19
Common Variable Types in Elasticity Elasticity theory is a mathematical model of material deformation. Using principles of continuum mechanics, it is formula ted in terms of many diere nt types of eld variables specied at spatial points in t he body under study. Some examples include: Scalars - Single magnitude  mass density ρ, temperature T , modulus of elasticity E, . . . Vectors – Three componen ts in three dimensions  displacement vector Matrices – ine components in three dimensions  stress matrix Other – !ariables "ith more than nine components Chapter 1 Mathematical Preliminaries , e # , e $ , e %  are unit basis vectors Elasticity Theory, Applications and Numerics M.H. Sadd , University of Rhode Island 3 2 1 e e e u  w v u  + + = σ τ τ τ σ τ τ τ σ = σ  z  zy  zx  yz  y  yx  xz  xy  x ] [

Slides Chapter 1 Mathematical Preliminaries

  • Upload
    kkhemmo

  • View
    232

  • Download
    0

Embed Size (px)

Citation preview

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 1/19

Common Variable Types in Elasticity

Elasticity theory is a mathematical model of material deformation.Using principles of continuum mechanics, it is formulated in terms ofmany dierent types of eld variables specied at spatial points in thebody under study. Some examples include:

Scalars - Single magnitude

  mass density ρ, temperature T , modulus of elasticity E, . . .

Vectors – Three components in three dimensions  displacement vector

Matrices – ine components in three dimensions

  stress matrix

Other – !ariables "ith more than nine components

Chapter 1 Mathematical Preliminaries

, e#, e$, e% are unit basis

vectors

Elasticity  Theory, Applications and Numerics

M.H. Sadd , University of Rhode Island

321eeeu   wvu   ++=

στττστττσ

 z  zy zx

 yz  y yx

 xz  xy x

][

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 2/19

IndexTensor !otation&ith the "ide variety of variables, elasticity formulation ma'esuse of a tensor formalism using index notation. This enables

e(cient representation of all variables and governing e)uationsusing a single standardi*ed method.+ndex notation is a shorthand scheme"hereby a "hole set of numbers orcomponents can be represented by asingle symbol "ith subscripts+n general a symbol aij…k  "ith N distinct indices represents %N 

distinct numbersddition, subtraction, multiplication and e)uality of indexsymbols are dened in the normal fashion- e.g.

Elasticity  Theory, Applications and Numerics

M.H. Sadd , University of Rhode Island

=

=

333231

232221

131211

3

2

1

,

aaa

aaa

aaa

a

a

a

a

a iji

±±±±±±±±±

±±±

333332323131

232322222121

131312121111

33

22

11

,

bababa

bababa

bababa

ba

ba

ba

ba

ba ijijii

λλλλλλλλλ

λλλ

333231

232221

131211

3

2

1

,

aaa

aaa

aaa

a

a

a

a

a iji

=

332313

322212

312111

bababa

bababa

bababa

ba  ji

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 3/19

!otation "#les and $e%nitions

S#mmation Con&ention - if a subscript appears t"ice in

the same term, summation over that subscript from one tothree is implied- for example

symbol aij…m…n…k  is said to be symmetric "ith respect toindex pair mn if

symbol aij…m…n…k  is said to be antisymmetric "ith respect to

index pair mn if

Useful +dentity

. . . symmetric . . . antisymmetric

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

332211

3

1

332211

3

1

bababababa

aaaaa

iii

 j

 jij jij

i

iiii

++==

++==

=

=

k mnijk nmij   aa ..................   =

k mnijk nmij   aa ..................   −=

][)()(2

1)(

2

1ijij jiij jiijij   aaaaaaa   +=−++=

)(2

1)(   jiijij   aaa   +=   )(

2

1][   jiijij   aaa   −=

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 4/19

The matrix aij  and vector b

i  are specified by

Determine the following quantities:

Indicate whether they are a scalar, vector or matrix.

Following the standard definitions given in section .!,

Example 1-1: Index Notation Examples

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

=

=

0

4

2

,

212

340

021

iij   ba

][)(   ,,,,,,,, ijij jiii jiij jij jk ijijijii   aabbbbbbabaaaaaa

(matrix)

000

0168

084

(scalar)200164

(scalar)84

(vector)

8

16

10

(matrix)

7106

18196

6101

(scalar)394149160041

(scalar)7

332211

1221311321121111

332211

332211

333332323131232322222121131312121111

332211

=

=++=++==++++=

=++=

=++=

=++++++++=

++++++++==++=

 ji

ii

 jiij

iii jij

k ik ik i jk ij

ijij

ii

bb

bbbbbbbb

bbabbabbabbabba

babababa

aaaaaaaa

aaaaaaaaaaaaaaaaaaaa

aaaa

( )

( )   (matrix)

011

101

110

230

142

201

2

1

212

340

021

2

1

2

1

(matrix)

221

241

111

230

142

201

2

1

212

340

021

2

1

2

1

][

)(

−−

−=

=−=

=

+

=+=

 jiijij

 jiijij

aaa

aaa

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 5/19

Special Index Symbols

'ronec(er $elta

roperties:

)lternatin* or Perm#tation Symbol

ε#$% / ε$%# / ε%#$ / #, ε%$# / ε#%$ / ε$#% / 0#, ε##$ / ε#%# /

ε$$$ / . . . / 1Useful in evaluatingdeterminants and vector cross0products

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

=

==δ

100

010

001

,0

)(,1

 jiif  

 sumno jiif  ij

3,

,

,

1,3

=δδ=δ

=δ=δ

=δ=δ

=δ=δ

δ=δ

ijijiiijij

ijik  jk ik  jk ij

 jiiji jij

iiii

 jiij

aa

aaaa

aaaa

−+

=εotherwise,0

3,2,1of n erm!tatioo""anisif ,1

3,2,1of n erm!tatioevenanisif ,1

ijk 

ijk 

ijk 

321321

333231

232221

131211

##]"et[ k  jiij k k  jiijk ijij   aaaaaa

aaa

aaa

aaa

aa   ε=ε===

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 6/19

Coordinate Trans+ormations

&

e′

#

e′

%

e′

$

e%

e$e#

 x 3

 x #

 x $

 x ′    

#

 x ′    

$

 x ′    

3 To express elasticity variables in

dierent coordinate systems re)uiresdevelopment of transformation rulesfor scalar, vector, matrix and higherorder variables 2 a concept connected"ith basic denitions of tensorvariables. The t"o 3artesian frames4 x #,x $,x %5 and dier only

by orientationUsing 6otation7atrix

transformationla"s for3artesian vectorcomponents

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

),,( 321   x  x  x    ′′′

),cos(  jiij   x xQ   ′=

3332321313

3232221212

3132121111

eeee

eeee

eeee

QQQ

QQQ

QQQ

++=′

++=′++=′

 jiji   Q  ee   =′

 j jii   Q   ee   ′=

ii

ii

vvvv

vvvv

eeee

eeeev

′′=′′+′′+′′==++=

332211

332211   jiji   vQv   =′

 j jii   vQv   ′=

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 7/19

Cartesian Tensorseneral Trans+ormation a.sScalars, vectors, matrices, and higher order )uantities can berepresented by an index notational scheme, and thus all)uantities may then be referred to as tensors of dierent orders. The transformation properties of a vector can be used toestablish the general transformation properties of these tensors.

6estricting the transformations to those only bet"een 3artesiancoordinate systems, the general set of transformation relationsfor various orders are:

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

or"er %eneral

or"er fo!rth,

or"er thir",

(matrix)or"er secon",

(vector)or"er first,

(scalar)or"er &ero,

......   t  pqr mt kr  jqipmijk 

 pqrslskr  jqipijkl 

 pqr kr  jqipijk 

 pq jqipij

 pipi

aQQQQa

aQQQQa

aQQQa

aQQa

aQa

aa

⋅⋅⋅=′

=′

=′

=′

=′=′

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 8/19

Example 1-2 Transformation ExamplesThe components of a first and second order tensor in a particular coordinate frame are given by

8etermine the components of each tensor in a ne"coordinate system found through a rotation of 91o 4π9radians5 about the x %0axis. 3hoose a countercloc'"ise

rotation "hen vie"ing do"n the negative x %0axis, see

;igure #0$. The original and primed coordinate systems are sho"n in;igure #0$. The solution starts by determining therotation matrix for this case

 The transformation for the vector )uantity follo"s from e)uation4#.<.#5$

and the second order tensor 4matrix5 transformsaccording to 4#.<.#5%

 x 3

 x #

 x $

 x ′    

#

 x ′    

$

 x ′    

3

91o

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

=

=

423

220

301

,

2

4

1

iji   aa

−=

°°°

°°°°°°

=

100

02'12'302'32'1

0cos90cos90cos

90cos60cos10cos90cos30cos60cos

ijQ

−+

=

−==′

2

2'32

322'1

2

4

1

100

02'12'3

02'32'1

 jiji   aQa

−+−

+=

−==′

42'33132'3

2'3314'4'3

32'34'34'7

100

02'12'3

02'32'1

423

220

301

100

02'12'3

02'32'1T 

 pq jqipij   aQQa

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 9/19

Principal Val#es and$irections +or Symmetric

Second Order Tensors The direction determined by unit vector n is said to be a principaldirection or eigenvector  of the symmetric second order tensor aij 

if there exists a parameter λ 4 principal value or eigenvalue5 suchthat

6elation is a homogeneous system of three linear algebraic

e)uations in the un'no"ns n#, n$, n%. The system possessesnontrivial solution if and only if determinant of coe(cient matrixvanishes

scalars Ia, IIa and IIIa are called the fundamental invariants of

the tensor aij

 

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

i jij   nna   λ=   0)(   =λδ−   jijij   na

0]"et[   23 =+λ−λ+λ−=λδ−   aaaijij   III  II  I a

]"et[

)(2

1

3331

1311

3332

2322

2221

1211

332211

ija

ijij jjiia

iia

a III 

aa

aa

aa

aa

aa

aaaaaa II 

aaaa I 

=

++=−=

++==

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 10/19

Principal )xes o+ Second Order Tensors

+t is al"ays possible to identify a right0handed 3artesian

coordinate system such that each axes lie along principaldirections of any given symmetric second order tensor. Suchaxes are called the principal axes of the tensor, and the basisvectors are the principal directions =n4#5, n4$5 , n4%5>

 x 3

 x 1

 x /

Principal )xesOri*inal i&en )xes

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

λλ

λ=

3

2

1

00

00

00

ija

=

333231

232221

131211

aaa

aaaaaa

aij

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 11/19

Example 1-0 Principal Val#eProblem

8etermine the invariants, and principal values anddirections of

;irst determine the principal invariants

 The characteristic e)uation then becomes

 Thus for this case all principal values aredistinct;or the λ# / < root, e)uation 4#.9.#5 gives the

system

"hich gives a normali*ed solution

+n similar fashion the other t"o principal directions arefound to be+t is easily veried that these directions are mutually orthogonal.ote for this case, the transformation matrix Qij dened by 4#.?.#5

becomes

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

=

340

430

002

ija

0)169(2

340

430

002

262630

02

34

43

30

02

,2332

−=−−=−

=

−=−−=−+−+==−+==

a

aiia

 III 

 II a I 

,2,

0)2)(2(0022]"et[

321

223

−=λ=λ=λ∴

=−λ−λ⇒=−λ+λ+λ−=λδ−  ijija

084

042

03

)1(

3

)1(

2

)1(

3

)1(

2

)1(

1

=−

=+−

=−

nn

nn

n

)2(

132

)1(een   +±=

1)2( en   ±=   )2(

132)3( een   −±=

=

'2'10

001

'1'20

ijQ

−=′

00

020

00

ija

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 12/19

Vector, Matrix and Tensor )l*ebra

Scalar or $ot Prod#ct

Vector or Cross Prod#ct

Common Matrix Prod#cts

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

iibabababa   =++=⋅   332211ba

ik  jijk    ba

bbb

aaa e

eee

ba   ε==×

321

321

321

iijiji

ij j jij

a A Aa

 Aaa A

===

===

][*

]*[

 Aa Aa

a A Aa

ijij

 jiij

 jk  ji

kjij

 jk ij

 B Atr tr 

 B Atr 

 B A B A

 B A

==

=

==

==

)()(

)(

]][[

 B A AB

 AB

 B A AB

 B A AB

T T 

T QaQa   =′

⇒=′   pq jqipij   aQQa

@a"tion Transforma

ArderSecond 

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 13/19

Calc#l#s o+ CartesianTensors

;ield concept for tensor components

Comma notation for partial dierentiation

+f dierentiation index is distinct, order of the tensor "ill beincreased by one- e.g. derivative operation on a vector producesa second order tensor or matrix

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

)()(),,(

)()(),,(

)()(),,(

321

321

321

 x 

 x 

 x 

ijiijijij

iiiii

i

a xa x x xaa

a xa x x xaa

a xa x x xaa

===

===

===

,,, ,,,   ij

k iji

 j

 ji

i

i   a x

aa x

aa x

a∂∂

=∂∂

=∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂ ∂

=

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

,

 x

a

 x

a

 x

a

 x

a

 x

a

 x

a x

a

 x

a

 x

a

a  ji

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 14/19

Vector $ierentialOperations

$irectional $eri&ati&e o+ Scalar 2ield

Common $ierential Operations

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

 f  ds

dz 

 z 

 f  

ds

dy

 y

 f  

ds

dx

 x

 f  

ds

df  

∇⋅=∂

+∂

+∂

=   n

321   eeends

dz 

ds

dy

ds

dx s   ++==  of directioninvectornormalunit

 z  y x   ∂∂

+∂∂

+∂∂

==∇   321   eeeoperatoraldierentivector

 z 

 f  

 y

 f  

 x

 f   f   f   f   ∂

∂+∂

∂+∂

∂===∇   321   eee grad   functionscalarof gradient

i,

2

i,

,

,

2

 +i,

i

e!

e!

!

ee!

e,

kk i

 jk ijk 

ii

ii

 ji

i

uVector aof   Laplacian

uVector aof  url 

uVector aof   !iver"ence#calar aof   Laplacian

uVector aof  $radient 

#calar aof  $radient 

=∇

ε=×∇

=⋅∇ φ=φ∇⋅∇=φ∇

=∇φ=φ∇

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 15/19

Example 1-34 ScalarVector 2ieldExample

Scalar and vector eld functions are given by

3alculate the follo"ing expressions, ∇φ, ∇$φ,∇

 B u,

∇u, ∇ × u.

Using the basic relations:

∇φ∇$φ

∇ B u

∇u

∇ × u

 

-10 -5 0 5 10-10

-8

-6

-4

-2

0

2

4

6

8

10

3ontours φ/constant and vector distributions of∇φ 

vector eld ∇φ is orthogonal to φ0contours 4ture in genera

 x 

0 4satises @aplace e)uation5

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

22 y x   −=φ   321 eeeu   xy yz  x   ++=   32

21

321

21

ee

eee

ee

 y y x

 xy yz  x

 z  y x

 x y

 y z u

 z  z 

 y x

 ji

−−=∂∂∂∂∂∂=

==

+=++=

=−=

−=

)3(

32

'''

0

330

00232032

022

22

,

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 16/19

VectorTensor Inte*ral

Calc#l#s$i&er*ence Theorem

Sto(es Theorem

reen5s Theorem in the Plane

6ero-Val#e Theorem

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

dV d# # V ∫∫ ∫∫∫    ⋅∇=⋅  unu   dV ad# na

# V   k k ijk k ij∫∫ ∫∫∫  =   ,......

∫∫ ∫    ⋅×∇=⋅# 

d# nudr uC 

)( ∫∫ ∫    ε=# 

  r  sk ijrst t k ij   d# nadxa  C 

,......

V  f  dV  f   k ijV 

  k ij   ∈=⇒=∫∫∫    00 ......

∫ ∫∫    +=   

  

 ∂∂

−∂∂

 #  "dy fdxdxdy

 y

 f  

 x

 " )( ∫ ∫∫ ∫ ∫∫    =

∂∂

=∂∂

   y

#    x

# ds fndxdy

 y

 f  ds "ndxdy

 x

 " ,

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 17/19

Ortho*onal C#r&ilinearCoordinate Systems

Cylindrical CoordinateSystem 7r, , z)

Spherical CoordinateSystem 7R,

 

8

e

0

e

/

e

1

 x 

3

 x 

1

 x 

/

R

 

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

,tan

cos

cos,sinsin,sincos

1

21

23

22

21

31

2

3

2

2

2

1

321

 x

 x

 x x x

 x x x x %

 % x % x % x

++=φ

++=

φ=φθ=φθ=

3

1

212

2

2

1

321

,tan,

,sin,cos

 x z  x

 x x xr 

 z  xr  xr  x

==θ+=

=θ=θ=

 %e

φe

θe

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 18/19

eneral C#r&ilinearCoordinate Systems

Common $ierential 2orms

Elasticity  Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

233

222

211

2 )()()()(   ξ+ξ+ξ=   d &d &d &ds

iii   &&&&   ξ∂

∂=

ξ∂∂

+ξ∂∂

+ξ∂∂

=∇   ∑   1

1

1

1

33

322

211

1   i eeee

i

ii

 f  

&

 f  

&

 f  

&

 f  

& f  

ξ∂∂

=ξ∂

∂+

ξ∂∂

+ξ∂

∂=   ∑   1

1

1

1

3

3

32

2

21

1

1   i eeee

∑      

 

 

 

ξ∂

∂=⋅   ><

i

i

i

i  u

&

&&&

&&&

321

321

1u

∑      

  

 ξ∂φ∂

ξ∂∂

=φ∇i

i

i

i &

&&&

&&&   2

321

321

2

)(

1

∑∑∑   ><ξ∂∂ε

=×i

i

 j k 

k k  j

k  j

ijk &u

&&eu   )(

∑∑      

 

 

 

ξ∂

+ξ∂

=   ><

><

i j ji

 j

iu

u

&   i 

 j 

 j 

i   e

e

e

u

   

  

 

ξ∂

∂+

ξ∂

∂⋅  

 

  

 ξ∂∂

=∇   ∑∑∑   ><><

 j k 

 jk 

 j

k ii

i

uu

&&   k 

 j 

 j 

k i   e

eee

u

2

),,(,),,(   321321 ξξξ=ξ=ξ   mmmm  x x x x x

7/23/2019 Slides Chapter 1 Mathematical Preliminaries

http://slidepdf.com/reader/full/slides-chapter-1-mathematical-preliminaries 19/19

Example 1-94 PolarCoordinates

From relations ".#.$% or simply using the geometry shown in Figure

The basic vector differential operations then follow to be

Elasticity  Theory, Applications and NumericsM H Sadd University of Rhode Island

r &&rd dr ds   ==⇒θ+=   21

222 ,1)()()(

21

21

cossinsincos

eee

eee

θ+θ−=θ+θ=

θ

r 0

,

,

=∂∂=

∂∂−=

θ∂∂=

θ∂∂   θθ

θr r 

r r 

r    eee

ee

e

θθ

θθ

θθθ

θθθθ

θ

θ

θ

θ

   

   −

θ∂∂

+∇+   

   −

θ∂∂

−∇=∇

   

   −

θ∂∂+ 

  

   −

θ∂∂+

∂∂+

∂∂=

   

  

θ∂∂

−∂∂

θ∂φ∂

+   

  

∂φ∂

∂∂

=φ∇

θ∂∂

+∂∂

=⋅θ∂

φ∂+

φ∂=φ

θ∂∂

+∂∂

=

eeu

eeeeeeeeu

eu

u

ee

ee

r r r r 

2

2

2

11

1

)(1

11

1)(

1

1

1

22

2

22

22

2

2

2

uu

r u

uu

r u

uur 

uur r 

ur 

u

u

r ru

r r 

r r r 

r r 

u

r ru

r r 

r r 

r r 

r r r 

r r r 

 z r 

r!reeeeeu   , where   ×=+=   θuur