,because it is more difficult tobecauseitismoredifficulttoslidepastoneanother.

    Thisiswhycrushedaggregateiss s y c us ed agg egate susedasthebasematerialinpavements.

  • Soil TexturesSoilTextures

    To determine the texture of To determine the texture ofa soil sample, find itspercent for sand, silt, andclay.

    The texture of the soil willbe where all three linesintersect.

  • Claysoils 37

    Soilsthatconsistofsilt,sand,orgravelareprimarilytheresultofphysicalandmildchemicalprocessesandretainmuchofthechemicalstructureoftheirparentrocks.

    Claysoilsexperienceextensivechemicalweatheringandareh d i i l i diff f hchangedintoanewmaterialquitedifferentfromtheparentrocks.

    A lt th i i ti d b h i f l Asaresult,theengineeringpropertiesandbehaviorofclaysquitedifferentfromothersoils.

  • Clays 38

    Physicalcharacteristicsofclaysare:

    They can absorb water or lose water from simple humidity Theycanabsorbwaterorlosewaterfromsimplehumiditychanges.

    When water is absorbed clays will often expand as the Whenwaterisabsorbed,clayswilloftenexpandasthewaterfillsthespacesbetweenthestackedsilicatelayers.

    Due to the absorption of water the specific gravity of clays Duetotheabsorptionofwater,thespecificgravityofclaysishighlyvariableandisloweredwithincreasedwatercontent.

    Claystendtoformfromweatheringandsedimentaryprocesseswithonlyafewexamplesofclaysformingin

    hprimaryigneousormetamorphicenvironments.

  • Claysoils 39

    Clayparticles