41
Soil Mechanics I CE222 CE 222 Stresses in Soil 1

CE222 SM 12 Stresses in Soil

Embed Size (px)

DESCRIPTION

Soil MechanicsBasics

Citation preview

  • SoilMechanicsICE222CE 222

    StressesinSoil

    1

  • Stressesinsoilfromsurface&interiorloads 2

    Itisimportanttoknowhowthesurfacestressesaredistributedwithinthesoil&theresultingdisplacementsto estimate:toestimate:

    whetherthesoilundergeosystemwouldfail,or

    the resulting displacements are excessive or theresultingdisplacementsareexcessive,or

    whethernearbystructureswouldbenegativelyaffected.

    Soil is considered a semi infinite homogeneous linear Soilisconsideredasemiinfinite,homogeneous,linear,isotropic,elasticmaterial.

    Semiinfinite mass is bounded on one side and extendsSemi infinitemassisboundedononesideandextendsinfinitelyinallotherdirections.Thisiscalledelastichalfspace.

    Forsoils,horizontalsurfaceistheboundingside.

  • Stressesinsoilfromsurface&interiorloads 3

    Sinceweareassumingsoilisanelasticmaterial,wecanusetheprincipleofsuperpositiontodeterminep p p pstressdistributionforcomplexloadingsby

    decomposing the complex loading into simple loads (e.g.decomposingthecomplexloadingintosimpleloads(e.g.rectangularorcircular)and

    addingthesolutionofeachofthesesimpleloads.g p

    Thestressincreasefromsurfaceloadsaretotalstressincreasesincreases.

    Ifsoilsisdryorverypermeable(e.g.cleancoarsei d il ) th th t th tgrainedsoils),thenwecanassumethatthestress

    increaseareeffectivestressincreases.

  • Boussinesqformulaforpointload 4

    Boussinesq(1883)solvedtheproblemofstressproducedbyanypointloadonfollowingassumptions.

    The soil mass is elastic, isotropic, homogeneous and semiinfinite.Thesoilmassiselastic,isotropic,homogeneousandsemi infinite. Thesoilmassisweightless. Theloadisapointloadactingonthesurface.

    xyr

    P P

    y xy

    zL z Lz

    z yx

  • Boussinesqformulaforpointload 5

    ( ) ( )

    ++= 23

    2

    2

    22

    5

    2

    2132 rL

    zyzLLr

    yxL

    zxPx ( ) 2522

    3

    5

    3

    23

    23

    zrzP

    LPz

    z +== h( ) ( )

    ++= 23

    2

    2

    22

    5

    2

    2132 rL

    zxzLLr

    xyL

    zyPy

    22222

    22 zxr +=where

    P

    22222 zrzyxL +=++=Vertical normal stress z is independent of Poissons ratio.

    x

    yx

    yrP

    = poissonsratio

    yzL z

    z yx

  • Boussinesqformulaforpointload 6

    ( ) 25223

    5

    3

    23

    23

    zrzP

    LPz

    z +== ( )The above relationship for z can be re-written as

    ( )[ ] Bz IzPzrzP 225 22 1123 =

    += P

    where ( )[ ] 25 2 1123 +=IB ( )[ ]12 +zr

  • Boussinesqformulaforpointload 7

    ( )[ ] Bz IzPzrzP 225 22 1123 =

    +=

    P P

    ( )[ ]zr 1 +

  • Westergaards formulaforpointloads 8

    Westergaard,aBritishScientist,proposed(1938)aformulaforthecomputationofverticalstressz byapointload,P,atthesurfaceas

    ( ) ( )( ) ( ) ( )[ ] Wz IzPzrzP 223 22 221 22212 =+ = ( ) ( ) ( )[ ]zr221 +

    Ifpoissons ratio,,istakenaszero,theaboveequationsimplifiesto

    ( )[ ] Wz IzPzrzP 223 22 21 1 =+= where ( )[ ] 23 221 11 zrIW += ( )[ ]21 zr+

  • Westergaardvs Boussinesqcoefficient 9

    ( )[ ] 23 221 11 zrIW += [ ] 25123=IB

    ( )[ ]( )[ ] 252 12 +zrB

    Th l f I t / 0 iThevalueofIW atr/z =0is0.32whichislessthanthatofIB by33%.

    Geotechnicalengineerspreferto use Boussinesqs solutiontouseBoussinesq ssolutionasthisgivesconservativeresults.

  • Pointload examples 10

    Example1:Aconcentratedloadof1000kN isappliedatthegroundsurface.Computetheverticalstress(i)atadepthof4mbelo the load (ii) at a distance of 3 m at the same depth Usebelowtheload,(ii)atadistanceof3matthesamedepth.UseBoussinesqsequation.

    PP=1000KNZ=4matx,y=0I1 0 4775I1=0.4775verticalstress=????

    Z=4m,r=3m

  • Verticalstresscausedbyalineload 11

    d fBoussinesqequationisusedforcomputingz atanypointPinanelasticsemiinfinitemass.Usingthistheory,thestressesatanypointinthesoilmassduetolineloadofinfiniteextentactingatp gsurfacecanbeobtained.

    ThestrainatanypointPintheYdirectionparalleltolineloadis

    q/unit length

    assumedequaltozero.Thisistermedasplanestraincondition.

    3 x

    zq/unit length

    y( )22232zx

    zqz +=

    z

    A

    ( )

    zx

  • Lineload example 12

    Example2:Followingfigureshowstwolineloadsandapointloadactingatthegroundsurface.DeterminetheincreaseinverticalstressatpointA,whichislocatedatadepthof1.5m.

    P = 30 kN q2 = 10 kN/m q1 = 15 kN/m

    2 m 2 m

    3 m

    zA

    1.5 m

    Overburdenpressureisnotincooperated

  • Verticalstresscausedbyastripload 13

    ( )22232zx

    zqz += For line load => ( ) 32 d

    Substitute qdr for q and (x r) for x =>( )

    ( )[ ]22232

    zrx

    zqdrd z +=

    B=2bq = Load per unit area

    Assume line loadqdr (force/length)

    x

    zdr

    r x r zz

    A

    r xr

    z

  • Verticalstresscausedbyastripload 14

    Applying the principal of superposition, the total stress by strip load is

    B 2

    ( )[ ] drzrx qzdB

    Bzz +==

    2

    2222

    32

    ( )[ ]zrxB +2

    ( ) ( )

    +

    11

    2tan

    2tan

    Bxz

    Bxz

    q ( )[ ]( )[ ]

    =

    222222

    222

    44BzxBz

    qz

    ( )[ ] ++ 222222 4 zBBzx

  • Verticalstresscausedbyastripload 15

    In non-dimensional form

    ( )( )

    ( )( )

    +

    11

    122tan

    122tan

    BBz

    BBz

    ( ) ( )( ) ( ) ( )[ ]

    +

    = 22 122212121

    BzBxBz

    BxBx

    qz

    ( ) ( ) ( )[ ]

    ( ) ( )[ ] ( ) ++

    2222 2212221 BzBzBx

    q 2

  • 16

    00 0.2 0.4 0.6 0.8 1

    z/q

    0

    Verticalstresscausedbyastripload

    1

    Graphical representation 2

    2

    z

    /

    B

    p pof equation

    32

    ( )( )

    ( )( )

    +

    11

    122tan

    122tan

    1 BxBz

    BxBz

    4

    ( ) ( ) ( )[ ]( ) ( )[ ] ( )

    ++

    =

    2222

    22

    2212221

    12221

    BzBzBx

    BzBxBzqz

    5

  • Stripload example 17

    Example3Considerthefollowingfigure.Givenq =200kPa,B=6m,z =3m.Determinetheverticalstressincreaseatx =9,6,3,and0m.Plotthegraph.

    B=2bq = Load per unit area

    g p

    x

    zz

    z

    Ax

  • Verticalstressduetoembankmentloading 18

    ( ) ( )

    +

    +=

    BB

    BBBqo

    z 22

    121

    2

    21

    =

    += zB

    zB

    zBBradians 1121

    12111 tan ,tantan)(

    B2 B1A simplified form of above equation is

    H qo = Habove equation is

    embankoz Iq=

    z21 2

  • 19B2/z log scale

    Verticalstressduetoembankmentloading

    embankoz Iq=I

    e

    m

    b

    a

    n

    k

    B2 B1 Osterbergs chartf dH qo = H

    B /z

    fordeterminationofverticalstress

    duetoembankment

    z21 B1/z loading

  • Embankmentloading example 20

    Example4:Anembankmentisshownbelow.DeterminethestressincreaseundertheembankmentatpointsA1 andA2.

  • 21

    qo=H =(17.5)(7)=122.5kN/m2Considerleftsideoffig.B 2 5 B 14 > B /z 2 5/5 0 5 B /z 14/5 2 8B1 =2.5,B2 =14=>B1/z=2.5/5=0.5,B2/z=14/5=2.8FromfigureIembank =0.445z =2(qoIembank)=2(122.5x0.445)=109.03kN/m2

  • 22

  • 23StressesunderuniformlyloadedcircularfootingConsiderelementaryareadA.LetdQ bethepointloadactingonthisareawhichisequaltoqdA. ( )( )[ ]drrdqqdAdQ == ( )( )[ ]drrdqqdAdQ Theverticalstressd atdepthz duetopointloaddQmaybeexpressedas

    3 dd( ) 25223

    23

    zrdrrdzqd z +=

    The integral form of the equation for entireTheintegralformoftheequationforentirecircularareamaybewrittenas

    === =

    ==

    232 3 oo RrRr drrdqzd ( ) = == = +== 0 0 25220 0 2 rr zz zrdOnintegrationwehave 1

    ( )[ ]

    += 232 111

    zRq

    oz

  • 24Stressesunderuniformlyloadedcircularfooting

  • Circularloadedarea example 25

    Example5Awatertankisrequiredtobeconstructedwithacircularfoundationhavingadiameterof16mfoundedatadepthof2mbelowthegroundsurface.Theestimateddistributedloadonthefoundation is 325 kPa. Assuming that the subsoil extends to afoundationis325kPa.Assumingthatthesubsoilextendstoagreatdepthandisisotropicandhomogeneous.Determinethestressz atpoints(i)z =8m,r =0(ii)z =8m,r =8,(iii)z =16m,r0 and (iv) z 16 m r 8 where r is the radial distance from the=0,and(iv)z =16m,r =8,wherer istheradialdistancefromthe

    centralaxis.Neglecttheeffectofthedepthofthefoundationonthestresses.

  • Stressescausedbyrectangularloadedarea 26

    x

    Considerasmallareadxdy.thepressureactingonthisareacanbereplacedbyaconcentratedloaddQ actingatitscenter.Hence

    qdxdyqdAdQ ==q

    y dxdy

    qdxdyqdAdQTheincreaseinstressdz duetodQcanbewrittenas

    z( ) 25223

    23

    zrqdxdyzd z +=

    A

    TheincreaseinstressatpointA duetoentireloadedrectangularareacanbedeterminedby integrating above eq.byintegratingaboveeq.

    ( ) recB L

    zz qIdxdyqzd === 2522

    33z( ) recy xzz qyzr + = =0 0 25222

  • Stressescausedbyrectangularloadedarea 27

    ( ) recB L

    zz qIdxdyqzd === 2533 ( ) recy xzz qyzr + = =0 0 25222

    nmnm

    nmnmnmmn

    ++++

    +++++

    12

    112

    122

    22

    2222

    22

    nmnmnmmn

    Irec

    +++++

    =

    112tan

    41

    2222

    221

    LnBm

    nmnm

    == ++

    ,

    1

    zz

  • 28

    Stressescausedbyrectangularloadedarea

    LnBm == ,z

    nz

    m ,

    Logscale

  • Rectangularloadedarea differentcases 29

    G

    A BEA B

    GF

    D CD CCaseI CaseII

    LoadonABCD=4 x Load on EBFG

    A BE

    4xLoadonEBFG

    IFH

    CaseIIILoadonABCD=LoadonEBFI+IFCG+IGDH+AEIH

    D CG

  • Rectangularloadedarea differentcases 30

    A B A BE

    EF

    D C D CF

    A B E

    CaseIVLoadonABCD=2xLoadonABEF

    CaseVLoadonABCD=2xLoadonEBCF

    A B E

    CaseVIL d ABCD L d

    DC

    F

    LoadonABCD=LoadonAEGI BEGH DFGI+CFGH

    G

    C

    HI

  • Rectangularloadedarea example 31

    Example6A20x30ftrectangularfootingcarryingauniform loadof6000lb/ft2isappliedtothegroundsurface.

    RequiredTheverticalstressincrementduetothisuniformloadatadepthof20ftbelowthecenterofloadedarea

    A BE

    G20ft

    F

    D C

    30ft

  • Newmarks influencechart 32

    Stressunderuniformlyloadedcircularareais

    ( )[ ]

    = 232 1

    11R

    qz ( )[ ] +2 1zRRearrangingtheaboveequation,weget

    32 ABInfluencevalue=0.005

    11

    =

    qzR z

    UsingvaluesofR/zforvariouspressureratios,Newmark (1942) presentedNewmark(1942)presentedaninfluencechartthatcanbeusedtodeterminevertical stress at any pointverticalstressatanypointbelowauniformlyloadedflexibleareaofanyshape.

  • Newmarks influencechart 33

    z/q=0.9, R = 1.9084z/q=0.8, R = 1.3871 /q=0 8 R = 1 3871z/q 0.8, R 1.3871N element in the chart

    I fl l 1/NInfluence value = 1/N = 1/200 = 0.005

    ( )qMIN=A

    ( )qMINzIN = influence value of chartq = pressure on loaded areaM number of elements of

    AB = z (depth below loaded area at which stress is required)

    BInfluencevalue=0.005

    M = number of elements of chart enclosed by plan of loaded area

  • Newmarks chart example 34

    Example7Araftfoundationofthesizegivenbelowcarriesauniformlydistributedloadof300kN/m2.Estimatetheverticalpressureatadepthof9mbelowpointOmarkedinthefigure.

  • Newmarks chart example 35

    ( )qMINz =IN =influencevalueofchart=0.005q =pressureonloadedarea=300kPaM =numberofelementsofchartenclosed by plan of loaded area 62enclosedbyplanofloadedarea=62

    z =0.005x300x62=93kN/m2.

  • Pressureisobars 36

    Anisobarisalinewhichconnectsallpointsofequalstressbelowthegroundsurface.Inotherwords,anisobarisastresscontour.

    Eachisobarrepresentsafractionoftheloadappliedatthesurface.

    Sinceisobarsformclosedfiguresresemblingtheformofabulb,theyaretermedaspressurebulb.

    Isobarscanbedrawnforvertical,horizontal&shearstresses.

    Verticalpressureisobarsareimportant as these are used inimportantastheseareusedincalculationoffootingsettlement.

  • Pressureisobars 37

    PressureisobarsbasedonBoussinesqequationforuniformlyloadedcircularfootings

  • Pressureisobars square&cont.footing 38

    UsingWestergaardequation UsingBoussinesqequation

  • Pressureisobars 39

    ThedepthofstressedzoneresponsibleforsettlementistermedassignificantdepthDs.Forallpracticalpurposesonecantakeastresscontourwhichrepresents20%offoundationcontactpressureq or0.2q (Terzaghi).

    Significantdepthofstressedzoneforsinglefooting Effectofcloselyplacedfootings

    Pressurebulbgivestheideaabout the depth of soil affectedaboutthedepthofsoilaffectedbyfoundation.

  • Pressureisobars 40

    Boreholesinasiteinvestigationshouldbetakendowntoadepthatleast1.5to2timesthewidthoftheproposedfoundationoruntilrock is encountered whichever is the lesserrockisencountered,whicheveristhelesser.

    Smallfoundationswillacttogetherasonelarge

    c/cdistance

  • Pressurebulb Importance 41

    Resultsofplateloadtestcanbemisleadingiftheproposedfoundationismuchlarger.

    Thesoftlayerofsoilinthefollowingdiagramisunaffectedbytheplateloadingtestbutwouldbeconsiderablystressedbyfoundation.