213
S S y s t e m y s t e m s L i n e a r L i n e a r C o n t r o l C o n t r o l N ot es P r e pa r e d b y: N ot es P r epar e d by : E C E - 4 0 9 E C E - 4 0 9 P r o f. P r o f. D a r r e n D a r r e n M. D a w s o n  M. D a w s o n S i d dhar t h N a g ar ka t t i S i d d h a r t h N aga r k a t t i A man B eha l A m an B ehal P r a d e ep P r ade e p  S et l ur S et l ur

Sisteme Liniare Lab

Embed Size (px)

Citation preview

Page 1: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 1/213

SS y s t e my s t e m ss

L i n e a rL i n e a r

C o n t r o lC o n t r o l

N ot es P r epa r ed by:N ot es P r epa r ed by:

E C E - 4 0 9E C E - 4 0 9

P r o f.P r o f. D a r r e nD a r r e n M. D a w s o n M. D a w s o n

S i d d ha r t h N a g a r k a t t iS i d d ha r t h N a g a r k a t t iA ma n B eha lA ma n B eha lP r a d eepP r a d eep S et l urS et l ur

Page 2: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 2/213

Example of a Sys tem that needs Con tro l

Motor Turning a Mechanical Load

T T : torque input

X : output positionJ : inertiaB : friction

J

ω

T X b X J =+ •••

b

Newton's Law

Electrical CircuitsL R

+i

eC

-

dt dq

i

eidt C

Ridt di

L

=

=++ ∫ 1Kirchoff's Voltage Law

e : input voltageq : output charge i : current

R : resistanceL : inductanceC : capacitance

q charge

eqC

q Rq L =++ ••• 1

after some algebraic manipulationNote : Two different systems are governed by similar looking Differential Equations

Control is the ' 'shaping" of the output of the Differential Equation by changing the inputto the system via feedback

1

Page 3: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 3/213

The Pendubot An Example of a System that needs Control

The Pendubot, short for PENDUlum RoBOT, is an under-actuated two-link mechanism.The system consists in two rigid links, the first of them actuated by a DC-motor and thesecond link is not actuated. The Pendubot is similar in spirit to the classical inverted

pendulum on a cart or a rotational inverted pendulum.

The Pendubot presents some unique features and challenges for control research. One canuse the Pendubot to investigate linear control, nonlinear control, system identification,intelligent control, hybrid and switching control, and gain scheduling.

Control Objective: To balance the pendubot and make the pendubot perform a specificacrobatic maneuver (i.e. the pendubot starts at the stationary vertical down position andmust swing up to the inverted position)

Block Diagram of the Pendubot Setup

Movie (.avi) of a working Pendubots[ECE 496 Senior Design Project Spring 1998]

Page 4: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 4/213

Differential EquationsDefini t ion

A differential equation is an equation which involves differentials orderivatives

For example: y t( ) m2t

x t( )d

d

2. is Newton's law of motion

In this class, we will be concerned with ordinary differential equations of the form

an y n( ) an 1 y n 1( ) ..... a 1 y 1( ) a0 y b n 1 u n 1( ) ..... b 1 u 1( ) b0 u

where u(t) and y(t) are functions of time. (Note : y n( )means the nth derivative)

ai and bi are constants

Time Inv ar iant

The differential equations will be assumed to be time-invariant.

That is, the coefficients, denoted by ai and bi do not depend explicitly on time.

Linea r i ty

The differential equations are also assumed to be linear.What is a linear system ?

X1 Y1 X2 Y2Given a system with twodifferential inputsH H

α and β are constantsαX1 βX2 αY1 βY2we obtain an output which conformsto standard linear operations(add and subtract by a constant ORmultiply and divide by a constant)

H Causa l i t y

A system is called causal if the output depends only on the present and past values of

the input. That is, if y(t) is the output, then x(t) depends only on the input x τ( ) for all values of τless than or equal to t. A car, a light switch, a TV are all causal

Page 5: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 5/213

The ' 'D" No ta t ion fo r Ana lyz ing DE 's

Examine the differential equation

ntyd

dn an 1 n 1t

y .......... a 1 tyd

d. a0 y. ud

dn 1.

Define Dt( )d

dand Dn

nt( )d

d

n

So the above equation can be written as

Dn y an 1 D n 1 y. ....... a 1 D y. a0 y u

Dn an 1 D n 1 ....... a 1 D a 0 y. u

∆ D( ) D n an 1 D n 1 ...... a 1 D a 0 0

∆ D( ) is called the characteristic equation

x yExample Find ∆ D( ) for y''+ 3 y' + 2y = x Plant

input output∆ D( ) D 2 3 D. 2 0∆ D( ) D 1( ) D 2( ). 0

Determine the"shape" of y(t)so D 1 or D 2

Roots of ∆ D( ) are sometimes referred to as the eigen values orpoles

It is now obvious that this class involves the study of Differential Equations

Where are we headed ?

1. Given x(t), it would be advantageous to have ageneral procedure for finding y(t) Problems

2. It would also be advantageous to develop analysis techniques for examining systems without knowing the input

Solutions3. Develop the Laplace Transform Tool

Page 6: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 6/213

T T iimm ee ff oo rr aa MM oo v v iiee

Click on image to start movie

Page 7: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 7/213

Laplace Transforms

Why ? Because it is easy to work with an Algebraic Equation as opposed to a Differential Equation

Laplace Transformations are used to change a differential equation into an algebraic equation

f t( )( ) F s( )

0p

∞tf t( ) e st. d Definition of the

Laplace Transform(one - sided)

where F(s) is the Laplace transform of f(t), s σ jω and j 1

denotes the Laplace Transform Operation

0pdenotes just to the right-hand side of zero (sometimes called zero-plus)

Definition When can you take a Laplace Transform ?

If f(t) is single valued for t>0 and F(s) is convergent for some σ0 , that is

Apply thevertical line test

0p

∞tf t( )( ) e

σ0 t. d < ∞

then f t( ) is Laplace transformable for Re(s) > σ0u 1 t( )Example Checking the region of convergence

f t( ) e t u 1. t( ) t

∞0p = 1

1 σ0∞<

0p

∞te t e σ0 t. d

0p

∞te 1 σ0 t d 1

1 σ0

e 1 σ0 t..

if 1 σ0 0> or σ0 1> This is sometimes called the Region of Convergence

Note: We never worry about the ROC in Control Theory since we only use the one-sided Laplace Transform and all of our systems are causal

Example Find the Laplace Transform of e t

∞0pe t

0p

∞te t e s t. d 1

s 1e s 1( ) t. = 1

s 1

Note: We hardly ever use this method of calculating the Laplace Transform in practice; rather, we use the tables of Laplace Transforms and algebraic manipulation to find the Laplace Transform of a function

Page 8: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 8/213

Some Properties of Laplace Transforms f t( )( ) F s( )

Often used for solving DEs1.tf t( )d

dsF s( ) f 0 p

2.0

tτf τ( ) d

F s( )

s

3. Initial Value Theorem: f 0 p

0pt

f t( )∞s

sF s( )limlim often used forsetting performancespecs for controldesign

4. Final Value Theorem: f ∞( )

∞tf t( )

0ssF s( )limlim

5. f ta

a F a s.( ). scaling ("a" is a constant)

6. f t T( )( ) e sT F s( ) delay ("T" is a constant)

frequency scaling ("a" is a constant)7. e at f t( ). F s a( )

f 1 t( ) f 2 t( ) F 1 s( ) F 2. s( ) convolution

8. *

convolution equation

is avoided by multiplicationin the frequency domainwhere f 1 t( ) f 2 t( )0

t

τf 1 τ( ) f 2. t τ( ) d* What are the above properties good for ?

These properties can be used to manipulate a function into a form in which the transition,between the time domain and the frequency domain is eased (e.g. taking the LaplaceTransform or the Inverse Laplace Transform)

Page 9: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 9/213

Solution of Differential Equations by Laplace Transform

1. Take the Laplace Transform of both sides of the equation to work in the frequency domain

2. Solve the algebraic equation for the unknown variable

3. Take the Inverse Laplace Transform to find the time domain expression

Example Find y(t)

tyd

d4 y. 2 e 3 t y 0 p 3

Turning a DE intoan AEsY s( ) y 0 p 4 Y s( )

2

s 3

s 4( ) Y s( ) 2

s 3y 0 p

Solve the AEY s( ) 2

s 3( ) s 4( ).

y 0 p

s 4Partial Fraction Expansion

Y s( ) 2

s 3

2

s 4

3

s 4 Preparing the expression

for using the tablesY s( )

2

s 3

1

s 4Inverse Laplace Transform

The answer y t( ) 2 e 3 t e 4 t

Check if the initial condition is satisfied

y 0( ) 3 A quick good way to catch errors

Plug in the solution and check if the original equation is recovered

y t( ) 2 e 3 t e 4 t

d

dty 4 y. 2 e 3 t.

.

ddt

2 e 3 t e 4 t 4 2 e 3 t e 4 t 2 e 3 t

The answer is correct

6 e 3 t 4 e 4 t 8 e 3 t 4 e 4 t 2 e 3 t 2 e 3 t 2 e 3 t

Page 10: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 10/213

Finding the Output from a Linear Differential Equation

Given a system and an input, how do we find the output ?

Systemu y

We use an nth order differential equation to describe the system as follows

yn an 1 y n 1( ) ..... a 1 y 1( ) a0 y b n 1 u n 1( ) ..... b 1 u 1( ) b0 u

If we assume that all initial conditions are zero, then we can take the Laplace Transform

sn an 1 s n 1. ...... a 1 s. a0 Y s( ). bn 1 s n 1. ..... b 1 s. b0 U s( ).

so Y s( ) bn 1 s n 1

. ..... b 1 s. b0

s n an 1 s n 1. ...... a 1 s. a0

U s( ).

We could now substitute for U s( ) and then use the Inverse Laplace Transform to find y t( )

Side Note: Transfer Funct io n

Definition of

Transfer FunctionH s( )

Y s( )

U s( )

bn 1 s n 1. ..... b 1 s. b0

sn an 1 s n 1. ...... a 1 s. a0 A transfer function is an Input/Output Relation

Remember : Set the initial conditions to zero whencalculating the transfer function

1

Page 11: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 11/213

More Math ToolsThe Partial Fraction tool is important for taking the Inverse Laplace Transform

Example for distinct roots

Problem : Find h(t)H s( ) s4 8 s3 25 s 2 31 s 15

s3 6 s2 11 s 6

Step 1: Make the transfer function strictly proper,i.e, , order of (denominator) > order of (numerator)

Long Division

s 2

s3 6 s2 11 s 6 s 4 8 s3 25 s 2 31 s 15Don’t let yourselfget burnedon the test

s4 6 s3. 11 s 2. 6 s.

2 s3 14 s 2 25 s 15

2 s3 12 s 2 22 s 12

2 s2 3 s 3 Stop when the orderof the numerator is oneless than the denominator

H s( ) s 2 H1 s( )

H1 s( ) = 2 s2

3 s 3

s3 6 s2 11 s 6Now work with H1 s( ) via the PFE tool.

Step 2: Find h1 t( ) by using the PFE tool and tables

There is no easyway to factor thedenominator.

H1 s( ) 2 s2 3 s 3

s3 6 s2 11 s 6

2 s2 3 s 3

s 1( ) s 2( ). s 3( ). H1 s( )

K1

s 1

K2

s 2

K3

s 3Now Find K1 K2 and K3

11

Page 12: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 12/213

s si

Residue Formula: Ki s si H s( ).This can be used as long as the root at si is not repeated

s 1 s 1K1 s 1( ) H1 s( ) =

2 s2 3 s 3

s 2( ) s 3( ). =2 3 3

1( ) 2( ). 1

s 2=

s 2K2 s 2( ) H1 s( )

2 s2 3 s 3

s 1( ) s 3( ). =8 6 3

1( ) 1( ). 5

s 3 s 3K3 s 3( ) H1 s( ) =

2 s2 3 s 3

s 1( ) s 2( ). =18 9 3

1( ) 2( ). 6

H1 s( ) 6

s 3( )

5

s 2( )

1

s 1( )How do you check this ?Get a common denominator

2 s2 3 s 3

s 1( ) s 2( ). s 3( ).

After taking the Inverse Laplace Transform (see the table), we have

h1 t( ) 6 exp 3 t.( ). 5 exp 2 t.( ). exp t( ) answer1 The whole point of the PFE is

to get the expression in thefrequency domain into a formwe can recognize in the tables

So h t( ) = s( ) 2 δ t( ) h1 t( )

PFE for Repeated Roots

sn .. repeated rootmultiplicity "q"H s( )

bn 1 sn 1. ..... b1 s. b0

sn an 1 sn 1. ...... a 1 s. a0 s1 .... sr - distinct roots

H s( )K1

s s1

....Kr

s sr

A1

s sn

A2

s sn2

......Aq

s snq

Find K1 ..... Kr with Find A1 ..... Aq with

the residue formula the formula below

1

Page 13: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 13/213

s sn

Aq s snq H s( ).

s snAq 1

1

1 ! ss sn

q H s( ).dd

s snAq 2

1

2 ! 2ss sn

q H s( ).d

d

2and so on

Example for repeated roots

one distinct root (s=0)one repeated root(s=-1)multiplicity two (q=2)

Find h(t) for H s( ) 11 s2

23 s 1s s 1( ) 2

K1

s

A1

s 1

A2

s 1( ) 2

s 0K1 s H s( ).( ) =

1

11

s 1=

11 23 1

111A2 s 1( ) 2 H s( ).

s 1s 1

A1

s

s 1( ) 2 H s( ).d

d

=

s

11 s 2 23 s 1

s

d

d

s 1=

s 22 s 23( ) 11 s 2 23 s 1

s2= 10

Take the InverseLaplace Transform withthe tables

H s( ) 1

s

10

s 1

11

s 1( ) 2

h t( ) 1 10 exp t( ). 11 t. exp t( ). answer

1

Page 14: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 14/213

More Math Tools

x t( )( ) X s( )

Property 9.nt

x t( )d

d

nsn X s( ) sn 1 x 0p s n 2( ) x 1( ) 0p .... x n 1( ) 0p

Property 10.

0p

tδ t( ) e st. d 1 note δ t( )( ) 1 δ t( ) is defined this way"The 0p

skeleton"

Definition of delta function

tf t( ) δ t T( ). d f T( )

Transfer Function

Input / Output approach to system modeling

u t( ) y t( )H s( )

Y s( )

U s( )H s( )

Transfer function is calculated by assuming all initial conditions are zero

yn an 1 y n 1( ) ..... a1 y 1( ) a0 y bn 1 u n 1( ) ..... b1 u 1( ) b0 u

Y s( )

U s( )H s( )

bn 1 sn 1. ..... b1 s. b0

sn an 1 sn 1. ...... a 1 s. a0

Roots of the numerator - zeros of H(s)

Roots of the denominator - poles of H(s)

Stability H(s) is stable if all the poles have negative real parts

1

Page 15: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 15/213

Vc Given Vc voltage across the capacitorExample + -+ u : input voltage

y : output voltagei : current

1 F+

u i y _ u 2 e t Find y(t)1 Ω _ Vc 0p 1

Voltage loop u Vc y y i itVc

dd

=> ytVc

dd

Take Derivative tud

d tVc

dd t

ydd Circuit Analysis

Substitute fortVc

dd

tud

dy

tyd

d

Take Laplace Transform of DE u t( )( ) 2s 1

sU s( ) u 0p sY s( ) y 0p Y s( )

Calculate y 0pfrom problem

y 0p u 0p Vc 0p 1 statement (Note u 0p 2 )

sU s( ) 2 sY s( ) 1 Y s( ) Substitute initial conditionsY s( )

2 s

s 1( ) 2

2

s 1

1

s 1Solve for Y(s)

Y s( ) 2 s

s 1( ) 2

1

s 1Simplify

Use Partial Fraction Tool

Y s( ) 2

s 1( ) 2

B

s 1

1

s 1Apply ResidueFormula for DistinctRoots

s 1B

ss 1( ) 2 2 s

s 1( ) 2.d

d= 2 Use Repeated

Root FormulaInverse Laplace Transform from Table

y t( ) 2 te t 2 e t 1 e t 2 t. e t. e tAnswer

How does a Mathematician check this answer ?How does an Electrical Engineer check this answer ?

1

Page 16: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 16/213

More FormulasNew Laplace Transformation Table Entries

e at

sin ω

0 t

ω0

s a( ) 2 ω0

2 ω0 and a are positive constants

e at cos ω0 t

s a

s a( ) 2 ω0

2

Side note on the Impulse Response Y s( )

h t( ) is the Impulse Response for u t( ) δ t( ) H s( )

for u t( ) δ t( ) u t( )( ) 1

Y s( ) H s( ) U s( ). H s( ) 1. note u t( )( ) 1

hence y t( ) h t( ) when u t( ) δ t( )

Example: Calculating an Output

2tyd

d

22

tyd

d. 5 y. u t( ) y 0( )

ty 0( )d

d0

s2 Y s( ) 2 s Y s( ) 5 Y s( ) U s( )

Y s( ) 1

s2 2 s 5 U s( )1Y s( )

U s( )H s( )

1

s2 2 s 5h t( ) = H s( )( )

16

Page 17: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 17/213

Example - Continued

Now let u t( ) 3 find y t( ) poles always come in conjugate pairsif the coefficients are real

From the tables U s( ) 3

sUse quadratic formula for 2nd order rootsY s( ) H s( ) U s( ). 3

s s2 2 s 5

The roots of the polynomial in paranthesis are givenby

s 1 j2 and s 1 j2

A partial fraction expansion is given by

Y s( )A0

s

B0

s 1 j2

C0

s 1 j2

There are no complex numbers in the tables, so we use a different PFE method

Another partial fraction expansion is given by

Y s( ) A

s

Bs C

s2 2 s 5Find A,B and C

1. Since there are 3 roots, you need 3 weighting coefficients

2. The degree of the numerator polynomial must be one less than that of thedenominator

PFERules

Y s( ) 3

5

1

s. Bs C

s2 2 s 5

3

s s2 2 s 5"A" was calculated withthe Residue Formula"B" and "C" are found with thecommon denominator method

3

5s2 6

5s 3 Bs 2 Cs 3

After equating the coefficients in the above equation

B 3

5and C

6

5still does not look quitelike the tablesY s( )

3

5

1

s. 3

5

s 2

s2 2 s 5

s 2

s2

2 s 5

s 2

s 1( )2

22

s 1 1

s 1( )2

22

s 1

s 1( )2

22

1

2

2

s 1( )2

22

which looks likecomplete thesquares s a

s a( ) 2 ω0

2

ω0

s a( ) 2 ω0

2From the tables.........

1

Page 18: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 18/213

Y s( ) 3

5

1

s. 3

5

s 1

s 1( ) 2 22

3

10

2

s 1( ) 2 22Final Form

Take the inverseLaplace Transformto obtain answer

y t( ) 3

5

3

5exp t( ). cos 2 t.( ). 3

10exp t( ). sin 2 t.( ).

Time (sec.)

A m p l i t u d e

Impulse Response

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Step Response

Plot ofy(t)

The overshoot and slight ripple is causeby the complex poles which also give rise to

cos(t) and sin(t) terms

How do you check the answer ?

1. Check y 0( )ty 0( )d

d0

2. Plug the solution into2t

yd

d

22

tyd

d5 y. u t( ) u t( ) 3

18

Page 19: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 19/213

Checking for Stability Without Factoring the DenominatorDenominatordeterminesstability

H s( ) N s( )

D s( )D s( ) sn an 1 sn 1 ....... a 1 s a0

D1 s( ) sn an 2 sn 2. .......

Formulate D1 s( ) and D2 s( )D2 s( ) an 1 sn 1. an 3 sn 3. .......

D1 s( )

D2 s( )h1 s

1

h2 s 1

h3 s 1

h4 s 1

...h n s

Form the continuedfraction expansion

If all h1 .......h nare positive then all of the roots of D s( ) are in the OLHP (stable)

( Note OLHP - open left half plane-poles have negative real parts)

Example: Continued Fraction Expansion

Is D s( ) stable ?

D s( ) s3 6 s2 12 s 8 Denominator determines stability

D1 s( ) s3 12 s D2 s( ) 6 s2 8 Formulate D1 s( ) and D2 s( )1

6s

D1 s( )

D2 s( )

s3 12 s

6 s2 8=> 6 s2 8 s3 12 s

s3 8

6s

D1 s( )

D2 s( )

1

6s

1

6 s2 8

32

3s.

32

3s

ContinueDividing

19

Page 20: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 20/213

9

16s

=>D1 s( )

D2 s( )

1

6 s 1

6 s2 8

32

3s

32

3 s 6 s2

8ContinuedFractionExpansionis completed

6 s2

8

D1 s( )

D2 s( )

1

6s

1

916

s 14

3s

Algebraic Simplication

h11

6h2

9

16and h3

4

3

So all the roots of D s( ) have all negative real parts (i.e., it is stable)

20

Page 21: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 21/213

Example: Continued Fraction Expansion

Find the values of K such that the system described by the following equation is stable(Note K>0)

∆ s( ) s3 14 s 2 56 s K 114

s114

s Long Division

14 s 2 K s 3 56 sD1 s( )

D2 s( )

s3 56 s

14 s 2 K s3 K

14s.

56 K

14s56

K

14s

D1 s( )

D2 s( )

1

14s

56 K

14s

14 s 2 K

s

14

1

14 s 2 K

56 K

14s

Performing long division again

s 14

56 K

14

.D1 s( )

D2 s( )

s

14

1

s 14

56 K

14

1

s 56 K

14

K

s 56 K

1414 s 2 K

14 s 2

Kh1 114

h2 1456

K

14

h3 156

K

14

KFor each hi 0> we must have

14

56 K

14

0> therefore 56 K

140> => K 784<

For stability K should satisfy 0 K< 784<

For K 784> => there is at least one unstable pole

2

Page 22: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 22/213

Describing a Second Order SystemY s( )

U s( )H s( )

2t

yd

d

22 δ ω

n.

t

yd

d

. ωn

2y. ω

n2

u

ωn undamped natural frequency

U Y δ damping ratioωn

2

s2 2 δ. ωn

. s. ωn

2

The poles of H s( ) are s δ ωn

. j ωn

. 1 δ 2. and s δ ωn

. j ωn

. 1 δ 2.

which is also written as s α j ωd

. and s α j ωd

.

is called the time constant ωd is the damped natural frequency

jω axis

α δ ωn

.

j ωn

.

s α j ωd

. j ω

d.

ωd

ωn 1 δ

2.

δ cosθθ ω

n - length of vectors - plane

α σ axis

j ωd

.

s α j ωd

. j ω

n.

If δ 1> poles are negative and real

If δ 1 poles are real and equal

If 0 δ< 1< poles are complexconjugate pairs s δ ω

n. j ω

n. 1 δ

2. and s δ ωn

. j ωn

. 1 δ2.

If δ 0 poles are imaginary s j ωn

. and s jω n

δ determines how much cosine and sine action an output might have

2

Page 23: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 23/213

More Laplace Transforms

Second Order System

If δ 1 1

s ωn

2Poles are real and repeated

= t eω

n t..

Poles are purely imaginarysin ωn t.

ωn

s2 ωn

2If δ 0

ω n

1 δ2

eδ ω n. t.. sin 1 δ 2

t.. ω n2

s2 2 δ. ωn

. s. ωn

2If 0 δ< 1<

If δ 1> roots are distinct and real; hence standard PFE/Tables can be applied

23

Page 24: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 24/213

Stability: Time Domain and Frequency Domain Relationships

Second Definition of Stability A system is stable if its impulse response approaches zero as time goes to infinity, thatis

1

∞th t( )lim = H s( )( ) 0

which means that all poles are in the OLHP

(Note OLHP - open left hand plane - poles have negative real parts)

Examples

s-plane jH s( )

1

s2 1TransformPairs Not Stable j

h t( ) sin t( )

s-plane PolePlots2 Transform

PairsH s( )

1

s 1( ) s 2( ). Stable 1

h t( ) exp t( ) exp 2 t.( )

s-plane

H s( ) 1s 1( ) s 1( ). Not Stable

TransformPairs

1 1h t( )

1

2exp t( ). 1

2exp t( ).

So stability is only dependent on the poles of the transfer function

24

Page 25: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 25/213

T T iimm ee ff oo rr aa MM oo v v iiee

Click on image to start movie

25

Page 26: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 26/213

Block Diagram Simplification

U(s) H(s) Y(s) Goal of BlockDiagram Simplification

+

- -

Summer X(s) Σ Y s( )

Z(s)

U(s)

Y s( ) X s( ) U s( ) Z s( )

Mathematical Expression

multiplierX t( ) Y t( )

Y t( ) K X t( ). Mathematical Expression

K

X s( ) Y s( )K

Y s( ) K X s( ). Mathematical Expression

2

Page 27: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 27/213

Canonical FormL(s)+ Most common

Block DiagramR s( ) G s( ) Y s( )

- H s( )

G(s) Forward Transfer Function

H(s) Feedback Transfer Function

L s( ) H s( ) Y s( ). R s( ) from Block Diagram

Y s( ) L s( ) G s( ). from Block Diagram

Y s( ) H s( ) Y s( ). R s( )( ) G s( ) substitute for L(s)

Y s( ) 1 H s( ) G s( )( ) R s( ) G s( ). algebraic manipulation

Y s( )

R s( )

G s( )

1 G s( ) H s( ).

answer

R s( )G s( )

1 G s( ) H s( ).

Y s( ) Block Diagram has been simplified

The need for simplification of Block Diagrams spawned the creationof the rules and procedures

2

Page 28: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 28/213

Block Diagram Simplification Rules

Cascade Y P 1 P 2. X. X P 1 P2 Y

X P 1 P 2. Y simplified

Parallel Y P 1 P2 X.

X + YP1 X Y

≡ P1 P2+ simplifiedP2

≡Remove a Block from a Path

X Yequivalent toabove block.P2

P1

P2

Y P 2

P1

P2

1 X.

Feedback loop Y P 1 X P 2 Y.Y P 1 P2 X.

+X P 1 ≡- Y X YP1

1 P 1 P 2. simplified

P2

Remove a Block from a Path

1 2

2 1 2

11

PPY X P PP = +

X Y+1

P2

P1 P 2.

- equivalent toabove block.

2

Page 29: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 29/213

Moving a Summing Point ahead of a Block or beyond

+ + ZZ ≡ X P ≡X P+ Z P X. Y

+ Y Y1

P

X P + ZX + Z ≡ ≡P +

Z P X Y( )Y + Y

P

Moving a Take-off point

YX X P Y

P ≡ ≡ Y P X.

PY Y

X Y YP ≡ X P ≡ Y P X.

XX 1/P

Bottom Line : If you move wires or blocks, you must ensure the mathematical expressionremains equal to the same thing that you started with

29

Page 30: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 30/213

Multiple Inputs (Some problems have multiple inputs)

When we have multiple inputs, each is treated independently of the other inputs.

Step 1: Set all inputs except one input equal to zero

Step 2: Calculate the response due to the non-zero input.

Step 3: Repeat step 1 and step 2 as needed

Step 4: Add all the responses together.U

+Example + +

R G 1 G2 C-

Find C(s)Set U = 0

R + CRG 1 G2.

- Response of C(s)due to R(s) only

C R =G 1 G2

.

1 G 1 G2.

R.

Block Diagram Simplification RulesSet R = 0 u

+

- G1 + G2 C u Response of C(s)due to U(s) only

+U G 2 Cu

+ Rearrange BlockDiagram

1 G 1

C u

G 2

1 G 1 G2.

U Block Diagram Simplification RulesThe total response is given by

C C u CR =G 1 G2

.

1 G 1 G2.

R.

G 2

1 G 1 G2.

U

Page 31: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 31/213

Rule-Based Reduction of Complicated Diagrams (Method 1)1. Combine Cascade and Parallel Blocks

2. Eliminate Feedback Loops.

Example 1

G 3

++ +

R G 1 G4 G2 + C- +

Find

H 1 C s( )

R s( )

H 2

+R +G 1 G4 G2 G3 C

- +CombinedCascade

andParallelBlocks

H 1 H 2

3

Page 32: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 32/213

+R CG 1 G4

1 H1

G1

G4

G 2 G3-

SimplifiedFeedback

PathH 2

G 1 G4 G2 G3

1 H 1 G1 G4R C

SimplifiedFeedback

Path1 G 1 G4 H2

G 2 G3

1 H 1 G1 G4

3

Page 33: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 33/213

Example 2

+ +R K

1

s 1C

- -

Find

s1

s 1 C s( )

R s( )

0.11

s 1

+R C

K1

s 1-

identifyparallelpaths

+s

1

s 1 +

0.11

s 1

+R K

1

s 1 C-

addparallelpathsH s( )

addparallelpaths

H s( )s

s 1

.1

s 1

s .1( )

s 1( ) C s( )

R s( )=

K

1 KH s( )

1

s 1. close feedback loop

C s( )

R s( )=

K

1K s 0.1( )

s 1

1

s 1.

answer

3

Page 34: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 34/213

T T iimm ee ff oo rr aa MM oo v v iiee

Click on image to start movie

34

Page 35: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 35/213

Signal Flow Graphs ( Method 2)

Nomenclature

X m

Y m x. b mathematical expressionY

1b branch - which way you go

Node - variables are represented by nodes

Y3

Y 3 X.X mathematical expressionZ 4 X.( )

4Z

10 20 200

X ZX Y Z

Y 10 X. Z 20 Y.( ) Z 200 X.( )

3

Page 36: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 36/213

Example and Definitions

A42

Signal Flow Graph that is used to explain Mason’s terminology

A21

A32

A33

X1

X4X

2 X3

A43

A23

Definition - A path is a continuous unidirectional succession of branches along which no nodeis passed more than once.

X1

to X2

to X3

to X4 Examples of

PathsX2

to X3

to X4

X2

to X3

to X2

36

Page 37: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 37/213

Definition - an input node is a node with only outgoing branches Example X1

Definition - an output node is a node with only incoming branches Example X4

Definition - a forward path is a path from input node to output node Example X1 ,X2 ,X4

Definition - a path gain is the product of the branch gains encountered

Example -- X1

X2

. X4

. A21

A42

path gain for a forward path

Definition - A loop gain is the product of the branch gains of the loop

Example -- X2

X3

. X2

. A32

A23

loop gain for a loop

Construction of signal flow graphs

+R G C

+ Block Diagram

H

1 G 1R C

Signal Flow Graph

H

3

Page 38: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 38/213

Page 39: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 39/213

Example - Simplification of an SFG

1 G 1R C

H

1) Find forward paths1 G 1R C

P1

G One forward path

2) Find loops G

P11

GH One loop

H3) Find ∆ and ∆

i ’s

∆ = 1 - (sum of all loop gains)+ (sum of gain-products of 2 non-touching loops)

- (sum of gain-products of 3 non-touching loops)+ (....... 4.........) - ......

∆ 1 GH ∆

11 0 1 recalculate ∆ with P

1removed

H

4) Calculate H(s)

Does this agree with what youknow the answer is supposed

to be ?

H s( ) =P1 ∆ 1

G

1 GH

39

Page 40: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 40/213

Example - Simplify Block Diagram

G3

+

+ + G1

G4

G2

CR+

- + worked thisexample

before withstandard block

diagramsimplification

rules

H1

H2

1) First, draw the Signal Flow Graph G3

G1

G41 1 1

G2

H1 H

22) Find the forward paths

G1

G4

G2

11P1 G1 G2 G4

G1

G41 G

31P

2G

1G

3G

4

3) Find the loops G1

G4

P11

G1

G4

H1

H1

G1 G4 G2 1P

12G

1G

2G

4H

2

H2

40

Page 41: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 41/213

P21

G1

G3

G4

H2

G3G

1G

41

4) Find ∆ and ∆i ’s H

2

∆ 1 P11

P12

P21

0 ∆ = 1 - (sum of all loop gains)+ (sum of gain-products of 2 non-touching loops)

- (sum of gain-products of 3 non-touching loops)+ (....... 4.........) - ......

i∆ ∆= evaluated with all loops touching Pi being eliminated

∆ 1 1 Recalculate ∆ with P1 removedG

3

H1

H2∆

21 Recalculate ∆ with P

2removed

1

H1

H2

5) Find H(s)

∆+∆= 2211 PP

H

same as beforebut withdifferent

technique

H =G

1G

4G

21( ) G

1G

3G

41( )

1 G1

G4

H1

G1

G2

G4

H2

G1

G3

G4

H2

41

Page 42: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 42/213

Example -Simplify Block Diagram G2

+R + C

G1+

+

H1

G21) First, draw the Signal Flow Graph

G1 1

R C1 1 1

H1

2) Find the forward Paths

P1

G1

R C1 1 G

11 1

G2

P2

G2

R C

1 13) Find the loops G

1

P11

G1

H1

H1

4) Find ∆ and ∆i ’s ∆ = 1 - (sum of all loop gains)

+ (sum of gain-products of 2 non-touching loops) - (sum of gain-products of 3 non-touching loops)

+ (....... 4.........) - ......111 H G−=∆

11 =∆ Recalculate ∆ with P1

removed G2

H1

4

Page 43: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 43/213

112 1 H G−=∆ Recalculate ∆ with P2

removed

1 G1

1

H1

11

11212211

1)1(

)( H G

H GGGPPs H

−−+=∆

∆+∆=5)

Example - Putting it all together

If R(s) = 1/s Find c(t)

1

+

+R s( ) 1/s 1/s C s( )++ --

1 1

1) Draw SFG1

1 1/s 1 1 1/s 11R C

1

1 12) Find the forward loops

R CP1

1

s2 1 1/s 1 1 1/s 1 1

3) Find the loops 1/s 1

A 1

s

1

4

Page 44: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 44/213

1/sB

1

s

1

1C 1

s 1 1

1/s 1

4) Find ∆ and ∆i ’s

ABC B A +++−=∆ )(1 ∆ = 1 - (sum of all loop gains)+ (sum of gain-products of 2 non-touching loops)

- (sum of gain-products of 3 non-touching loops)

+ (....... 4.........) - ......

11 =∆1

Recalculate ∆ with P1

removed

5) FindC s( )

R s( )H s( )

∆= 11P

RC

11

CR

=

1

s2

1 A B C( ) AB=

1

s2

13

s1

s 2

= 1

s23 s 1

R s( ) 1

sC s( ) =1

s s23 s 1( ).

=1

s s a( ) s b( )

a 3 5

2b

3 5

2

1

abs

C s( ) = + +

PFE

1

a a b( )s a

1

b b a( )s b

InverseLaplace

Transform

c t( ) =1

ab+

1

b a( ) ae at

+1

a b( ) be bt

4

Page 45: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 45/213

Example Simplify SFG

b1

b2u 1 1/s 1/s 1/s y Reachable

CanonicalForma

2b

3

a1 a

3

1) Find the forward paths

P1

b3

s 3u y

1 1/s 1/s 1/s b3

b2P2

b2

s 2

u y1 1/s 1/s

b1

P3

b1

s u y1 1/s

2) Find the Loops

1/s

Aa

1

s

a1

4

Page 46: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 46/213

1/s 1/s

Ba

2

s 2

a2

1/s 1/s 1/sC

a3

s 3

a3

3) Find ∆ and ∆i ’s

∆ 1 A B C( )

∆ = 1 - (sum of all loop gains)

+ (sum of gain-products of 2 non-touching loops) - (sum of gain-products of 3 non-touching loops)

+ (....... 4.........) - ......

∆1

1 Recalculate ∆ with P1

removed b1

a1 b

2

a2

a3∆2

1 Recalculate ∆ with P2

removed b1

a1

1/s

a2

b3

a3

13 =∆ Recalculate ∆ with P3

removed b2

a1

1/s

a2

b3

a3

4

Page 47: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 47/213

4) Find H(s)

=∆

∆= ∑ iiP

sU

sY

)(

)( P1

P2

P3

1 A B C( )

=

b 3

s3

b 2

s2

b 1

s

1a

1

s

a2

s 2

a3

s 3

General Form ofa 3rd order Transfer Function=

b1

s 2 b2

s b3

s3 a1

s 2 a2

s a3

Example

+ +R G1

G2

Y- -

H1

H2

1 G1

1 G2

1 Y

R

H1

H2

1) Find the forward paths

R YP1

G1

G2

1 G1 1 G2 12) Find the loops

G1

P11

G1

H1

H1

4

Page 48: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 48/213

G2P

12G

2H

2

H2

3) Find ∆ and ∆i ’s

)()(1 12111211 PPPP ++−=∆ ∆ = 1 - (sum of all loop gains)+ (sum of gain-products of 2 non-touching loops)

- (sum of gain-products of 3 non-touching loops)+ (....... 4.........) - ......

∆1

1 Recalculate ∆ with P1

removed

H1

H2

4) Find H(s)

G1 G2

1 G1

H1

G2

H2

G1

G2

H1

H2

Y s( )

R s( )=

P1 ∆ 1

∆=

Alternative method to solve

Y s( ) closedbothloops

R s( ) G1

1 G1

H1

G2

1 G2

H2

multiplycascadeblocks

Y s( )

R s( )=

G1

G2

1 G1

H1

G2

H2

G1

G2

H1

H2

48

Page 49: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 49/213

T T iimm ee ff oo rr aa MM oo v v iiee

Click on image to start movie

4

Page 50: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 50/213

Root Locus: Construction and Design

Plant

R s( ) K Gp s( ) Y s( )

K is a positive parameterthat can be changed

Y s( )

R s( )

K Gp. s( )

1 K Gp. s( )

Closed Loop Transfer Function

General Form for theTransfer FunctionGp s( )

sm am 1 sm 1. ...... a 0

sn

bn 1 sn 1.

....... b 0

N s( )

D s( )

N s( ) and D s( ) are polynomials where m n

Y s( )

R s( )

K N s( )

D s( ).

1 K N s( )

D s( ).

K N s( ).

D s( ) K N s( ).

The closed loop poles are the roots of the characteristic equation

∆ s( ) D s( ) K N s( ). 0

The location of the roots of ∆ s( ) in the s-plane change as K is varied from 0 to ∞

A "Locus" of these roots plotted in the s-plane as a function of K is called the Root Locus

Different ways to write the same thing

∆ s( ) 1 K N s( )

D s( ). D s( ) K N s( ). 0

Gives the roots of the closed loop system

50

Page 51: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 51/213

Root Locus Rules

1. Starting points(K = 0)

2. Terminationpoints

3. Number ofdistinct root loci

4. Symmetry ofroot loci

5. Asymptoteintersection

6. Root Locuslocations onthe real axis

7. Rool locusasymptotes

The root loci start at the open-loop poles.

The root loci terminate at the open-loop zeros. Theopen loop zeros include those at infinity.

There will be as many root loci as the largestnumber of finite open loop poles or zeros. For themajority of systems, the number of finite open-looppoles will be greater than the number of finiteopen-loop zeros.

The root loci are symmetrical with respect to thereal axis.

The asymptotes intersect the real axis at a pointgiven by

The root loci may be found on portions of the realaxis to the left of an odd number of open-loop polesand zeros.

The root loci are asymptotic to straight lines, forlarge values of s, with angles given by

i

open loop poles open loop zeros

n mσ

−= −∑ ∑centroid

formula

zerosloopopenfiniteof no.

polesloopopenfiniteof no.

1,...,1,0

)21(

==

−−=−

+=

m

n

mnk mnk π

θ

Let RD (relative degree) = n - m

Asymptote Chart in the s plane

120 90 72

RD 1 RD 2 RD 3 RD 4 RD 5

The centroids are marked x in the asymptote charts above

5

Page 52: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 52/213

Example Plant

R s( ) K Gp s( ) Y s( )

Gp s( ) 1

s s 2( ). s 4( ). Open loop poles are at s 0 2, 4,

Y s( )

R s( )

K 1

s s 2( ). s 4( )..

1 K 1

s s 2( ). s 4( )..

Closed Loop Transfer Function

Root Locus Formfor the Denominator∆ s( ) 1 K

1

s s 2( ). s 4( ).. Step 1. Pole Zero Plot Step 2. Real Axis

jω jω

- 4 - 2 σ - 4 - 2 σ

Step 3. Centroid / Asymptotes

jωcentroid

centroid 0 2 4 0

3 2- 4 - 2 σ

RD 3

-6 -5 -4 -3 -2 -1 0 1 2-6

-4

-2

0

2

4

6

Real Axis

I m a g

A x

i s

Step 4. Draw the Root Locus

a. Locus must be symmetric about real axisb. Open loop zeros at infinity = 3c. Locus starts at open loop poles and

goes to the open loop zeros

Note: Locus is symmetric about the real axis because complex poles always come in conjugate pairs

5

Page 53: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 53/213

Example Plant

R s( ) K Gp s( ) Y s( )

2−=sOpen loop zeroGp s( ) s 2

s 1( ) s 3 3j( ). s 3 3j( ). 33,1 js ±−−= Open loop poles

Closed LoopTransfer FunctionY s( )

R s( )

K s 2

s 1( ) s 3 3j( ). s 3 3j( )..

1 K s 2

s 1( ) s 3 3j( ). s 3 3j( )..

Root Locus Formfor the Denominator∆ s( ) 1 K

s 2

s 1( ) s 3 3j( ). s 3 3j( )..

Step 1. Pole Zero Plot Step 2. Real Axis

jω jω

| |- 3 - 2 - 1 σ - 3 - 2 - 1 σ

centroid

Step 3. Centroid / Asymptotes jω

Centroid =3 3 1 2( )

2

5

2 - 3 - 2 - 1 σ

RD 2

-4 -3 -2 -1 0 1 2-1 0

-8

-6

-4

-2

0

2

4

6

8

10

Real Axis

I m a g

A x

i sStep 4. Draw the Root Locus

a. Locus must be symmetric about real axisb. Open loop zeros at infinity = 2c. Locus starts at open loop poles and

goes to the open loop zeros

5

Page 54: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 54/213

Example

R s( ) K Gp

s( ) Y s( )

Gp s( ) 1

s 1( ) s 3( ). Open loop poles s 1 3,

Closed Loop Transfer FunctionY s( )

R s( )

K 1

s 1( ) s 3( )..

1 K 1s 1( ) s 3( ).

.

∆ s( ) 1 K 1

s 1( ) s 3( ).. Root Locus Form

for the Denominator

Step 1. Pole Zero Plot Step 2. Real Axis

jω jω

-3 -1 σ -3 -1 σ

centroid

Step 3. Centroid / Asymptotes

Centroid =3 1

22

-4 -3 -2 -1 0 1 2-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Real Axis

I m a g

A x

i s

-3 -1 σRD 2

Step 4. Draw the Root Locus

a. Locus must be symmetric about real axisb. Open loop zeros at infinity = 2c. Locus starts at open loop poles and

goes to the open loop zeros

5

Page 55: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 55/213

Example - Continued

Open Loop System R s( ) Y s( )Gp s( )

Gp s( ) 1s 1( ) s 3( ).

Time (sec.)

A m p l i t u d e

Step Response

0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

0.3

Let R(s) = Unit step

Y s( )

1

3

s

1

2

s 1

1

6

s 3

y t( ) 13

12

e t 16

e 3 t

Closed Loop SystemY s( )

R s( ) K Gp s( )

Let R(s) = unit step

Time (sec.)

A m p l i t u d e

Step Response

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

1.2

K 30

K 10 as K changes it isclear that the transientresponse can be "shaped"

K 4 K 1

Note: Higher values of K speed up the closed-loop response when compared to the open-loop response

5

Page 56: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 56/213

Example

R s( ) K Gp s( ) Y s( )

Gp s( ) 1

s s 3( ). s 3 j 7.4.( ). s 3 j 7.4.( ).

Closed-LoopTransfer Function

Y s( )

R s( )

K 1

s s 3( ). s 3 j 7.4.( ). s 3 j 7.4.( )..

1 K 1

s s 3( ). s 3 j 7.4.( ). s 3 j 7.4.( )..

∆ s( ) 1 K 1

s s 3( ). s 3 j 7.4.( ). s 3 j 7.4.( ).. Root Locus Form

for the DenominatorStep 1. Pole Zero Plot Step 2. Real Axis

jω jω

σ -3 σ-3

centroid Step 3. Centroid Asymptotes

jωCentroid =3 3 3 0

4

9

42.25

-3 σRD 4

5

Page 57: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 57/213

Step 4. Draw the Root Locus

a. Locus must be symmetric about real axisb. Open loop zeros at infinity = 4c. Locus starts at open loop poles and

goes to the open loop zeros

-4 -3 -2 -1 0 1 2

-8

-6

-4

-2

0

2

4

6

8

Real Axis

I m a g A x

i s

5

Page 58: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 58/213

Magnitude and Angle Conditions

Y s( )R s( ) K G

p s( )Y s( )

R s( )

K Gp. s( )

1 K Gp. s( )

Poles are determined by

∆ s( ) 1 K Gp. s( ) characteristic equation

s clp∆ s( ) = 0 clp denotes closed-loop pole

Magnitude Condition

s clp s clp

Expression forfinding clps∆ s( ) 1 K Gp

. s( ) = 0 => K Gp. s( ) = -1

s clpTake the magnitude ofboth sidesK Gp

. s( ) = 1 (Note K is a real number)

s clpK Gp s( ). = 1 Magnitude Condition

Angle Condition

s clp

Expression for finding clpsK Gp. s( ) = -1

s clp

Take the angle of both sidesAngle K G p. s( ) = Angle 1( )

Use -180 degrees as opposed

to 180 degrees by convention(only here)s clp

Angle G p s( ) = -180 (Note K is a real number)

s clpAngle G p s( ) = -180 Angle Condition

Page 59: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 59/213

Example Find the value of K which places a closed loop pole at -5

Y s( )R s( ) K Gp s( )

Gp s( ) s 2s 1( ) s 4( ).

Find the transfer function

closed loop TFY s( )

R s( )

K s 2

s 1( ) s 4( )..

1 K s 2

s 1( ) s 4( )..

-6 -5 -4 -3 -2 -1 0 1 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

I m a g

A x

i s

Draw the Root Locus

Note that -5 lies on the rootlocus

Magnitude Condition

s 5 s 5K Gp s( ). = K

s 2

s 1( ) s 4( ).. = 1

= K 3

4( ) 1( ).. 1 => K

4

3

Angle Condition

s 5s 5Angle G p s( ) = Angle s 2( ) Angle s 4( ) Angle s 1( ) = - 180

Angle Conditionis satisfied= Angle 3( ) Angle 1( )( ) Angle 4( ) 180 180 180( ) 180

5

Page 60: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 60/213

Design Example: DC MotorThe differential equation for a dc motor is given by

2tωd

d

2

t( )

Ra

La

B

J tω

t( )dd

.Ra

La

B

J.

Ga If . 2

La J. ω

t( ).

Gaf If .

J La. Va

.t( )

where Va t( ) is the input voltage and ω t( ) is the motor speed

After testing the motor and determining the parameters, we obtained

2tωd

d

2t( ) 6

tω t( )d

d. 5 ω t( ). Va t( ) Plant Model

ω s( )

Va s( )

1

s2 6 s. 5Gp s( ) Gp s( )

ω t( )Va t( )Poles of the plant are given by1

s2 6 s. 5∆ s( ) s2 6 s. 5 s 1( ) s 5( ). 0

Open Loop system that we want to controlPoles are at s 1 and s 5

1Let Va t( ) δ t( ) then ω t( ) = Gp s( ) Va

. s( )

-6 -5 -4 -3 -2 -1 0 1 2-4

-3

-2

-1

0

1

2

3

4

Real Axis

I m a g

A x

i s

Pole Plot

ω s( ) 0.25s 1

0.25s 5

PFE ToolInverseLaplaceTransform

ω t( ) 1

4exp 5 t.( ). 1

4exp t( ).

Definition

Dominant Poles are the closest poles to the jω axis (Assume that the system is stable)

The dominant pole corresponds to the slowest mode

The open loop system’s output response will be dominated by e tWhy ?

6

Page 61: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 61/213

Design Example - Continued

Let us examine the response to a step input

henceVa

s( ) 1

sω s( ) G

p s( )

1

s

.

ω s( ) 1

s s 1( ) s 5( ).1

5

1

s. 1

4

1

s 1( ). 1

20

1

s 5. PFE Tool

Time (sec.)

A m p l i t u d e

Step Response

0 1 2 3 4 5 60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

InverseLaplaceTransform

ω t( ) 1

5

1

4exp t( ). 1

20exp 5 t.( ).

Problem: The response of the system maybetoo slow to suit our specifications

Solution: Add Feedback

Va s( )ω s( )R s( ) Gp s( )K

ClosedLoopTransferFunction

ω s( )

R s( )

K Gp. s( )

1 K Gp. s( )

Find K so that the closed loop poles are at Draw the Root Locus

s 3 j 3. and s 3 j 3.

-6 -5 -4 -3 -2 -1 0 1 2-4

-3

-2

-1

0

1

2

3

4

Real Axis

I m a g

A x

i s

From Magnitude Condition

s 3 j 3.K

1

s 1( ) s 5( ).. = 1

K 1

2 j 3.( ) 2 j 3.( ).. 1

K 13 places the closed loop poles at

s 3 j 3. and s 3 j 3.

6

Page 62: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 62/213

Design Example - Continued

With K = 13 and R(s) = 1/s , find ω t( )

ω s( )

R s( )

K Gp. s( )

1 K Gp. s( )

13s 1( ) s 5( ).

1 13

s 1( ) s 5( ).

Closed Loop Transfer Function

ω s( )

R s( )

13

s2 6 s. 18R s( )

1

sω s( )

13

s s2 6 s 18. Use PFE Tool

Make it looklike the tables

ω s( ) 13 1

18

1

s.

118

s 13

s 3( ) 2 32. 13

1

18

1

s. 1

18

s 3 3

s 3( ) 2 32..

ω s( ) 13 1

18

1

s. 1

18

s 3

s 3( ) 2 32

3

s 3( ) 2 32..

Inverse LaplaceTransform

ω t( ) 13

18

13

18

exp 3 t.( ). sin 3 t.( ). 13

18

exp 3 t.( ). cos 3 t.( ). Closed Loop e 3 t

Open Loop e t

Faster Dominant Pole Slower Dominant Pole

Time (sec.)

A m p l i t u d e

Step Response

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Closed Loop

Note it takes e t

5 seconds to die outwhile it takes e 5 tOpen Loop

one second to die out

Note that the closed loop response is faster than the open loop response

6

Page 63: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 63/213

Page 64: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 64/213

Page 65: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 65/213

Application of FVT and IVT for Closed Loop System

R s( ) Y s( )0.5

1

s s 1( ). Closed LoopSystemR s( ) 1s

Y s( )

R s( )

1

2

1

s s 1( )..

1 1

2

1

s s 1( )..

0.5

s2 s 0.5closed loop TF

Y s( ) 0.5

s s2 s 0.5.

0.5

s s 0.5( ) 2 0.5( ) 2. Use PFE tool

Inverse Laplace Transformy t( ) A Be 0.5 t. cos 0.5 t.( ). C e 0.5 t.. sin 0.5 t.( ).

FVT :

Time (sec.)

A m p l i t u d e

Step Response

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y ∞( )0s

0.5 s.

s s2 s 0.5.1lim

IVT :

y 0( )∞s

0.5 s.

s s2 s 0.5.0lim y t( )

FVT - tells us A = 1

IVT - tells us B = -1

6

Page 66: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 66/213

2nd Order Time Domain Transient Specifications

standard form for

2nd order Transfer FunctionH s( )

ωn2

s2 2 δ ωn. s. ωn2

1. Percent Overshoot (PO)

max value of output - final value of output time domain calculationPO = final value of output

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

80

90

100

delta

PO 100 expδ π.

1 δ2

. GraphicalSolution

2. Settling Time - Time required for the system output to remain within b% of the final value

Typical values: b 2 % t s 4δ ωn. and b 5 % t s 3δ ωn

.

3. Rise Time - Time for the system output to go from 10% to 90% of the final value.

tr

π θrad

ωn 1 δ2.where θrad is in radians

δ cos θ( )

4. Peak Time - Time required for system output to reach first peak of the overshoot.

tpπ

ωn 1 δ2.

Above relationships are usedto convert time domainspecification to polelocations.

66

Page 67: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 67/213

Typical Output to a Step Input

0 5 10 15 200

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A m p

l i t u d e

Step Response

PO 1.02

0.98

ts

tp

tr

tr

π θrad

ωn 1 δ2.ts

4

δ ωn.

Conversionformulas

tpπ

ωn 1 δ2.PO 100 exp

δ π.

1 δ2

.

jωdωn δ cos θs-plane θ

pole locationsα

tr , ts , tp , PO closed loop pole locations

Conversion Formulas

Time DomainSpecifications

Frequency DomainSpecifications

67

Page 68: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 68/213

Steady State Error (SSE) Specification

+ K Gp

s( ) Y s( )R s( )

-

Final ValueTheoreme t( ) r t( ) y t( ) SSE

∞te t( )lim =

0ssE s( )lim

Time (sec)

A m p

l i t u d e

r(t)

y(t) SSE

Example - Calculation of SSE

E s( ) R s( ) Y s( ) Y s( )K G p

. s( )

1 K G p. s( )

R s( ). From Block Diagram

E s( ) R s( )K G

p

. s( )

1 K G p. s( )

R s( ). Substitute Y(s)

E s( )R s( ) 1 K G p

. s( ). K G p. s( ) R s( ).

1 K G p. s( ) Common denominator

If K G p s( ), and R s( ) were available, then SSE could be calculated numerically

E s( ) 1

1 K G p. s( )

R s( ). Simplify

SSE0s

s 1

1 K G p. s( )

. R s( ).lim Final Value Theorem

6

Page 69: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 69/213

Example - Calculation of SSE

+ K G p s( )R s( ) Y s( )

-

H s( )

E s( ) R s( ) Y s( ) Y s( )K G p

. s( )

1 K G p. s( ) H s( ). R s( ). From Block Diagram

E s( ) R s( ) 1K G p

. s( )

1 K G p. s( ) H s( ).. substitute Y(s)

E s( )1 K G p

. s( ) H s( ) 1( ).

1 K G p. s( ) H s( ). R s( ). common denominator

SSE0s

s1 K G p

. s( ) H s( ) 1( )

1 K G p. s( ) H s( )

. R s( ).lim Final Value Theorem

If K G p s( ), H s( ), and R s( ) were available, then the SSE could be calculated

numerically

6

Page 70: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 70/213

Design Example + K G p s( ) Y s( )R s( )

-

Gp s( ) =1

s 1( ) s 5( ).1) Find K such that if r(t) is a unit step, then y(t) has the following characteristics

a) ts4 2.

18(Settling Time: 2% criterion)

b) PO = 5% (Percent Overshoot)

2) Find y(t) for r(t) = step

3) Find the steady state error for r(t) = step

Calculate Pole location parameters.

⇒ ⇒PO 5 % δ 1

2 plot ts

4

δ ωn. ωn 18 Direct

Calculation

Formulate desired closed loop characteristic equation

∆dcl s( ) s 2 2 δ. ωn. s. ωn

2 s2 6 s. 18

Desired closed loop poles are are s 3 j3 and s 3 j3 quadratic formula

-6 -5 -4 -3 -2 -1 0 1 2-4

-3

-2

-1

0

1

2

3

4

Real Axis

I m a g

A x

i s Root locus for Y s( )

R s( )=

K G p. s( )

1 KG p s( )

∆cl s( ) = 1 K 1

s 1( ) s 5( )..

7

Page 71: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 71/213

Find K by Magnitude Condition

s 3 j3

0Y s( )

R s( )

K G p. s( )

1 K G p. s( )∆ s( ) 1 K G

p

. s( )

s 3 j3

1⇒K

1

s 1( ) s 5( ).. K 13 Use Calculator

2) Find y(t) when R(s) =1

s

Y s( ) 1

s

13

s 1( ) s 5( ).

1 13

s 1( ) s 5( )..

13

s s 2 6 s. 18. From Block Diagram K=13

Y s( ) 13 1

18 s.A s. B

s 3( ) 2 3( ) 2. PFE Formulation

A s 2. B s. 1

18s2. 1

3s. 1 1 A

1

18B

1

3 PFE Tool

Y s( ) 13 1

18 s

1

18

s 6

s 3( ) 2 3( ) 2..

Make itlook likethe tables

Y s( ) 13 1

18 s.1

18

s 3

s 3( ) 2 3( ) 2

3

s 3( ) 2 3( ) 2..

y t( ) 13 1

18

1

18e 3 t. cos 3 t.( ). 1

18e 3 t.. sin 3 t.( ). Inverse Laplace

TransformInteresting check on PFE Calculation

y ∞( )0s

s Y s( ).lim 13

18 Final Value Theorem

Initial Value Theoremy 0( )∞s

s Y s( ). 0lim

7

Page 72: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 72/213

3) Find SSE when R(s) = 1/s

E s( ) R s( ) Y s( ) Definition

Y s( )K G p

. s( )

1 K G p. s( )

R s( ). From Block Diagram

E s( ) R s( )K G p

. s( )

1 K G p. s( )

R s( ). substitute Y(s)

E s( ) 1

1 K Gp

. s( )R s( ). Simplify

FVTSSE0s

s E s( ).lim0s

s 1

s. 1

1 13

s 1( ) s 5( ).

.lim R s( )

1

s

SSE 5

18 answer

∞te t( )lim

∞tr t( ) y t( )( )lim =

∞tr t( )lim -

∞ty t( )lim

Anothermethod= 1

13

18=

5

18

Note:

∞ty t( )lim

0ss Y s( ).lim

13

18

7

Page 73: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 73/213

Lead Compensator (Using Magnitude and Angle Condition)

+ Gc s( ) 1

s s 1( ). Y s( )R s( )

-

33 j±−Find Gc s( ) such that the dominant closed loop poles are at

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-3

-2

-1

0

1

2

3

Real Axis

I m a g

A x

i s

Let Gc s( ) K

∆cl s( ) 1 K 1

s s 1( ).. Root Locus

does notgo through

33 j±−

If Gc s( ) K s a( )

s b( ). Lead Compensation => b a> 0>

Real Axis

I m a g

A x

i s

-a-b -c 0

-3-j3

-3+j3

∆cl s( ) 1 K s a( )

s b( )

1

s s 1( )...

Centroid b 0 1 a

2

RD 2 Root Locus goes

through 33 j±− Note: a closed loop pole at "-c" has been injected

By moving "a" and "b" around we can change the centroid

and hence bend the root locus to go through 33 j±−33 j±−Note: are more dominant that "-c"

33 j±−How do we find the values for a, b and K which ensure that

are the closed-loop poles ?

73

Page 74: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 74/213

Find Closed Loop Transfer Function

From the Block DiagramY s( )

R s( )

K s a( )

s s b( ). s 1( ).

1 K s a

s b( ) s. s 1( )..

s 3 j3

Achieves the desired result= 0 ∆ s( ) 1 K s a( )

s s b( ). s 1( )..

Angle Condition: Find "a" and "b"

s 3 j 3.One EquationTwo Unknowns

AngleConditionsAngle K s a( )

s s b( ). s 1( ).. = -180

s 3 j 3.One EquationTwo UnknownsAngle

s a( )

s b( )

1

s s 1( ).. = - 180 Let a 3

s 3 j 3.s 3 j 3.= 180 Angle s

s 1( )

s 3( ).

Angle s b( )

tan 1 3b 3

11.3 deg => b 18

Note : Angle A

BAngle A( ) Angle B( ) Angle AB( ) Angle A( ) Angle B( )

Angle α jβ( ) tan 1 βα

Selection of "a"

1) "a" is not unique2) If "a" is picked too big, "b" will not exist (i.e., b may become negative)

3) If "a" is picked too small, the system might not exhibit the right dominant behavior (i.e., closed loop pole at -c might dominate the behavior)

7

Page 75: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 75/213

Page 76: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 76/213

Lead Compensator (Using Coefficient Matching)

+ Gc s( ) G p s( ) Y s( )R s( )-

33 j±−Find Gc s( ) so that the dominant closed loop poles are at

Select a LeadCompensatorfor the samereason as before

Gp s( ) 1

s s 1( ). Gc s( ) K s a

s b.

Y s( )R s( )

K s a( ).s s b( ). s 1( ).

1 K s a( )

s b( ) s. s 1( )..

K s a( ).s s 1( ). s b( ). K s a( ). closed loop TF

Note: There are three closed loop poles given by the characteristic equation

actual closed loopdenominator∆cl s( ) s s 1( ). s b( ). K s a( ).

Real Axis

I m a g

A x

i s

-a-b -c 0

-3-j3

-3+j3

Still need to draw theroot locus to understandthe problem

σ

actual closed loop denominator∆cl s( ) s 3 b 1( ) s 2. b K( ) s. a K. desired closed loop denominator∆dcl s( ) s c( ) s 3 j 3.( ). s 3 j 3.( ).

∆dcl s( ) s c( ) s 2 6 s. 18.simplification

∆dcl s( ) s 3 6 c( ) s 2 18 6 c( ) s 18 c

7

Page 77: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 77/213

Equate the desired denominator to the actual denominator

∆dcl s( ) ∆cl s( )

6 c b 13 equations, 4 unknowns (cannot solve)

18 6 c b K Let a 3 (same reason as before)aK 18 c

K 6 c1

0

1

0

1

1

6

1

6

K

b

c

.0

5

185 c b b 6 c 18 K

b 18 c 13 K 78 checks with previous answer

Note we have discovered the third closed loop pole in the process (i.e., s = - 13)

Interesting Side Note

Previous equation can be used to determine how big ’’a’’ can get

eliminate K and b5 c b b 6 c 18 K K 18

ac.

5 c 6 c. 18 18

ac. one equation and two unknowns

simplified expressionc 18

a5 13

From root locus, "c" must be a positive number for the problem to make sense

so if c 0> then18

a5 0> therefore a

18

5<

Any other selection of "a" forces "b" to be negative, and hence, the compensatorwould have an unstable pole.

7

Page 78: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 78/213

Find the Structure of the Time Response For the Previous Problem Quickly

R s( ) 1

s

where r t( ) is a step inputY s( )

R s( )

78 s 3( ).

s 13( ) s 3( ) 2 3( ) 2.

write thisimmediatelyy t( ) A B e 13 t. C e 3 t. cos 3 t( ). D e 3 t. sin 3 t( ).

A, B,C, D can be found with the PFE tool

How can we find A ?

final value theorem

0ssY s( )lim

78 3( ).13( ) 18( ). 1

∞ty t( )lim

∞ty t( )lim A 1 so A 1

Closed LoopStep Response

78

Page 79: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 79/213

Example Find the range of K which ensures closed loop stability

y t( )r t( ) + P s( )

-

K H s( )

H s( ) s 1

s 4( ) s 2( ). P s( ) s 3

s 0.1

Closed-loop Transfer FunctionY s( )

R s( )

P s( )

1 P s( ) H s( ) K.

∆cl s( ) 1 K P s( ). H s( ). 1 K s 3s 0.1

. s 1s 2( ) s 4( ).

. Denominator inRoot Locus Form

Draw the Root Locus

-6 -4 -2 0 2 4-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

I m a g

A x

i s

j a.

c

j a.

Use coefficient matching to find thevalue of K which places closed loop poles at a j.±

Denominator inPolynomial Form∆cl s( ) s 0.1( ) s 2( ). s 4( ). K s 3( ). s 1( ).

∆cl s( ) s 0.1( ) s 2 6 s 8. K s 2 4 s 3.

∆cl s( ) s 3 6.1 s 2 8.6 s 0.8 Ks 2 4 K. s. 3 K. Simplification∆cl s( ) s 3 6.1 K( ) s 2 8.6 4 K.( ) s. 0.8 3 K.( )

Page 80: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 80/213

∆cl s( ) s 3 6.1 K( ) s 2 8.6 4 K.( ) s. 0.8 3 K.( ) actual denominator

∆dcl s( ) s c( ) s 2 a2. desired denominator (see root locus)

∆dcl s( ) s 3 cs 2 a2 s a 2 c simplified

After equating the coefficients, we obtain

1) 6.1 K c3 equations

3 unknowns2) 8.6 4 K. a 2 3) 0.8 3 K. a 2 c

After multiplying equation 1) by equation 2), and equating the result toequation 3), we obtain one equation for K

6.1 K( ) 8.6 4 K( ). 0.8 3 K a 2 c

4 K 2 8.6 24.4( ) K. 52.46 0.8 3 K

4 K 2 18.8 K 51.66 0 simplified

K 1.94( ) K 6.657( ). 0 factored

K 1.94 or K 6.657 roots

Since K cannot be negative K 1.94 is the answer

-6 -4 -2 0 2 4-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

I m a g

A x

i s

For 0 K< 1.94< , the system is stable

8

Page 81: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 81/213

Lead Compensator: Design Example

Y s( )R s( ) +Gc s( )

4

s s 2( ).-

Design Gc s( ) so that the dominant closed loop poles are at s 2 j 2 3.

and s 2 j 2 3.LeadCompensatorGc s( ) K

s a

s b.

Closed LoopTransfer Function

Y s( )

R s( )

K s a( )s b( )

. 4s s 2( )..

1 K s a( )

s b( )

4

s s 2( )...

I m a g

A x

i s

-a-b -c

32 j

32 j−

Real Axis

∆cl s( ) 1 K s a

s b. 4

s s 2( )..

Draw theRoot Locus

8

Page 82: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 82/213

Method I Angle/Magnitude Condition

Angle Condition

Let a 2.9 Do you know why ?

s 2 j 2. 3.= 180Angle

s 2.9

s b

4

s 2( ) s( )..

s 2 j 2 3. s 2 j 2 3.Angle s b( ) = 180 Angle

4 s 2.9( ).s s 2( ).

tan 1 2 3

b 2 45 => b 5.46

Magnitude Condition

s 2 j2 3

= 1 => K 4.68K s 2.9

s 5.46

4

s s 2( )...

Method II: Coefficient Matching

Closed-LoopTransfer Function

Y s( )

R s( )

K s a( )

s b( ). 4

s s 2( ).

1 K s a

s b. 4

s s 2( ).

4 K s a( )

s s b( ). s 2( ). Ks Ka( ) 4

∆cl s( ) s 3 2 b( ) s 2. 2 b 4 K( ) s. 4 Ka simplified actual denominator

desired denominator(see root locus)∆dcl s( ) s 2 j 2 3. s 2 j 2 3.. s c( ).

∆dcl s( ) s 3 4 c( ) s 2 16 4 c.( ) s. 16 c. simplified

8

Page 83: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 83/213

4 c 2 b3 equations

4 unknowns2 b. 4 K. 16 4 c.

16 c. 4 K. a.

Do you know why ?Let a 2.9

3 equations

3 unknowns

1

4

16

1

2

0

0

4

11.6

c

b

K

.2

16

0

Use calculator to solve (same answer as before)cb

K

3.45.4

4.68

Note: "c" is between "a" and "b"

I m a g

A x

i s

-a-b -c

32 j

32 j−

Real Axis

83

Page 84: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 84/213

Steady State Error Specification Decrease the steady state error so that the output goes close to the input( Remember that e(t) = r(t) - y(t) )

R s( ) Y s( )+ 1s 1( ) s 5( ).K

-

Let R s( ) 1

s

Closed LoopTransfer Function

Y s( )

R s( )

K 1

s 1( ) s 5( )..

1 K 1

s 1( ) s 5( )..

E s( ) R s( ) Y s( ) By Defintion

E s( ) R s( )

K 1

s 1( ) s 5( )..

1 K 1

s 1( ) s 5( )..

R s( )

E s( ) 1

1 K 1

s 1( ) s 5( )..

R s( ). Simplify

SSE∞t

e t( )lim0s

s E s( ). 1

1 K

5

lim Apply the final value theoremR s( )

1

sso as K goes up SSE goes down

8

Page 85: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 85/213

Page 86: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 86/213

Lag Compensation SSE 1

1 13

5

5

18 For K = 13( The preferred method for reducing SSE )

R s( ) Y s( )+ Gc s( ) K G p s( )-

Let R s( ) 1

s

To meet a transientspecificationGp s( )

1

s 1( ) s 5( ). Let K 13

c d>

0>Gc s( ) s c

s d Typical Lag Compensator c 0.1 d 0.01

From block diagramE s( ) 1

1 K G p. s( ) G c

. s( ) E s( ) R s( ) Y s( )

SSE s( )0s

s E s( ).0s

s 1

s. 1

1 K G p. s( ) G c

. s( ).limlim Final Value

Theorem

Plug in thetransfer functionsSSE s( ) 0s

1

1 13 s 0.1

s 0.01. 1

s 1( ) s 5( )..lim

SSE s( ) 1

1 130

5

1

27From previous slideapproximately( )

⇒If Gc s( ) 1 and K 13 SSE 1

3approximately( )

with Gc s( ) s 0.1s 0.01

SSE is a factor of 7.5 better than with G c(s) = 1

Question : Have we created a problem by adding a lag compensator ?

That is, will the output still behave according to the dominant specifications ?

8

Page 87: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 87/213

Lead/Lag CompensatorsExample

R s( ) GC s( ) G P s( ) Y s( )

Gp

s( ) =1

s 1( ) s 5( ).

Design a lead/lag compensator that has

1) Dominent closed loop poles as s = - 4 +/- j5

2) SSE = 0.01 when R(s) = 1/s

54 j±−Design Lead Compensator to place "dominant" closed-loop poles at while neglecting the

effects of the lag compensator. Then design lag to achieve SSE specification.Note - if we don’t neglect the lag during the lead design, the problem becomes fairly difficult to solve.

Let G c s( )

K s a( )

s b( ) Lead Compensator

Y s( )

R s( )=

Gc

s( ) Gp

. s( )

1 Gc

s( ) Gp

. s( ) closed loop TF

∆ s( ) 1 Ks a

s b. 1

s 1( ) s 5( ).. Denominator form for Root Locus

-15 -10 -5 0 5-25

-20

-15

-10

-5

0

5

10

15

20

25

Real Axis

I m a g

A x

i s

-b -c -a

j5

- j5 Draw RootLocus

8

Page 88: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 88/213

Angle Condition

angles 10

s b( ) s 1( ) s 5( ) (s = -4 + 5j) = -180 Let a = 10 Why ?

⇒tan 1 5

4 b19.3 b = 18.3

Magnitude Condition

Ks 10

s 18( ) s 1( ) s 5( ) s=-4+5j = 1

K =s 18( ) s 1( ) s 5( )

s 10( ) s=-4+5j = 56.6

Lag Compensator Design:

Gc

s( ) 56.6s 10

s 18. s c

s d. General Form for the Lead/Lag

Lead Lag

SSE0s

s1

1 G c s( ) G p s( ). R s( ). 0.01lim From Block Diagram

SSE1

156.6 10( )

1 18( ) 1( ) 5( )

c

d

R s( )1

s

SSE1

1 6.3c

d

0.01 simplify

c

d = 15.7 obtained a ratio for "c" and "d"

"c" is typically selected to be 0.1; hence, d = 0.00625

Gc

s( ) 56.6s 10

s 18.3. s 0.1

s 0.00625. Final Compensator Design

8

Page 89: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 89/213

Why can we neglect the Lag dynamics when we design the Lead compensator ?That is, how close was the above calculation ?Let us re-examine the Lead calculation with the Lag Dynamics inserted

Exact

CharacteristicEquations 4 j5∆cl s( ) = 1 56.6s 10

s 18.3. s 0.1

s .00625. 1

s 1( ) s 5( ).. = 0

Angle Condition

s 4 j5

s 10

s 18.3

s 0.1

.00625. 1

s 1( ) s 5( ).. should be equal to -180;

however, it is equal to -179.798

Magnitude Condition

56.6 s 10s 18.3

s 0.1s .00625

. 1s 1( ) s 5( )..

s 4 5j

should be equal to 1;

however, it is equal to 0.973

66.0−∠ The reason that the above calculations are stillclose is because s 0.1

s .00625= 0.9819

0∠s = -4+5 j

which is close to 1

Hence, by selecting the lag compensator zero close to the j ω axis and the lag compensator

pole relatively close to the lag compensator zero, we change the angle and magnitude calculationvery little. The above approximation method is fairly accurate.

8

Page 90: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 90/213

Example

R s( ) GC s( ) GP

s( ) Y s( )

Design a lead/lag compensator that has Gp

s( )1

s 1( ) s 3( ) s 10( )1) Dominant closed loop poles at s = -2 +/- 2j

2) SSE = 0.01 when R(s) =1

s

Design Lead to place the "dominant" closed-loop poles at -2 +/- 2j while neglectingthe effects of the Lag compensator.

Gc

s( ) Ks a

s b. Lead Compensator

Y s( )

R s( )= closed loop TFG

cs( ) G

p. s( )

1 Gc

s( ) Gp

. s( )

∆ s( ) 1 Ks a

s b. 1

s 1( ) s 3( ). s 10( ).. Denominator form for Root Locus

-12 -10 -8 -6 -4 -2 0 2 4-15

-10

-5

0

5

10

15

I m a g

A x

i s

Real Axis

j2

- j2

-b

-c

-aDraw RootLocus

90

Page 91: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 91/213

Angle Condition

angle s 3.5s b( ) s 1( ) s 3( ) s 10( ). (s = -2 + 2j)

= -180 Let a = 3.5 Why ?

⇒ b = 4.38

Magnitude Condition

Ks 3.5

s 4.38( ) s 1( ) s 3( ) s 10( ). s=-2+2j= 1 => K 50

Lag Compensator Design:

Gc

s( ) 50.0s 3.5

s 4.38. s c

s d. General Form for the Lead/Lag

Lead Lag

SSE

0s

s E s( ).

0s

1

1 Gc

s( ) Gp

s( )lim R s( ) 0.01lim From Block Diagram

SSE =1

11 50( ) 3.5( ) c( )

30 4.38( ) d

=1

11.332 c.

d

= 0.01

c

d= 74.32 obtained a ratio for "c" and "d"

"c" is typically chosen to be 0.1; hence, d = .001345

Why can we neglect the Lag dynamics when we design the Lead compensator ?That is, how close was the above calculation ?

Let us re-examine the Lead calculation with the Lag Dynamics inserted

s 2 j2∆

cls( ) 1 50.0

s 3.5

s 4.38. s 0.1

s .001345. 1

s 1( ) s 3( ). s 10( ).. = 0

..... Exact Characteristic Equation

9

Page 92: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 92/213

Angle Condition

s 2 j2

s 3.5

s 4.38

s 0.1

s .001345. 1

s 1( ) s 3( ). s 10( ).. should be equal to -180;angle

however, it is equal to -182.398

Magnitude Condition

s 2 j2

should be equal to 1;50s 3.5

s 4.38

s 0.1

s .001345. 1

s 1( ) s 3( ). s 10( )...

however, it is equal to 0.9034

43707.19512.0 −∠The reason the above calculations arestill close is because s 0.1

s 0.001345=

0∠s = -2+2 j

which is close to 1

Hence, by selecting the lag compensator zero close to the j ω axis and the lag compensatorpole relatively close to the lag compensator zero, we change the angle and magnitude calculationvery little. The above approximation method is fairly accurate.

Note: The transient response of the Lead / Lag compensator is similar to the Lead / No Lag compensator; however, it is clear that the steady state responses are very different

9

Page 93: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 93/213

Lead/LagCompensator

Lead CompensatorOnly

output responseto a step inputNote the similaritiesof the transient responses

Lead/LagCompensator

Lead CompensatorOnly

output responseto a step input

Note the differencesof the steady stateresponses

9

Page 94: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 94/213

T T iimm ee ff oo rr aa MM oo v v iiee

Click on image to start movie

94

Page 95: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 95/213

Bode Plot Construction

Typical Transfer Function

H s( ) K s a( ) s b( )

sn s c( ). s d( ). s e( )..

a b, c, d, e, are

real positive numbers

Bode Form : Let s jω and normalize

Bode FormH s( ) K ab

ecd.

jωa

1 jω

b1.

jω( )n jω

c1. jω

d1. jω

e1.

. Magnitude Plot

1) Curve breaks up / down by 20 dB/dec at a,b / c,d,e

Angle Plot

2) Curve breaks up / down by 45 degrees one decade before a,b / c,d,e and breaks down / up by 45 degrees one decade after a,b / c,d,e

Initial Magnitude Plot

Case 1: n=0

ω 0 ω 0Calculate H jω( ) and then convert to dB i.e., 20 log H j ω( )( ).

Case 2: n > 0

Calculate the ω - intercept ω intercept Kab

cde

1

n

Calculate the initial slope 20 n. dB / dec

Final Magnitude Slope = -20 . RD dB / dec

9

Page 96: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 96/213

Initial and Final Phase Plot

1) Plot a pole / zero plot for the original transfer function

2) Calculate the angle from the picture at ω 0

Illustrative Example

Angle s a

s c

ω 0Initial Angle = Angle j ω a( ) Angle j ω c( )( ) = 0 degrees

ω ∞= 90 - 90 = 0 degreesFinal Angle = Angle j ω a( ) Angle j ω c( )( )

-10 -8 -6 -4 -2 0-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

I m a g

A x

i s c aPole / Zero Plot

9

Page 97: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 97/213

Page 98: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 98/213

Page 99: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 99/213

Frequency (rad/sec)

110 − 110 210010

45

90Decade

Initial Phas e Final Phase

- 45 deg/dec45 deg/dec

2) Plot the negative of the poles and the zeros on the j ω axis

zero at -1 pole at -10

3) Use an "up" arrow to denote a slope of +45 deg/dec and a "down" arrow to denote

a slope of - 45 deg/decAngle H j ω( )( )

Frequency (rad/sec)

110 − 110 210010

45

90Decade

Initial Phase Final Phase

deg

ω4) Start at the initial phase and use arrows to draw the asymptotic plotAngle H j ω( )( )

deg

ω

Use the Asymptotic Plots to draw the actual Bode Plot free hand (rough out the edges)

F r e q u e n c y ( r a d / s e c )

P h a s e

( d e g

) ; M a g n i t u

d e

( d B )

B o d e D ia g r a m s

-2 0

-1 5

-1 0

-5

0

1 0-1

1 00

1 01

1 02

1 0

2 0

3 0

4 0

5 0

99

Page 100: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 100/213

Page 101: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 101/213

2) Plot the negative of the poles and the zeros on the j ω axis

zero at -10 poles at 0 , -1 and -100

3) Use an "up" arrow to denote a slope of +20 dB/dec and a "down" arrow to denote a slope of -20 dB/dec

H jω( )

Frequency (rad/sec)

110 210010

-40

-20-20 dB/dec

-20 dB/dec

-60

0

20

I ω

dB( use semilog paper )

4) Use the initial slope and the arrows to draw the asymptotic plot

H j ω( )

110 210010

-40

-20

-20 dB/dec

-20 dB/dec

-40 dB/dec

-40 dB/dec-60

0

20

dB

ω

10

Page 102: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 102/213

Phase Plot for H (s) =10 s 10( )

s s 1( ) s 100( )

H (s) =10 10( )

100

jω10

1

jω jω1

1 jω100

1

Bode Form

-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

R e a l A x is

I m a g

A x

i s

Pole / Zero Plot100 10 1

1) Initial Phase

ω 0Angle H j ω( )( )

ω 0= Angle

jω10

1 Angle j ω( ) Angle jω

11 Angle

jω100

1

°−=°−°−°−°=

90

00900

Final Angle

ω ∞Angle H j ω( )( )

ω ∞= Angle

jω10

1 Angle j ω( ) Angle jω

11 Angle

jω100

1

°−=°−°−°−°=

180

90909090

1

Page 103: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 103/213

Page 104: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 104/213

Use the Asymptotic Plots to draw the actual Bode Plot free hand (rough out the edges)

Frequency (rad/sec)

P h a s e

( d e g

) ; M a g n

i t u d e

( d B )

Bode Diagrams

-100

-50

0

10-2

10-1

100

101

102

103

-160

-140

-120

-100

Bode Plots for Repeated Roots

H (s) =1

s ω n2

H (s) =1

ω n2

1

jωω n

1 jωω n

1Bode Form

Magnitude Plot

ω 0

1

ωn21) Initial Magnitude => n = 0 => Calculate initial magnitude H j ω( ) =

Initial Magnitude = 20 log 1

ωn2

.dB dB Conversion

1

Page 105: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 105/213

2) Plot the negative of the poles on the j ω axis

2 poles at - ωn

3) Use an "up" arrow to deonte a slope of +20 dB/dec and a "down" arrow to denote a slope of -20 dB/dec

H jω( )

nωn

ω1010/nω

-20

-40Decade

20

0

nω100

ω

dB

10

Page 106: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 106/213

Phase Plot for H (s) =1

s ωn2

H (s) =1

ωn2

1

jωωn

1 jωωn

1 Bode Form

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

I m a g

A x

i sPole / Zero Plot

ωn

1) Initial Phase

ω 0 ω 0= Angle

ωn

1 Angle jω

ωn

1Angle H j ω( )( )

°=°−°−=

0

00

Final Angle

ω ∞ ω ∞= Angle

ωn

1 Angle jω

ωn

1Angle H jω

( )( )

°−=°−°−=

180

9090

1

Page 107: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 107/213

2) Plot the negative of the poles and the zeros on the j ω axis

2 poles at - ωn

3) Use an "up" arrow to denote a slope of +45 deg/dec and a "down" arrow to denote

a slope of - 45 deg/decAngle H j ω( )( )

-90

-180

90

0

-270

Initial PhaseFinal Phase

nω 10 nω 10010n

ω

deg

4) Start at the initial phase and use arrows to draw the asymptotic plot

-90

-180

90

0

-270

Initial PhaseFinal Phase

nω 10 nω 10010

10

Page 108: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 108/213

Use the Asymptotic Plots to draw the actual Bode Plot free hand (rough out the edges)

In the following plot ωn 1

Frequency (rad/sec)

P h a s e

( d e g ) ;

M a g n

i t u d e

( d B )

Bode Diagrams

-40

-30

-20

-10

0

10-1

100

101

-150

-100

-50

10

Page 109: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 109/213

Page 110: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 110/213

Page 111: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 111/213

Bode Solution for finding K uand ωd

-120

-100

-80

-60

-40

-20

0

10-1

100

101

102

103

-250

-200

-150

-100

-50

0

Frequency (rad/sec)

P h a s e

( d e g

)

M a g n

i t u d e ( d B )

- 40 dB

-180 deg

20=d ω

Bode Plotfrompreviousproblem

H j ωd 40 dB Read from the Bode Plot

in dBKu 10

H j ωd

20 For

answerKu 100

0 K< 100< , the closed-loop is stable

-120 -100 -80 -60 -40 -20 0 20-100

-8 0

-6 0

-4 0

-2 0

0

20

40

60

80

100

Real Axis

I m a g

A x

i sd jω

d jω

c− 100− 10−

11

Page 112: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 112/213

Bode Compensator Design

R s( ) Y s( )K H s( )

Similar to the root-locus, we use the characteristic equation in the form

∆cl s( ) 1 K H s( ).

to examine the stability / performance of Bode Performance Parameters

10-1

100

101

102

103

Frequency (rad/sec)

P h a s e

( d e g

)

M a g n

i t u d e

( d B )

0

-180

( )φ ω jKH

( ) p

jKH ω ∠

φ ω pω

ωp (gain crossover frequency) is equal to the frequency where K H j ω( ). 0 dB

ωφ (phase crossover frequency) is equal to the frequency where Angle H j ω( )( ) 180

Phase Margin - φpm 180 Angle H j ωp.

(If φpm 0< then the closed-loop system isunstable )

Gain Margin - GM K H j ωφ..

11

Page 113: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 113/213

The Bode design parameters are related to the root locus design parameters according to

ω p ωn 4 δ4. 1 2 δ2.

1

2. Root Locus design parameters

δ - damping ratio ωn - natural frequency

φ pm tan 1 2 δ. 4 δ4. 1 2 δ2.

1

2

.

The phase margin is also approximately related to the damping ratio as follows

δ 0.01 φ pm. degrees for φ pm 60< degrees Rule of thumb

Remember δ is a measure of relative stability

x

x

θ

θω n

ω n

Ims

δ cos θ( )

Res

Hence, φ pm is a measure of relative stability

11

Page 114: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 114/213

Bode Design Problem

R s( ) K G p s( ) Y s( )

Find K so that φpm 45 degrees for the closed loop systemGp s( ) 1

s s

21.

Outline of the Solution

1) Find the closed-loop denominator in the form ∆ s( ) 1 K G p. s( )

2) Plot K G p. jω( ) and Angle G p jω( ) Assume K = 1

From given φpm3) From φpm , calculate the desired Angle G p jωp i.e. Desired Angle G p jωp φpm 180

4) From the desired Angle G p jωp and the Angle G p jω( ) plot , find

the desired ωp

5) Raise or lower magnitude plot so that it crosses the 0 dB level at the desired value of ωp

6) Find the between the desired magnitude plot and the original magnitude plot at

the desired value of ωp

desired + original = shift dB

7) Calculate K

This formula is derivedfrom the magnitudecondition as done before

K 10

shift20

11

Page 115: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 115/213

Step 1 closed loop denominatorBode Plot form∆ s( ) 1 K

1

s s

21.

.

Frequency (rad/sec)

-20

0

20

40

10-2

10-1

100

101

-160

-140

-120

-100

P h a s e

( d e g

)

M a g n

i t u d e

( d B )

Step 2

K 1

DrawBodePlot forKG p s( )

Step 3

Desired Angle G p jωp φpm 180

Desired Angle G p jωp 45 180 135

11

Page 116: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 116/213

Step 4 Given Desired Angle G p jωp 135 Find ωp

F r e q u e n c y ( ra d / s e c )

-2 0

0

2 0

4 0

1 0-2

1 0-1

1 00

1 01

- 1 6 0

- 1 4 0

- 1 2 0

- 1 0 0

P h a s e

( d e g

)

M a g n

i t u d e

( d B )

- 1 3 5

- 11 8

For K = 1

For K 1

φpm 180 118φpm 62

Step 5

F r e q u e n c y ( r a d / s e c )

-2 0

0

2 0

4 0

1 0-2

1 0-1

1 00

1 01

- 1 6 0

- 1 4 0

- 1 2 0

- 1 0 0

P h a s e

( d e g

)

M a g n

i t u d e

( d B )

- 1 3 5

- 9 d B

O r i g i n a l M a g n i t u d e P l o t D e s i r e d M a g n i t u d e P l o t

Raise orlowermagnitudeplot bychangingK

Step 6 The difference between the desired magnitude plot and the original magnitude plot

is desired original 0 9 9 dB ; therefore

shift 9 dB

Step 7 K 10

shift

20=> K 10

9

20=> K 2.8

1

Page 117: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 117/213

Root Locus Design for the same Problem

R s( ) Y s( ) Gp s( ) 1

s s

2 1.

K G p s( )

Find K so that the closed loop system has a φpm 45 deg

From Block DiagramY s( )

R s( )

K G p. s( )

1 K G p. s( )

Closed Loop Transfer FunctionY s( )R s( )

K 2

s s 2( )..

1 K 2

s s 2( )..

Root Locus Fromfor the denominator∆ s( ) 1 K

2

s s 2( )..

-3 -2 -1 0 1 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Real Axis

I m a g

A x

i s

θ

jb

-jb

θ

DrawRootLocus

If φpm 45 => δ 0.45 From conversion formulas

Note: δ cos θ( )

11

Page 118: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 118/213

Desired closed loop poles must have a damping ratio of δ 0.45

θ1

2

δ cos θ( ) => θ 63 deg Formulas FromRootLocusb

sin 63( )

1

sin 27( )Law of sines => b 2

21 j±−Desired closed loop poles

Magnitude ConditionWhy is this numberdifferent fromK = 2.8obtained fromthe Bode Design ?s 1 j2

K 2

s s 2( ). = 1 => K 2.5

For this problem, these three specifications are equivalent

1) φpm 45 deg

45.0≅2)

21 j±−3) desired closed loop poles =

118

Page 119: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 119/213

Example

R s( ) Y s( )K G

p s( )

Find K so that φpm 45 deg

Gp s( ) 1

s

11

s

101. s

1001.

Step 1 ∆

s( ) 1 K 1

s1

1 s10

1. s100

1.. closed loop denominator

Bode Plot form

Step 2

-100

-50

0

10-1

100

101

102

103

-250

-200

-150

-100

-50

0

Frequency (rad/sec)

P h a s e

( d e g

)

M a g n

i t u d e

( d B ) For K 1

DrawBodePlot

Step 3 Desired Angle G p jωp φpm 180

Desired Angle G p jωp 45 180 135

11

Page 120: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 120/213

Step 4 Given Desired Angle G p jωp 135 Find ωp

-100

-5 0

0

10 -1 10 0 10 1 10 2 10 3

-250

-200

-150

-100

-5 0

0

Frequency (rad/sec)

P h a s e

( d e g

)

M a g n

i t u d e

( d B )

-135

pω desired

For K 1

For K 1

φpm 180 0φpm 180

Step 5

-100

-50

0

10-1

100

101

102

103

-250

-200

-150

-100

-50

0

Frequency (rad/sec)

P h a s e

( d e g

)

M a g n

i t u d e

( d B )

-135

-20 dB Original Magnitude Plot Desired Magnitude Plot

Raise orlowermagnitudeplot bychanging

K

Step 6 The difference between the desired magnitude plot and the original magnitude plot is

desired original 0 20 20 dB ; therefore shift 20 dB

Step 7

K 10

shift

20=> K 10

20

20=> K 10

12

Page 121: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 121/213

T T iimm ee ff oo rr aa MM oo v v iiee

Click on image to start movie

121

Page 122: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 122/213

Nyquist Plots/Nyquist Stability Criterion

+ _

Y s( )R s( ) K G p s( )

Y s( )

R s( )=

KG p s( )

1 KG p s( ) Closed loop TF

∆ s( ) = 1 KG p s( ) Denominator Form for Nyquist Analysis

1) Plot Nyquist Plot (i.e., a Polar Plot) for Im K G p. jω( ) versus Re K G p

. jω( )

using the Nyquist contour. (Assume K = 1)

2) Apply the Nyquist Criterion to the Nyquist Plot and thendetermine the stability of the closed-loop system.

Nyquis t Cr i ter ion

P0

denotes the number of poles of G p

s( ) inside s-plane contour.

1801 −∠N denotes the net number CW encirclements of the point

If the contour in the s-plane is CW, then CW is the positive direction.

1=⇒ N 1−=⇒ N i.e., 1 CW 1 CCW

If the contour in the s-plane is CCW, then CCW is the positive direction.

1=⇒ N 1−=⇒ N i.e., 1 CCW 1 CW

Zc denotes the number of closed-loop poles inside the s-plane contour.

Zc N P 0

Formula for calculation purposes

1

Page 123: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 123/213

Res

Ims

R ∞→ R

R

Example Nyquist Contour

Draw the Nyquist Plot for H s( ) 1

s 1

for the following s-plane contour.

Step 1) Let s jω H j ω.( ) 1

j ω. 1

Step 2) Plot a pole/zero plot for H(s) on the s-planecontour picture and include measurementscheme to the j ω - axis along with thenecessary critical points.

Step 3) Enter a magnitude/phase table entry for each critical point.

Res

Ims

A

B

C-1

κ β

r

mag

θPhase

Point

A 1 0

B 0 90

C 0 0

H jω( ) 1

jω 1r

1

κ

Angle H j ω( )( ) Angle j ω 1( ) θ β

Step 4) Use critical points to draw Nyquist Plot.Step 5) Nyquist plot is symmetric about real axis. Draw other half.

ReH(jω

)

ImH(j ω )

B,C A

r

θ

Draw a Polar plot on arectangular coordinatesystem

12

Page 124: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 124/213

Example

Res

Ims

R

ε

∞→ R

0→ε

Nyquist Contour

Draw the Nyquist Plot for H s( ) 1

s s 1( )for the following s-plane contour.

Step 1) Let s jω H j ω.( ) 1

jω j ω. 1( )

Step 2) Plot a pole/zero plot for H(s) on the s-plane contour

picture and include measurement scheme to the jω axis

along with the necessary critical points.

Step 3) Enter a magnitude/phase table entry foreach critical point.

Res

Ims

AB

C

D-1

r mag θPhasePoint

∞A 0

∞B 90"Blow-up"

Res

Ims

A

B

90 o

ε

C 0 180

D 0 0

H jω( ) 1

jω jω 1.

Angle H j ω( )( ) Angle j ω( ) Angle j ω 1( )

ReH(j ω )

ImH(j ω )

B

C,D

-1

A

∞=r

Step 4) Use critical points to draw Nyquist Plot.

Step 5) Nyquist plot is symmetric about real axis.Draw other half.

12

Page 125: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 125/213

Example - Determine s tabi l i ty w i th Nyqu is t P lo t

R s( )+

_

Y s( )

K G p

s( ) G p

s( ) 1

s s 1( ). s 10( ).

Res

Ims

R

ε

∞→ R

0→ε

Use Nyquist Plot, Contour and Criterion to discussquantitatively how the control gain K affectsclosed-loop stability.

Nyquist Contour

Closed LoopTransfer Function

Y s( )

R s( )

K G p. s( )

1 K G p. s( )

Nyquist Formfor thedenominator

∆ s( ) 1 K 1s s 1( ). s 10( ).

.

Step 1) Let s jω K G p. jω( )

K

jω( ) jω 1( ). jω 10( ). Assume K = 1

Step 2) Plot a pole/zero plot for G p s( ) on the s-plane contour

picture and include measurement scheme to the jω axis

Res

Ims

AB

C

D-1-10

along with the necessary critical points.

Step 3) Enter a magnitude/phase table entry for

each critical point.r θpoint mag phase

A ∞ 0"Blow-up"

Res

Ims

A

B

90 o

ε

B ∞ 90

C 0 270

D 0 0

G p jω( ) 1

jω jω 1. jω 10.

Angle G p jω( ) Angle j ω( ) Angle j ω 1( ) Angle j ω 10( )

12

Page 126: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 126/213

Step 4) Use critical points to draw Nyquist Plot. r θStep 5) Nyquist plot is symmetric about real axis.

Draw other half. point mag phase

A ∞ 0

B ∞ 90

ReG p(j ω )

ImG p(j ω )

B

C,D A

∞=r

C 0 270

D 0 0

Nyquist Plot withK = 1

ReKG p(jω )

ImKG p(jω )

B

C,D-1

A

∞=r Larger K

Nyquist Plot for different valuesof K

As K is increased, the shape of the Nyquist plotdoes not change because K is a real number (i.e., K only affects the magnitude (size);K does NOT affect the phase (shape))

12

Page 127: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 127/213

ReKG p(jω )

ImKG p(j ω )

B

C,D-1

A

∞=r

Nyquist Contour

Res

Ims

-1-10

CW +CCW -

Nyquis t Cr i ter ion

1) Find P0 => P0 0 ( Number of poles of G p s( ) inside the contour)

2) Determine the sign notation for the encirclements.

Contour is CW so, CW encirclements are positive and CCW encirclements are negative

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Number of closed looppoles inside the contour Also compute Zc Zc N P 0

N Z c Stability

Nyquist Criteriontablesmall K 0 0 Yes

big K 2 2 No

4) Understanding the above table:

For small K , no closed loop poles are inside the s-plane contour. From the contour,we can see that this means that for small K the closed loop system is stable

For big K , two closed loop poles are inside the s-plane contour; hence, for big K,the closed loop system is unstable

1

Page 128: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 128/213

Root Locus agrees with the Nyquist Criterion

-12 -10 -8 -6 -4 -2 0 2 4-15

-10

-5

0

5

10

15

Real Axis

I m a g

A x

i s

G p s( ) 1

s s 1( ). s 10( ).

Root Locusfor ∆ s( ) 1 K G p

. s( )

small K: closed loop systemis stable

big K: closed loop system is unstable

N Z c Stability

Nyquist Criteriontablesmall K 0 0 Yes

big K 2 2 No

12

Page 129: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 129/213

Nyquis t Performance Speci f ica t ion Parameters

d

unit circle

φ pm ReH(j ω )

ImH(j ω )

-1

-1

H(jωφ)

Nyquist Plot

φ pm phase margin ω p gain crossover frequencyNyquist Plot containsthe same type ofperformancespecifications asthe Bode Plot andthe Root Locus

H j ω p. 1

ω φ Phase Crossover frequency

Gain Margin =1

H j ωφ.

1

d

12

Page 130: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 130/213

Res

Ims

R ∞→ R

R

Example - Clockw ise Con tour

+

_

NyquistContour R s( ) Y s( )

K H s( )

Use Nyquist Plot, Contour and Criterion to discussquantitatively how the control gain K affectsclosed-loop stability.

H s( ) s 1

s 1

Closed LoopTransfer Function

We can see from the root locusthat the system goes unstable

Y s( )

R s( )

K H. s( )

1 K H. s( )

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

I m a g

A x i s

Nyquist Formfor thedenominator

∆ s( ) 1 K s 1s 1

. Step 1) Let s jω

AssumeK = 1K H s( ). K jω 1( ).

jω 1( )

Step 2) Plot a pole/zero plot for H s( ) on the s-plane contour

picture and include measurement scheme to the jω axis

Step 3) Enter a magnitude/phase table entry foreach critical point.

Res

Ims

A

B

C-1 1

NyquistContour r θ

point mag phase

A 1 180

B 1 0

C 1 0

H jω( ) jω 1

jω 1Angle H j ω( )( ) Angle j ω 1( ) Angle j ω 1( )

1

Page 131: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 131/213

Step 4) Use critical points to draw Nyquist Plot.r θ

Step 5) Nyquist plot is symmetric about real axis.Draw other half. point mag phase

ReH(j ω )

ImH(j ω )

B,C-1

A

A 1 180

B 1 0K 1

C 1 0

Res

Ims

A

B

C-1 1

CW +CCW -

NyquistContour

As K is decreased below 1, the Nyquist Plotintersects the Rej ω axis before -1

As K is increased beyond 1, the Nyquist Plotintersects the Rej ω axis beyond -1

Nyquis t Cr i ter ion

1) Find P0 => P0 0 ( Number of poles of H s( ) inside the contour)

2) Determine the sign notation for the encirclements.

Contour is CW so, CW encirclements are positive and CCW encirclements are negative

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Also compute Zc Zc N P 0 Number of closed looppoles inside the contour

N Z c Stability

Nyquist Criteriontablesmall K 0 0 Yes

big K 1 1 No

4) Understanding the above table:

For small K , no closed loop pole is inside the s-plane contour. From the contour,we can see that this means that for small K the closed loop system is stable

For big K , one closed loop pole is inside the s-plane contour; hence, for big K,the closed loop system is unstable

1

Page 132: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 132/213

Same Example - Coun terc lockwise Conto ur

Res

Ims

∞→ RR

+

_

R s( ) Y s( )K H s( )

NyquistContour

Use Nyquist Plot, Contour and Criterion to discussquantitatively how the control gain K affectsclosed-loop stability. H s( )

s 1

s 1

Step 1) Let s jω

AssumeK = 1K H s( ). K jω 1( ).

jω 1( )

Step 2) Plot a pole/zero plot for H s( ) on the s-plane contour

picture and include measurement scheme to the jω axis

Step 3) Enter a magnitude/phase table entry foreach critical point.

Res

Ims

A

B

C -1 1

r θpoint mag phase

NyquistContour

A 1 180

B 1 0

C 1 0

H jω( ) jω 1

jω 1

Angle H j ω( )( ) Angle j ω 1( ) Angle j ω 1( )

Note: Numbers in the table are exactly the same as before

1

Page 133: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 133/213

Step 4) Use critical points to draw Nyquist Plot. r θStep 5) Nyquist plot is symmetric about real axis.

Draw other half.point mag phase

ReH(j ω )

ImH(jω

)

B,C-1

A

A 1 180

B 1 0K 1

C 1 0

Res

Ims

-1 1

CW -CCW +

NyquistContour

As K is decreased below 1, the Nyquist Plotintersects the Rej ω axis before -1

As K is increased beyond 1, the Nyquist Plotintersects the Rej ω axis beyond -1

Nyquis t Cr i ter ion

1) Find P0 => P0 1 ( Number of poles of H s( ) inside the contour)

2) Determine the sign notation for the encirclements.

Contour is CCW so, CW encirclements are negative and CCW encirclements are positive

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Also compute Zc Zc N P 0 Number of closed looppoles inside the contour

N Z c Stability

small K 0 1 Yes Nyquist Criteriontable

big K 1 0 No

4) Understanding the above table:

For small K , one closed loop pole is inside the s-plane contour. From the contour,we can see that this means that for small K the closed loop system is stable

For big K , no closed loop pole is inside the s-plane contour; hence, for big K,the closed loop system is unstable

13

Page 134: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 134/213

Res

Ims

R

ε

∞→ R0→ε

Example - Clockw ise Con tour

+

_

NyquistContour R s( ) Y s( )

K H s( )

Use Nyquist Plot, Contour and Criterion to discussquantitatively how the control gain K affectsclosed-loop stability.

H s( ) 1

s s 1( ). s 2( ).

Closed LoopTransfer Function

Y s( )

R s( )

K H. s( )

1 K H. s( )

Nyquist Formfor thedenominator

∆ s( ) 1 K 1s s 1( ). s 2( )..

AssumeK = 1Step 1) Let s jω K H s( ). K

jω( ) jω 1( ). jω 2( ).

Step 2) Plot a pole/zero plot for H s( ) on the s-plane contour

picture and include measurement scheme to the jω axis

Res

Ims

AB

C

D-1-2

Step 3) Enter a magnitude/phase table entry foreach critical point. Nyquist

Contour r θpoint mag phase

A ∞ 0

B ∞ 90 "Blow-up"

Res

Ims

A

B

90 o

ε

C 0 270

D 0 0

H jω( ) 1

jω jω 1. jω 2.

Angle H j ω( )( ) Angle j ω( ) Angle j ω 1( ) Angle j ω 2( )

1

Page 135: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 135/213

Step 4) Use critical points to draw Nyquist Plot. r θStep 5) Nyquist plot is symmetric about real axis. Draw other half . point mag phase

ReG p(jω )

ImG p(j ω )

B

C,D A

∞=r

-1

A ∞ 0K 1

B ∞ 90

C 0 270

D 0 0

Res

Ims

AB

C

D-1-2

CW +CCW -

NyquistContour

Nyquis t Cr i ter ion

1) Find P0 => P0 0 ( Number of poles of H s( ) inside the contour)

2) Determine the sign notation for the encirclements.

Contour is CW so, CW encirclements are positive and CCW encirclements are negative

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Also compute Zc Zc N P 0 Number of closed looppoles inside the contour

N Z c Stability

Nyquist Criteriontablesmall K 0 0 Yes

big K 2 2 No

4) Understanding the above table:

For small K , no closed loop pole is inside the s-plane contour. From the contour,we can see that this means that for small K the closed loop system is stable

For big K , two closed loop poles are inside the s-plane contour; hence, for big K,the closed loop system is unstable

1

Page 136: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 136/213

Res

Ims

R

∞→ R0→ε

ε

Same Example - Coun terc lockwis e Con tou r

+

_

R s( ) Y s( ) NyquistContour K H s( )

Use Nyquist Plot, Contour and Criterion to discussquantitatively how the control gain K affectsclosed-loop stability. H s( )

1

s s 1( ). s 2( ).Step 1) Let s jω

AssumeK = 1K H s( ). K

jω( ) jω 1( ). jω 2( ). Step 2) Plot a pole/zero plot for H s( ) on the s-plane contour

picture and include measurement scheme to the

Res

Ims

-1-2A

B

C

D

jω axis

Step 3) Enter a magnitude/phasetable entry for each critical point.

NyquistContour

r θpoint mag phase

A ∞ 0

B ∞ 90 "Blow-up"

Res

Ims

A

B

90 o

ε

C 0 270

D 0 540

H jω( ) 1

jω jω 1. jω 2.

Angle H j ω( )( ) Angle j ω( ) Angle j ω 1( ) Angle j ω 2( )

1

Page 137: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 137/213

Page 138: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 138/213

Example: Using Nyquist Plots to Draw Root Loci

Given the Nyquist Plot and the Transfer Function draw the Root LocusY s( )R s( )

K H s( )

H s( ) s 2( ) s 4( ).

s2 s 1( ). s 3( ). s 5( ).

-1

ReH(j ω)

ImH(j ω)

∞=r

Stable region

-b -1/a

K 1

Res

Ims

R

ε

∞→ R

0→ε

NyquistContourThe Nyquist

Plot is given

-7 -6 -5 -4 -3 -2 -1 0 1 2-5

-4

-3

-2

-1

0

1

2

3

4

5

Real Axis

I m a g

A x

i s

This is how you might betempted to draw theroot locus without theNyquist plot

Does the Nyquist Plot concur ?

1) Find P0 ; the number of poles inside the contour P0 0

2) Determine the sign notation for the encirclements.

Contour is CW so, CW encirclements are positive and CCW encirclements are negative

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Also compute Zc Zc N P 0

N Zc

Stability

small K 2 2 No The aboveroot locusis wrong

Nyquist Criteriontable =>

medium K 0 0 Yes

big K 2 2 No

1

Page 139: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 139/213

N Z c Stability

small K 2 2 No Nyquist Criteriontablemedium K 0 0 Yes

big K 2 2 No

4) Understanding the above table:

For small K , two closed loop poles are inside the s-plane contour. From the contour,we can see that this means that for small K the closed loop system is unstable

For medium K , no closed loop poles are inside the s-plane contour. From the contour,we can see that this means that for medium K the closed loop system is stable

For big K , two closed loop poles are inside the s-plane contour; hence, for big K,

the closed loop system is unstableThe above table assists in the Root Locus sketch

-7 -6 -5 -4 -3 -2 -1 0 1 2-5

-4

-3

-2

-1

0

1

2

3

4

5

Real Axis

I m

a g

A x

i s

*1K

*2K

small K

medium K

large K

From the above root locus, we can conclude that the system is stable for

*2

*1 K K K <<

-1-b -1/a

The above result matches that of the Nyquist criterion

bK

1*1 = aK =*

2and

1

Page 140: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 140/213

Example: Using Compensators Compensator Plant

Y s( )Gc s( ) G p s( )

R s( ) K

Res

Ims

R

ε

∞→ R0→ε

Use Nyquist Plot, Contour and Criterion to discussquantitatively how the control gain K affectsclosed-loop stability. Nyquist Contour

Gp s( ) 1

s s 1( ). Plant Transfer Function

Assume Gc

s( ) 1 and K 1

Nyquist Formfor thedenominator

∆ s( ) 1 K 1

s s 1( )..

Step 1) Let s jω K G p. jω( )

K

jω jω 1( ). Assume K = 1

Step 2) Plot a pole/zero plot for Gp s( ) on the s-plane contour

picture and include measurement scheme to the jω axis

Res

Ims

AB

C

D1

Step 3) Enter a magnitude/phase table entry foreach critical point.

r θ NyquistContourpoint mag phase "Blow up"

Res

Ims

A

B

90 o

ε

A ∞ 180

B ∞ 270

C 0 180

D 0 0

Gp jω( ) 1

jω jω 1. Angle G p jω( ) Angle j ω( ) Angle j ω 1( )

1

Page 141: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 141/213

Step 4) Use critical points to draw Nyquist Plot. r θStep 5) Nyquist plot is symmetric about real axis.

Draw other half.point mag phase

ReG p (j ω)

ImG p (j ω) B

C,D-1A

r∞=r

A ∞ 180

B ∞ 270

C 0 180

D 0 0Nyquist Plot withK = 1

Res

Ims

AB

C

D1

CW +CCW -

Nyquist Criterion

1) Find P0 => P0 1 ( Number of poles of Gp s( ) inside the contour)

2) Determine the sign notation for the encirclements.

Contour is CW so, CW encirclements are positive and CCW encirclements are negative

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Number of closed looppoles inside the contourAlso compute Zc Zc N P 0

N Z c Stability

Nyquist Criteriontablesmall K 1 2 No

big K 1 2 No

4) Understanding the above table:

For small and big K , two closed loop poles are inside the s-plane contour. From the contour,we can see that this means that for small K the closed loop system is always unstable

1

Page 142: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 142/213

Same Example: Different Compensator Compensator Plant

Y s( )

Gc s( ) G p s( )R s( ) K

Use Nyquist Plot, Contour and Criterion to discussquantitatively how the control gain K affectsclosed-loop stability.

Let Gc s( ) 2 s 1

∆ s( ) 1 K 2 s 1

s s 1( ).. Nyquist Form for the denominator

Step 1) Let s jω K G p. jω( ) G c

. jω( ) K2 jω 1( )

jω jω 1( ).. Assume K = 1

Step 2) Plot a pole/zero plot for Gp s( ) G c. s( ) on the s-plane contour

Res

Ims

AB

C

D1-1/2

picture and include measurement scheme to the jω axis

Step 3) Enter a magnitude/phase table entry foreach critical point.

r θ

point mag phase

A ∞ 180

"Blow up"B ∞ 270

Res

Ims

A

B

90 o

ε

C 0 90

D 0 0

Gp jω( ) G c. jω( ) j2ω 1 jω jω 1.

Angle G p jω( ) G c. jω( ) Angle j2 ω 1( ) Angle j ω( ) Angle j ω 1( )

1

Page 143: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 143/213

r θStep 4) Use critical points to draw Nyquist Plot.point mag phaseStep 5) Nyquist plot is symmetric about real axis.

Draw other half.A ∞ 180

ReG p(jω)G c(jω)

Im G p(jω)G c(jω)B

C,D-1A

r∞=r

-a

B ∞ 270

C 0 90

D 0 0

Nyquist Plot withK = 1

Res

Ims

AB

C

D1-1/2

CW +CCW -

Nyquist Criterion

1) Find P0 => P0 1 ( Number of poles of Gp s( ) G c. s( ) inside the contour)

2) Determine the sign notation for the encirclements.

Contour is CW so, CW encirclements are positive and CCW encirclements are negative

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Number of closed looppoles inside the contourAlso compute Zc Zc N P 0

N Z c StabilityNyquist Criteriontablesmall K 1 2 No

big K 1 0 Yes

4) Understanding the above table:

For small K , both closed loop poles are inside the s-plane contour. From the contour,we can see that this means that for small K the closed loop system is unstable

For big K ,no closed loop poles are inside the s-plane contour; hence, for big K,the closed loop system is stable

"a" can be obtained offof the Bode plotStable for K

1

a>

1

Page 144: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 144/213

Page 145: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 145/213

Step 4) Use critical points to draw Nyquist Plot. r θStep 5) Nyquist plot is symmetric about real axis.

Draw other half.point mag phase

ReG p(jω)

ImG p(jω)

B,C-1 A -0.1

A 0.1 180

K 1 B 0 90

C 0 0

Res

Ims

A

B

C-1 1-10

CW +CCW -

Nyquist Criterion

1) Find P0 => P0 0 ( Number of poles of H s( ) inside the contour)

2) Determine the sign notation for the encirclements.

Contour is CW so, CW encirclements are positive and CCW encirclements are negative

3) Find N (i.e., the number of encirclements of (-1,0) for different values of K

Number of closed looppoles inside the contourAlso compute Zc Zc N P 0

N Z c Stability

Nyquist Criteriontablesmall K 0 0 Yes

big K 1 1 No

4) Understanding the above table:

For small K , no closed loop pole is inside the s-plane contour. From the contour,

we can see that this means that for small K the closed loop system is stable

For big K , one closed loop pole is inside the s-plane contour; hence, for big K,the closed loop system is unstable

For 0 K< 10< the closed loop system is stable (see Nyquist Plot)

14

Page 146: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 146/213

T T iimm ee ff oo rr aa MM oo v v iiee

Click on image to start movie

1

Page 147: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 147/213

State Space Analysis

All of the control problems we have studied in this class have been solved in the frequency domain.We will now concentrate on developing control solutions in the time domain for the same type ofsystems.

an y n( ) an 1 y n 1( ). ....................... . a 1 y 1( ) a0 y =

Typical DE bn 1 u n 1( )

. bn 2 u n 2( ). ............... b 0 u

This type of system (i.e., a linear, causal, time invariant system, can also be written as follows

txd

dA x. B u. A is an n x n matrix B is n x 1 vector

contains theDE coefficients C is 1 x n vector y C x.

where y(t) denotes the system output u(t) denotes the system input x(t) - an n x 1 state vector is used to account for "derivatives" in the system.

The "n" dimensions of the matrix equation takes care of the "n" derivatives found in theoriginal "nth" order scalar differential equation.

1

Page 148: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 148/213

Example

Show that the differential equationn 3

y 3( )

a1 y 2( )

.

a2 y 1( )

.

a3 y.

b1 u 2( )

.

b2 u 1( )

.

b3 u.

third-order DE

can be written as follows.

tx1

dd

tx2

dd

tx3

dd

0

0

a3

1

0

a2

0

1

a1

x1

x2

x3

.

0

0

1

u. y b3 b2 b1

x1

x2

x3

.

Cx y

Bu Ax x=

+=& A is a 3 x 3 matrixB is a 3 x 1 vector C is a 1 x 3 vector x is a 3 x 1 vector

or From the original differential equation, we can obtain the transfer function as

InitialConditionsare equalto zero.

Y s( )

U s( )=

b1 s 2 b2 s b 3

s3 a1 s 2 a2 s a 3

We now calculate the transfer function from the state equation by decomposing the state equationinto its scalar components

d

dtx1 = x2

d

dtx2 = x3

d

dtx3 = a3 x 1

. a2 x 2. a1 x 3

. u Multiplymatricesout

y b3 x 1. b2 x 2

. b1 x 3.

From the above equations we can see that

32

21

x x x x

==

&&

3131 x x x x &&&&&& =⇒=⇒Therefore

111213 xb xb xb y &&& ++= Direct Substitution

1

Page 149: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 149/213

Page 150: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 150/213

Page 151: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 151/213

Example

Find a state-space representation for the circuit below

++

_ _

x

x

Z s( )

L R 2

C Z(s) is the impedance tothe right of the two x'su t( ) y t( ) R 1

Note: Capacitor Impedance =1

CsInductor Impedance = Ls

First get a transfer function for the circuit

Y s( )

U s( )

Z s( )

Z s( ) Ls VoltageDivisionCalculate Z(s)from the circuitZ s( ) = R 1 || R 2

1

Cs

Z s( )

R 1 R 2R 1Cs

R 1 R 21

Cs

Apply Parallel Law

SimplifyZ s( ) CR 1 R 2 s R 1C R 1 R 2 s 1

Final Formfor TF

Y s( )

U s( )

sR 1 R 2 C R 1

s 2 R 1 R 2 LC s L R 1 R 2 C R 1

Ω3 Ω1R 1 = , L = 3.8 H , R 2 = , C = .066 F Typical Values

Y s( )

U s( )H s( )

.2 s. 3

s2

4 s.

3

Substitute numerical values

u x x +−−

=1

0

43

10& =2

1

x

x x

answer viaRCF pattern

[ ] x y 2.03=

15

Page 152: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 152/213

Matrix Review

Transpose of a matrix Exchange rows and columns

StandardOperationsA B( ) T AT BT AB( ) T BT AT

Symmetric Matrix AT A By Definition

Determinants

2 x 2 Aa1

b1

a2

b2

= a1 b 2. b1 a 2

.

= a1 b 2 c 3 b1 c 2 a 3 c1 a 2 b 33 x 3 A

a1

b1

c1

a2

b2

c2

a3

b3

c3

=

c1 b 2 a 3 b1 a 2 c 3 a1 b 3 c 2

Inverse of a Matrix

A A 1. I Note A 1exists if A 0

A 1 adj A( )

A

StandardOperationsAB( ) 1 B 1 A 1 AT 1

A 1 T

2 x 2 A

a

c

b

dA 1 d

c

b

a

1

A.

3 x 3 A

a

d

g

b

e

h

c

f

i

A 1ei hf

di gf ( )

dh ge

bi hc( )

ai gc

ah gb( )

bf ec

af dc( )

ae db

1

A.

Rank of a Matrix

A matrix "A" is called rank "m" if the number of linearly independent columns is equal to "m"

x, y and z are linearly independent vectors if

αx y and αx βy z for some scalar constants α β,A square matrix n x n has rank n if and only if A 0

1

Page 153: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 153/213

Page 154: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 154/213

Case 2: Procedure for finding Eigenvectors for Repeated Eigenvalues

Step 1: For an eigenvalue repeated m times in an n dimensional matrix A,

Find the smallest p such that Note m n

Rank A λ I.( )p

n m This step gives us "p"

Step 2: For 1 k p

Find Nk = Rank A λI( )k 1- Rank A λI( )

k This step gives usthe

Nk ’s

Step 3: Find a xp such that

A λI( )p

xp. 0 but A λI( )

p 1xp. 0 then find

x j A λI( ) x j 1. where j p 1 p 2, ......., 1,( ) This step gives us

eigenvectors.All the x vectors you find are generalized eigenvectors

Step 4: Reduce each Nk by 1

If all Nk 0 then the procedure is complete This step checksfor special cases .If not continue to step 5

Step 5: Find the largest k for which Nk is not zero. Call it κ Find a vector xκ that is linearly independent of previous vector x. Then find

x j A λI( ) x j 1. where j κ 1 κ 2, ......, 1,

1

Page 155: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 155/213

Example Find the eigenvectors of

GivesEigenvaluesA

1

0

0

1

1

0

2

3

1λI A

λ 1

0

0

1

λ 1

0

2

3

λ 1λ 1( )

30

Repeated Roots n 3 m 3 λ 1 Eigenvalue

Step 1: Find smallest "p" so the Rank A λI( )p

n m 3 3 0 λ 1

p 1 A λI( )1

0

0

0

1

0

0

2

3

0

Rank 2 p 2 A λI( )2

0

0

0

0

0

0

3

0

0

Rank 1

p 3 A λI( )3

0

0

0

0

0

0

0

0

0

Rank 0 p 3 answer

Step 2: Nk Rank A λI( )k 1. Rank A λI( )

k . for 1 k p 3

N1 Rank A λI( )0. Rank A λI( )

1. 3 2 1

N2 Rank A λI( )1. Rank A λI( )

2. 2 1 1

N3 Rank A λI( )2. Rank A λI( )

3. 1 0 1

Step 3: Find a xp such that A λI( )p

xp. 0 but A λI( )

p 1xp. 0

A λI( )3

x3.

0

0

0

0

0

0

0

0

0

x

y

z

.0

0

0

but A λI( )2

x3.

0

0

0

0

0

0

3

0

0

.

x

y

z

0

0

0

j 1

FirstEigenvectorso a possible solution is x3

0

0

1

1

Page 156: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 156/213

Now find x j A λI( ) x j 1. for j p 1 p 2, ....., 1, p 3

x2 A λI( ) x 3 x1 A λI( ) x 2 for j = 2, 1

j 3 j 2

x3

0

0

1

From above calculation

Last twoeigenvectorsx

2

0

0

0

1

0

0

2

3

0

0

0

1

.2

3

0

x1

0

0

0

1

0

0

2

3

0

2

3

0

.3

0

0 Step 4: After reducing all Nk by one, all the results become zero. Hence we stop at this stage

x3 x2, x1, are the eigenvectors

1

Page 157: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 157/213

Page 158: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 158/213

Page 159: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 159/213

Motivation of State-Space Solution

Scalar System

t xdd ax bu "a" and "b" are scalar constants

Solve the equation for x(t)

s X s( ). x 0( ) a X s( ). b U s( ). Use the Laplace Transform

X s( ) b U s( ).

s a

x 0( )

s a Simplify

After taking the Inverse Laplace Transform

−+= − )()0()( 1 sU as

b xet x at Inverse Laplace Transform

∫ −+=

∗+=

=⇒−=

t at

at

at

d ut h xet x

t ut h xet x

bet has

bs H

0

)()()0()(

)()()0()(

)()(

τ τ τ

Let

Convolution Property

Convolution Integral

Substitute for h(t) to obtainthe solution for x(t)x t( ) e at x 0( )

0

tτexp a t τ( )( ) b. u τ( ). d

Initial ConditionContribution Input Contribution

Solution to the Matrix Equation

txd

dAx Bu x - n x 1, A - n x n, B - n x 1

Looks same asthe solution to thescalar system

Claim that x t( ) e At x 0( )0

t

τexp A t τ( ).( ) B. u τ( ). d

is the solution of the equation

where exp A t.( ) is a matrix

1

Page 160: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 160/213

To Prove the above claim, we need three pieces of mathematical machinery

1) What is exp (A t) when "A" is a matrix ?

exp a t.( ) 1 a t. a 2 t2.2 !

a3 t3.3 !

...... Use Taylor Series

exp A t.( ) I A t. A 2 t2.2 !

A3 t3.3 !

..... Use Taylor Series

2) Notetexp A t.( )d

dA exp A t.( ). exp A t.( ) A.

texp A t.( )d

d0 A

2 A 2. t.

1( ) 2( ).

3 A 3. t 2.

1( ) 2( ). 3( ).

4 A 4. t 3.

1( ) 2( ). 3( ). 4( ). ....... Take time

derrivative

texp A t.( )d

dA I A t. A 2 t2.

2 !A3 t3.

3 ! .... A exp A t.( ). Factor out "A"

Note:texp At( )d

dexp A t.( ) A. Why ? because AB = BA

if B = A

3) We also need Leibnitz Rule

∫ ∫ −+∂∂=

)(

)(1122

)(

)(

2

1

2

1

)())(,()())(,(),(

),( xa

xa

xa

xa

xadxd

xa xF xadxd

xa xF du x

u xF duu xF

dxd

x∂∂ is the partial derivative with

respect to x

1

Page 161: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 161/213

Solution to the Matrix Equation

txd

dA x. B u. Matrix equation

Claimed Solutionx t( ) e At x 0( ).0

tτexp A t τ( ).( ) B. u τ( ). d

Insert the solution into LHS

txd

d teAt x 0( ).d

d t 0

tτexp A t τ( ).( ) B. u τ( ). dd

d

Take timederivativeand useLeibnitz Rulet

xdd

Ae At x 0( )0

tτA exp A t τ( ).( ). B. u τ( ). d Bu t( )

Insert solutioninto RHSA x. B u. Ae At x 0( )

0

tτA exp A t τ( ).( ). B. u τ( ). d Bu t( )

The right sides of both the above equations are equal ; hence, we have obtained a solution to

Bu Ax x +=Note since y C x. the solution for y(t) is given by

y t( ) C e At. x 0( ) C0

tτexp A t τ( ).( ) B. u τ( ). d. Output Solution

So if we have a system, given u(t), we can find y(t) with the above formula

All we need to find is exp A t.( ) which is called the State Transition Matrix

16

Page 162: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 162/213

Page 163: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 163/213

Example : Finding the output using the state space solution

Find y(t) if u(t) = unit step

t xdd

0

3

1

4 x. 0

1 u.State space form

[ ] x y .2.03=x 0( )

0

0

y t( ) C e At. x 0( ) C0

tτexp A t τ( ).( ) B. u τ( ). d. Definition

y t( ) C

0

tτexp A t τ( ).( ) B. u τ( ). d. x 0( )

0

0

( )

[ ]

+−−

+−

−−

=

+−

−=

+−

−=

=

+−+−

−−=

−−

−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

t t

t t

t

t t

t t

t

t t

t t

t t A

t t t t

t t t t

At

ee

eet y

ee

eeC t y

d ee

eeC t y

d eC t y

eeee

eeeee

3

3

0

)(3)(

)(3)(

0 )(3)(

)(3)(

0

)(

33

33

6

3

2

1

6

3

2

161

21

61

21

.2.03)(

63

21

61

21

)(

23

21

21

21

)(

11

0)(

23

21

23

23

21

21

21

23

τ τ

τ τ

τ τ

τ τ

τ

τ

τ

From Previous Problem Substitute "B" and u(t)

Substitute exp(At) andmultiply matrices

Integrate term by term

Plug limits of integration and "C"

16

Page 164: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 164/213

y t( ) 1 3

2exp t( )

1

2exp 3 t( )

1

10exp t( )

3

30exp 3 t( ) Multiply matrices

y t( ) 1 7

5 exp t( ) 2

5 exp 3 t( ) Simplify

Does thismake sensein the circuit ?Why?

y t( )

txd

d

0

3

1

4x.

0

1u. State space realization

for this problem and thecircuit below[ ] x y .2.03=

Z s( )L R 2

C Circuit that we calculateda SSR foru t( ) y t( ) R 1

H s( ) .2 s 3s2 4 s 3

Transfer function forcircuit

16

Page 165: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 165/213

Definitions

Time Domain Solution

txd

dA x. B u. y Cx State Space equation

x t( ) e At x 0( )0

tτexp A t τ( ).( ) B. u τ( ). d State Solution

y t( ) C e At. x 0( ) C0

tτexp A t τ( ).( ) B. u τ( ). d. Output solution

1exp A t.( ) = sI A( ) 1 State transition matrix

Frequency Domain Solution

txd

dA x. B u. State Space equation

s I. X s( ). x 0( ) A X s( ). B U s( ). Take Laplace Transform

s I. A( ) X s( ). x 0( ) B U s( ). Simplify

X s( ) sI A( ) 1 x 0( ). sI A( ) 1 B. U s( ). Simplify to obtain State Solution

Multiply by "c" to obtainthe output solutionY s( ) C sI A( ) 1 x 0( ) C sI A( ) 1 B. U s( ).

"Open Loop" Transfer FunctionY s( )

U s( ) H s( )

From above output solutionwith x(0)=0

Y s( )

U s( )H s( ) C sI A( ) 1 B.

So given a state space representaion, we can use the above definitionto determine the poles and zeros of the system from

AsI B AsI Cadj

s H −

−= )()(

M M adj

M )(1 =−Since

Poles are given bysI A 0

Zeros are given by C adj sI A( ). B 0

16

Page 166: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 166/213

More Definitions

# A state variable realization (A,B,C) can be found from the differential equation or a transfer function

# The transfer function of the realization satisfies

1. H s( ) has real coefficients

2. Rational in s H s( ) poly

poly

3. Strictly proper for example H s( ) s 2 1

s3 3

# A realization is minimal if it has the smallest number of states possible

# A realization is minimal if H(s) has no pole-zero cancellation

[ ] B A AB B n 1−# A realization is controllable if the n x n matrix

has full rank (i.e., a non zero determinant)

# If a realization is controllable then the modes or poles of the system can be arbitrarily changed

# A realization is observable if the n x n has full rank ( i.e., a non zero determinant )C A n 1.

.....

CA

C

# If a realization is observable then the modes or poles can be observed at the output y(t)

# If a realization is controllable and observable, then it is minimal

# If a realization is minimal, then it is controllable and observable

16

Page 167: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 167/213

Circuit Example

txd

d

0

3

1

4x.

0

1u. x 0( )

0

0

Z s( )L R 2

x 3 0.2( ) x.Cu t( ) y t( ) R 1

Find the open loop transfer function and determineif the system is controllable and observable

H s( ) C sI A( ) 1. B. Cs

3

1

s 4

1

. B. By definition

Poles ofH(s) areat -1 and -3

H s( ) Cs 4

3

1

s. B

∆ s( ). C

1

s

1

∆ s( ). 0.2 s 3

s2 4 s 3

0.2 s 3

s 1( ) s 3( ). ∆ s( ) s 2 4 s 3 open-loop characteristic equation

Calculate the controllability and observability matrices with n=2

non zero determinant means the matrix hasB AB0

1

1

4 full rank; hence the system is controllable

non zero determinant means the matrix hasCA

C

0.6

3

2.2

0.2 full rank, hence the system is observable

H s( ) 0.2 s 15( ).

s 1( ) s 3( ). The system is clearly minimal - no pole / zero cancellation

If we have H(s) the minimality test can use to determine controllability andobservability as opposed to the above matrix check

1

Page 168: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 168/213

Control Motivation from our Previous Work

u t( ) y t( ) Open loopsystemH s( )

Given an input u(t), y(t) will have a shape that is dependent on u(t) and H(s). The shape ofy(t) may not be the desired shape so we change H(s) by using "output" feedback

u t( ) K r t( ) y t( )( ). Control Input (Classical Control)

r t( ) is the reference input

u y t( )r t( ) K H s( )Closed loopsystem

∆ s( ) 1 K H s( ). Closed loop denominator

Poles can be changed by adjusting K (see Root Locus Design)

As we have seen using frequency domain techniques, we are limited in how we can changethe closed-loop system by using output feedback. That is we cannot place poles arbitrarily.That is, the desired closed loop poles may not lie on the root locus, or we may not be ableto obtain the exact response that is desired.

Given a state-space formulation for H(s), that is controllable, we can arbitrarily place the polesusing "state" feedback; hence, we can achieve any desired shape for the output response

txd

dAx Bu

State Space Equationy Cx

u Kx r State Feedback Law - K is 1 x n

x xr + u + yB 1/s C-

+ State SpaceBlockDiagramA

K

1

Page 169: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 169/213

Pole PlacementState Space Representation of H s( ) C sI A( ) 1. B.

t xdd A x

. B u

. y Cx State Space Form

Let u t( ) Kx r t( ) State Feedback Law

K is a 1 x n vector of feedback gains used to place the closed loop poles

r t( ) is a reference input

txd

dA x. B K x. r( ) substitute u(t)

txd

dA BK( ) x. Br

Closed loop state space systemy C x.

Take the LaplaceTransformsI X s( ). x 0( ) A BK( ) X s( ). B R s( ).

Extra Step

Solve forX(s)X s( ) sI A BK( )( ) 1 x 0( ). sI A B K.( )( ) 1 B. R s( ).

Y s( )

R s( )C sI A B K.( )( ) 1. B. Closed loop TF

x(0) = 0Definition ofInverse

Y s( )

R s( )

C adj sI A B K.( )( ). B.sI A BK( )

Gives zeros of theclosed loop TFC adj sI A BK( )( ). B. 0

sI A BK( ) 0 Gives poles of the closed-loop TF

If the system is controllable, the gain vector "K" can be calculated to place the poles by usingthe following formula

1K 0 0, ......, 0, 1,( ) A B,( ) ∆d A( ) Ackerman’s formula

s A∆d s( ) specifies the desired location∆d A( ) ∆d s( ) of the closed loop poles

The open loop system will be controllable as long as the matrix

A B,( ) B AB, ......, A n 1 B., has full rank i.e., det A B,( ) 0

1

Page 170: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 170/213

Page 171: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 171/213

A New State Space Realization for the Circuit

x2 t( ) L R 2

Cx y Bu Ax x

= +=FindCo x1 t( )R1 y t( )u t( ) L 1 L2 for our circuitz2 t( ) z 1 t( )

Define the current throught the inductor as a stateDefine the voltage across the capacitor as a statez1 z2, are auxiliary variables that will be eliminated

z1 Co tx1

dd. Capacitive Law

Kirchoff’s current law

x2 z1 z2 => z2 x2 Co t x1dd.

use z1

Write equationu Ltx2

dd. R1 z 2

. Ltx2

dd. R1 x2 Co t

x1dd.. for voltage loop L1

Write equationx1 R2 z 1. R1 z 2

. R2 Co tx1

dd. R1 x2 Co t

x1dd.. for voltage loop L2

Ltx2

dd. R1 x 2

. R1 C o.

tx1

dd. u C o R1 R2

.tx1

dd. R1 x 2

. x1 0 Simplify

Put inMatrix Form

R1 C

Co R1 R2.

L

0

tx1

dd

tx2

dd

.0

1

R1

R1

x1

x2

. 1

0u. x

x1

x2

tx1

dd

tx2

dd

R1 C o

Co R1 R2.

L

0

1 0

1

R1

R1

.x1

x2

.R1 C o

Co R1 R2.

L

0

11

0. u.

..... Matrix AlgebraR1 C

Co R1 R2.

L

0

10

Co R1 R2.

L

R1 C o

1

∆. Calculate Matrix Inverse

∆ LCo R1 R2.

1

Page 172: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 172/213

Simplify to obtain

Bu Ax x +=t

xd

d

1

Co R1 R2.

R1

L R 1 R2.

R1

Co R1 R2.

R1 R 2.

L R 1 R2.

x.0

1

L

u. form

Find the output of the system

x2 t( ) L R 2

Co x1 t( )R1 y t( )u t( ) L 1 L2z2 t( ) z 1 t( )

y R 1 z 2. R1 x2 Co t

x1dd.. From the circuit

Substitute fortx1

ddy R 1 x 2

. R1 C o. 1

Co R1 R2. x1

. R1

Co R1 R2. x2

.. from abovematrix equation

y

R1

R1 R2

R1 R 2.

R1 R2x. y C x form

Ω3 Ω1 same numbers asbeforeLet R1 = , L = 3.8 H , R2 = , Co = .066 F

txd

d

3.79

0.2

11.36

0.2x.

0

0.26u. Final State Space

form for the circuity 0.75 0.75( ) x.

17

Page 173: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 173/213

Calculate the Open Loop Transfer Function for the Circuit

t xdd

3.79

0.2

11.36

0.2 x. 0

0.26 u. State Space Equationy 0.75 0.75( ) x.

H s( ) C sI A( ) 1. B. Open loop TF formula

sI A( ) 1 s 3.79

0.2

11.36

s 0.2

1 s 0.2

0.2

11.36

s 3.79

1

∆. Matrix Algebra

open loop characteristicequation∆ s 3.79( ) s 0.2( ). 0.2 11.36( ). s 2 4 s 3

MatrixAlgebraH s( ) C

s 0.2

0.2

11.36

s 3.79. 0

0.26. 1

∆. 0.75 0.75( )

2.95

0.26 s. 0.9854. 1

∆.

H s( ) 0.2 s. 3

s2 4 s. 3 same TF we obtained before

The same circuit gives two different state space forms but retains the same TF

RCF SSF Physics-based SSF

[ ] x y

u x x

2.03

1

0

43

10

=

+−−=

[ ]

3.79 11.36 0

0.2 0.2 0.26

0.75 0.75

x x u

y x

− = + − − =

State x does not have any State x has physical meaning (i.e., x1physical meaning, it is just is the voltage across the capacitor and x2a mathematical creation is the current through the inductor )

These physics-based states facilitates the

construction of the feedback controller

1

Page 174: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 174/213

Page 175: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 175/213

Page 176: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 176/213

ObserversProblem: What if the state x is not measurable ?

Given A,B,C, y(t), u(t), and build an observer for estimating x

x xu + yB 1/s C

+

A

x x+ - +B 1/s C

yObserveronlymeasuresu(t) andy(t)

+ y~AObserver +

L

Bu Ax x += ⇒ PlantY s( )U s( )

H s( ) y Cx

xThe observer is a device, we build to manufacture (an estimate for x)

x x →ˆThe observer gain L is used to make quickly; L is an n x 1 vector

Bu y L x A x ++= ~ˆˆ From the Block Diagram

xC xC Cx y y y ~ˆˆ~ =−=−= x x x ˆ~ −= observation error

Bu x LC x A x ++= ~ˆˆ y~ Substitute for

)~ˆ(ˆ~ Bu x LC x A Bu Ax x x x ++−+=−=

Find the error dynamics

x LC A x ~)(~ −= x~ Observation error dynamics - tells us how fast goes to zero

17

Page 177: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 177/213

x LC A x ~)(~ −= Error Dynamics

)(~

)()0(~)(~

s X LC A xs X s −=− Take Laplace Transform

)0(~)(~))(( xs X LC AsI =−− Rearrange

)0(~))(()(~ 1 x LC AsI s X −−−= )(

~s X Solve for

)0(~)(

))(()(~

x LC AsI

LC AsI adjs X

−−−−= Definition of Inverse

Poles of the observation error system are given

∆0 s( ) sI A LC( ) 0

0~ → xIf the poles of ∆0 s( ) are far in the left half plane, then

x x →ˆquickly i.e., quickly

The observer gain "L" is utilized to place the observer poles in any locationas long as the open loop is observable.

The open-loop system will be observable as long as the matrix

is full-rank i.e., det A C,( )( ) 0A C,( )

CA n 1

.....

.....

CIf the system is observable, the gain matrix "L" is calculated as follows

L ∆o A( ) 1 A C,( )

1

0

..

0

Ackerman’s formula

Asoo s A =∆=∆ )()( where ∆o s( ) specifies the desired location of the observer poles.

1

Page 178: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 178/213

Example

[ ] x y

u x x

2.031

0

34

10

=

+−−

=Cx y

Bu Ax x

=

+=

x x →ˆFind an observer so in 0.5 seconds

Bu y L x A x ++= ~ˆˆ xC y ˆˆ = observer structure

∆o s( ) s 10( ) 2 s2 20 s. 100 construct ∆0 s( ) for n = 2 and s = -10.

Calculate observability matrixwith n = 2A C,( )

CA

C

0.8

3

2.4

0.2

Find L via Ackerman’s formulaL = ∆o A( ) 1. A C,( )1

0. 4.321

20.19

check answer

x LC A x ~)(~ −=error dynamics tells us how fast

0ˆ~ →−= x x x

Observer poles aredetermined by this formulasI A LC( )

s 12.96264.571

.136s 7.038

∆o s( ) s 12.962( ) s 7.038( ). 8.72 Take Determinant

∆o s( ) s 2 20 s. 100 s 10( ) 2 Simplify

x x →ˆTherefore if we build an observer then in 0.5 seconds

17

Page 179: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 179/213

Page 180: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 180/213

Examining the Regulator Dynamics

Cx y

Bu Ax x

=+=

State-space realizationfor the open loop plant

Cx y

xK r B Ax x

=−+= )ˆ( substitute for u(t) to obtain closed loop plant

ˆu Kx r = − +

Bu y L x A x ++= ~ˆˆ xC y ˆˆ = standard observer structure

xC y

x x LC xK r B x A x

ˆˆ

)ˆ()ˆ(ˆˆ

=−+−+= substitute for u(t) and

xC y ~~ = for

x x x ˆ~ −= x x x ˆ~ −=⇒Find the Error Dynamics by using

))ˆ()ˆ(ˆ()ˆ(~ x x LC xK r B x A xK r B Ax x −+−+−−+= Subtract observer fromclosed-loop plant

x LC A x ~)(~ −= simplified error dynamics

x~ ( ) x x x ~ˆ −=)~( x x BK Br Ax x −−+= Rewrite closed-loop plant in terms of Br x BK x BK A x ++−= ~)( Simplified Plant

Cx y

x LC A x

Br x BK x BK A x

=−=

++−=~)(~

~)(

Cx y

Br x BK A x x

=+−=

=)(

0~IfCompositeClosed-loopSystem Dynamics

Define a new state variable system as follows

= ~

x

x z Acl

A BK

0

BK

A LCBcl

B

0Ccl C 0( )

zC yr B z A z

cl

clcl

=+= Compact Notation for

Closed-loop System

⇒Y s( )

R s( )Ccl sI A cl

1. Bcl. Closed-loop TF How many poles does

this system have ?

1

Page 181: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 181/213

Calculate the transfer function

Acl

A BK

0

BK

A LCBcl

B

0Y s( )

R s( )C

cl sI A

cl

1. Bcl

.

Ccl C 0( )

Plug in AclsI A cl1 sI A BK( )

0

BK

sI A LC( )

1

−−−−−−−−=− −

−−−−

1

1111

))((0

))(())(())(()(

LC AsI

LC AsI BK AsI BK BK AsI AsI cl

MatrixIdentity

Matrix IdentityM

0

N

P

1 M 1

0

M 1 NP 1

P 1

[ ]1 1 1

1

( ( )) ( ( )) ( ( ))( )0

0( ) 0 ( ( ))

BsI A BK BK sI A BK sI A LC Y sC

R s sI A LC

− − −

− − − − − − − = − −

Plug inBcl andCcl .

Closed-loop TF looks exact likethe full state feedback form

Y s( )

R s( )C sI A BK( )( ) 1 B

Matrix IdentityY s( )

R s( )

C adj sI A BK( )( ).( ) B

sI A BK( )

C adj sI A BK( )( ).( ) B 0 gives zero of closed-loop TF.

sI A BK( ) 0 gives poles of closed-loop TF.

The closed-loop TF has "2n" poles; "n" poles come from the observer and "n" poles come fromthe closed-loop plant. How do you know this is true ?

L sets the location of the "n" observer poles.K sets the location of the "n" closed-loop plant poles.

During the above calculation, the "n" observer poles given by

sI A LC( ) 0 canceled with the "n" observer zeros.

This cancellation of the observer poles is always true and leads to what is called theseparation principle.

Separation Principle - the gains K and L can be designed separately to achievethe desired closed-loop plant and observer pole locations, respectively.

1

Page 182: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 182/213

Example

open loop plant

u t( ) y t( )H s( ) .2 s 3

s2 3 s. 4 H s( )

Design a regulator so the desired closed-loop poles are at s = -1, -2, andthe observer poles are at s = -10, -12.

Find a SSR using RCF

A0

4

1

3B

0

1txd

d

0

4

1

3x

0

1u n 2 C 3 0.2( )

y 3 .2( ) x

Formulate Observer

xC y

y L Bu x A xˆˆ

~ˆˆ

=++= observer

L ∆o A( ) 1 A C,( )1

0. Ackerman’s Formula

desiredobserverpole locations.

∆o s( ) s 10( ) s 12( ) s 2 22 s 120

A C,( )CA

C

0.8

3

2.4

0.2observability matrix

L A 10 I( ) A 12 I( ).8

3

2.4

0.2

1 1

0. 4.6

26.1 answer

Use formulaCheck sI A LC( )s 13.78

82.34

0.8

s 8.22

∆o s( ) s 13.78( ) s 8.22( ). 82 0.08( ). s 2 22 s. 120 checks

Note: observer poles are placed s-10 times further out in the LHP

1

Page 183: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 183/213

Page 184: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 184/213

Page 185: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 185/213

Theorem

Equivalent systems have the same transfer function

Proof:

H s( ) C sI A( ) 1. B. By Definition

Hn s( ) C n sI A n1. Bn. By Definition

Hn s( ) C T. sI T 1 A. T. 1. T 1. B. Substitute for An Bn, Cn,

Hn s( ) CT sT 1 IT T 1 AT1. T 1 B. Property of the Identity Matrix

Hn s( ) CT T 1 sI A( ) T. 1. T 1 B. Rearrange

Hn s( ) C T. T 1. sI A( ) 1. T. T 1. B. Use matrix identity MNP( ) 1 P 1 N 1. M 1.

Hn s( ) C sI A( ) 1. B. H s( ) Proof is complete

Theorem

Given two state space representations for the same system, the transformation T for

xn T 1 x can be calculated by either method

1T = A B,( ) An Bn, Use Controllability Matrices

1

T = A C,( ) A n Cn, Use Observability Matrices

1

Page 186: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 186/213

Below are two state space realizations for the circuit

xn2 t( ) L R 2

Co xn1 t( )u t( ) R 1 y t( )

The same circuit gives two different state space forms but retains the same TF

RCF SSF Physics-based SSF

[ ] x y

u x x

2.031

0

43

10

=

+−−

=

[ ] n

nn

x y

u x x

75.075.026.0

0

2.02.0

36.1179.3

=

+−

−=

Find the matrix T which will satisfy xn T 1 x

Controllability matrixfor RCFA B,( ) B AB( )

0

1

1

4

Controllability matrix forPhysics-based SSFAn Bn, Bn An B n

. 0

0.26

2.954

0.052

T A B,( )1. An Bn,

0.339

1.286

0

3.846 answer

Hence, the state that did not have physical meaning in the RCF form are actually linearcombinations of the states in the Physics-based SSF

By Definitionx T x n. x1

x2

0.339

1.286

0

3.846

xn1

xn2

.

x1 0.339 x n1.

State Relationshipsx2 1.286 x n1

. 3.846 x n2.

1

Page 187: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 187/213

Transformation to Jordan Normal FormThe Jordan Normal Form is a very special SSR because the eigenvalues and theircontrollability and observability characteristics can be read off of the SSR by inspection.

t xdd A x. B u. State Space equationy c x.

Jordan Normal Form

txn

dd

AJ x n. BJ u.

AJ T 1 A. T. BJ T 1 B. CJ C T. xn T 1 xyn CJ x n

." T " is the matrix which consists of " n " eigenvectors of thematrix "A". Put the generalized (i.e., for repeated roots)eigenvectors in " T " in the reverse order while keepingthem

next to each otherTheorem

If the eigenvalues of "A" are distinct then "A" is called simple .However, repeated eigenvalues does not imply that A is not simple

Theorem

"A" is simple if and only if AJ is a main diagonal matrix

(i.e., there must be only zeros appearing off the main diagonal)

Definition

The eigenvalues of AJ are always along the main diagonal

Theorem (for SISO system only)

If A is simple, then

a) eigenvalue in AJ is controllable if the corresponding element in BJ is non zero.

b) eigenvalue in AJ is observable if the corresponding element in CJ is non zero.

If A is not simple,

a) eigenvalue in AJ is controllable if the last element of the corresponding Jordan block in

BJ

is non zero.

b) eigenvalue in AJ is observable if the first element of the corresponding Jordan block in

CJ is non zero.

18

Page 188: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 188/213

Page 189: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 189/213

Rules for drawing Jordan Blocks 1) Draw vertical and horizontal lines to isolate the eigenvalues which lie on the

main diagonal of AJ2) Never isolate a "one" on the superdiagonal - any time you have repeated eigenvalues

you have the possibility of a "one" showing up on the super diagonal

3) Draw as many lines as possible

4) Extend lines through BJ and CJ

Jordan Block

[ ] n

nn

x y

u x x

12

1

1

20

03

−−=

−+−

−= Jordan Normal Form

eigenvalues are onthe main diagonal

Jordan Block

Analysis

Since "A" is a simple matrix (i.e., "A" is a main diagonal matrix)

a) eigenvalue in AJ is controllable if the corresponding element in BJ is non zero.

b) eigenvalue in AJ is observable if the corresponding element in CJ is non zero.

Eigenvalue Controllable Observable

Yes

Yes Yes

Yes-3

-2

18

Page 190: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 190/213

Example - Find the JNF and discuss Controllability and Observability

[ ]

[ ]811

1

0

4

200

010

011

100

310

501

100

310

501

1

3

5

,

0

0

1

,

0

1

0

1,2 , 2,1

011

2

3

1

200

310

211

1

1

1

321

21

==

−==

==

−−

=⇒=

===

====

====

+=

CT C

BT B

AT T A

T T

vvv

mm

C B A

Cx y

Bu Ax x

J

J

J

λ λ

State Space equation

eigenvalues or poles of "A"

eigenvectors of "A"

Formulate transformation matrix

Apply JNF formulas

[ ] n

nn

x y

u x x

811

1

0

4

200

010

011

=

−+= We can now

mark theJordan Blocks

1

Page 191: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 191/213

Page 192: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 192/213

Page 193: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 193/213

Rules for drawing Jordan Blocks 1) Draw vertical and horizontal lines to isolate the eigenvalues which lie on the

main diagonal of AJ2) Never isolate a "one" on the superdiagonal - any time you have repeated eigenvalues you have the possibility of a "one" showing up on the super diagonal

3) Draw as many lines as possible

4) Extend lines through BJ and CJ

Jordan Block

[ ] n

nn

x y

u x x

053

0

033.0

100

110011

=

+=Jordan Normal Form witheigenvalues on the main diagonal

Jordan BlockAnalysis

If "A" is not simple

a) eigenvalue in AJ is controllable if the last element of the corresponding block in

BJ is non zero.

b) eigenvalue in AJ is observable if the first element of the corresponding block in

CJ is non zero.

Eigenvalue Controllable Observable

No Yes1

19

Page 194: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 194/213

Example - Discuss controllability and observability for the system below

[ ] n

nn

x y

u x x

0 0 0 2 1 1 0 1

1

2

0

0

1

00

0

30000000

02000000

01200000

00120000

00001000

0000110000000010

00000011

=

+

−−

−−

−−

−−

= JordanNormalForm

Rules for drawing Jordan Blocks 1) Draw vertical and horizontal lines to isolate the eigenvalues which lie on the

main diagonal of AJ2) Never isolate a "one" on the superdiagonal - any time you have repeated eigenvalues you have the possibility of a "one" showing up on the super diagonal

3) Draw as many lines as possible

4) Extend lines through BJ and CJ

[ ] n

nn

x y

u x x

0 0 0 2 1 1 0 1

1

2

0

0

1

0

0

0

30000000

02000000

01200000

00120000

00001000

00001100

00000010

00000011

=

+

−−

−−

−−

−−

=

A

B

1

Page 195: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 195/213

Eigenvalue Controllable Observable

No

Yes Yes

Yes

Yes No

YesYesB

A-1

-1

-2

-3

[ ] n

nn

x y

u x x

0 0 0 2 1 1 0 1

1

2

0

0

1

0

0

0

30000000

02000000

01200000

00120000

00001000

00001100

00000010

00000011

=

+

−−

−−

−−

−−

=

A

B

Jordan Blocks

Jordan Blocks

Analysis

a) eigenvalue in AJ is controllable if the last element of the corresponding block in

BJ is non zero.

b) eigenvalue in AJ is observable if the first element of the corresponding block in

CJ is non zero.

1

Page 196: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 196/213

Page 197: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 197/213

Steps for Calculating T(s), R(s) and N(s)

Step 1 Determine A(s), B(s), Q(s) and P(s) from the problem statement and check restriction1

open-loop TFH s( ) B s( )

A s( )

Hd s( ) Q s( )

P s( )desired closed-loop TF

Restriction 1: degree P s( )( ) degree A s( )( )

)(s B+ )(s B−Step 2 Find and and check restriction 2

)()()( s Bs Bs B −+= By Definition

)(s B− denotes the polynomial which contains the roots of B(s) that have positive real parts

)(s B+ denotes the polynomial which contains the roots of B(s) that have nonpositive real parts

)1()(

)1()(

)1)(1()(

−=+=

−+=

+

ss B

sss B

ssss B

Example)(s B−Restriction 2: Q(s) must contain the roots found in

Step 3 Define R(s) and T(s) in terms of subpolynomials

)()()(

)( 1

s BsQsT

sT −= )()()( 1 s Bs Rs R += By DefinitionR1 s( ) T 1 s( ), are unknown at this point.

Step 4 Determine the degree of each polynomial

C N

C A N

LT R

LT

L B AT

==−=

===

=−−= +

deg

1degdeg

degdeg

deg

1degdegdeg

11

1

1

By definition

By definition

19

Page 198: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 198/213

Step 5 Define the structure of T1 s( ) R 1 s( ), N s( ),

T1 s( ) s a( ) L "a" is far in the left-half plane and "L" is known

R1 s( ) s L rL 1 s L 1. ...... r 0 "L" is known

N s( ) n c s c nc 1 s c 1. ...... n 0 "C" is known

At this point the coefficients denoted by r i ni, are unknown

Step 6 Solve the Diophantine Equation to determine r i ni, coefficients in R1 s( ) and N s( )

)()()()()()( 11 sT sPs N s Bs Rs A =+ − Diophantine EquationAfter matching the coefficients in the above equation, we obtain the polynomials R1 s( ) N s( ),

Step 7 Construct R(s) and T(s)

)()()(

)( 1

s BsQsT

sT −= )()()( 1 s Bs Rs R +=

198

Page 199: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 199/213

Page 200: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 200/213

Step 4 Determine the degree of each polynomial

1deg

1121degdeg1degdeg

1deg

11021degdegdeg

11

1

1

==−=−= ==

==−−=−−= +

N

A N T R

T

B AT ⇒ L 1

⇒ C 1

Step 5 Define the structure of T1 s( ) R 1 s( ), N s( ),Poles of T1 should be 10 times bigger than the largest pole of P(s) Rule of

ThumbLet a = 10

T1 s( ) s 10( ) L s 10( ) L 1

1deg 1 = RR1 s( ) s r 0 1deg = N N s( ) n 1 s n 0

Step 6 Solve the Diophantine Equation to determine r i ni, coefficients in R1 s( ) and N s( )

)()()()()()( 11 sT sPs N s Bs Rs A =+ − Diophantine Equations2 s r 0 s 1( ) n 1 s n 0 s 2 2 s 1 s 10( ) Insert Polynomial

s3 s2 r0 n1 s 2 n1 n0 s n 0 s 3 12 s 2 21 s 10 Simplify

s2 r0 n1 s 2 12( )Simplify

s n1 n0 s 21( ) n 0 10

n0 10 n 1 31 r 0 43 Solve for coefficients

N s( ) 31 s 10( ) R 1 s( ) s 43 Gives R1 s( ) and N s( )

Step 7 Construct R(s) and T(s)

10)1()1(

)10()()()(

)( 1

+=−−

+== − sss

ss BsQsT

sT

43)1)(()()()( 11 +=== + ss Rs Bs Rs R

2

Page 201: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 201/213

Plant

V s( ) Y s( )+s 1

s2s 10

s 43

-

Block Diagramfor closed-loopsystem

31 s 10( )

s 43

Check your answer

V s( ) Y s( )FeedforwardFeedback

Combination

s 10

s 43

s 43( ) s 1( ).

s3

12 s2

21 s 10

V s( ) Y s( ) Combine cascadeblocks

s 10( ) s 1( ).

s3 12 s 2 21 s 10

V s( ) Y s( ) Factordenominator

s 10( ) s 1( ).

s 10( ) s 2 2 s 1.

V s( ) Y s( ) Cancel observer poles 1( )

s 1( ) 2

checks sinceY s( )

V s( )

s 1

s 1( ) 2

20

Page 202: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 202/213

Page 203: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 203/213

Example

m

L One link robotθ g

u

θ θ sinmgLmLu −= Dynamic Equation

u - input control torquem - mass of robotL - link of robot

θ - link angleg - gravitational coefficient

0=eθ 0=eθ Linearize the system about the equilibrium point and then

obtain a state-space realization.

Cx y

Bu Ax x

=+=

==θ θ

2

1

x

x x y θ

( i.e., find A, B, C)

),( u x f x =Step 1 - Write the dynamics in the form.

θ θ sinmgLmLu −= original dynamics

umL

g 1)sin( += θ θ rearrange

θ =1 x θ =2 x θ =⇒ 2 x Fromproblemstatement21 x x =

21 x x =u

mL xg x

1

)sin( 12 +=

use above informationto rewrite dynamics

+===u

mL xg

x

f

f u x f x 1

)sin(),(

1

2

2

1 ),( u x f x = formn = 2

20

Page 204: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 204/213

x f ∂∂

u f

∂∂

Step 2) Find and

∂∂

∂∂

=∂∂

2

2

2

1

1

2

1

1

x f

x f

x

f

x

f

x f

∂∂

∂∂=∂

∂u

f u

f u f 21

use formulawith n = 2

+===u xg

x

f

f u x f x

mL1

1

2

2

1

))(sin(),( from above work

x f ∂∂ substitute for=

0

1

g cos x 1.

0 f 1 and f 2 into the formula

=∂∂

mlu f 1

0substitute for f 1 and f 2 into the formula

Step 3) Substitute the equilibrium point to find A and B

==e

e

e

ee x

x x

θ θ

2

1x1e θe 0 Equilibrium Point

0=eθ from problem statementx2e =

+=

∂∂=

= 0

10| g x f

Ae x x

T

Plug-inequilibriumpoint and transpose0

1|T

x xe

f B

umL

=

∂ = = ∂

Step 4) Find "C" from problem statement

1 x y y =⇒=θ Since x1

θ by definition

y 1 0( )x1

x2

.

C 1 0( )

20

Page 205: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 205/213

Linearized System for One Link Robot

m

[ ] x y

umL xg x

01

/ 1

0

0

10

=+=

L

θ g u

θ θ ,Find the open-loop TF and the open loop impulse response. Then assumingare measurable, design a state feedback controller which places the polesof the closed loop system at -1.

Open Loop TF formulaY s( )

U s( )H s( ) C sI A( ) 1 B.

MatrixAlgebrasI A( ) 1 s

g

1

s

1 s

g

1

s

1

∆ s( ).

∆ s( ) s 2 g

[ ]gs

mLsmLsg

ss H

−=∆= 2

/ 1)(

1 / 1

0.

1.01)( Open-loop TF

Y s( ) H s( ) if U s( ) 1 Impulse response

Y s( )

1

mL

s g s g. Factor denominator−

++

=gs

g

gs

g

mLsY

2

1

2

1

1)( PFE Tool

Inverse Laplace Transformy t( ) 1

2 g mLe g t e g t. Impulse Response

Link Falls Downy t( ) θ t( )

Unstable ImpulseResponse

t

20

Page 206: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 206/213

Control Design

[ ] x y

umL

xg

x

01

/ 1

0

0

10

=

+= State Equation

Find K in u Kx r so poles are at s = -1 Objective

∆d s( ) s 1( ) 2 n 2

∆d A( )0

g

1

0

1

0

0

1

2 g 1

2 g

2

g 1Let s A

K 0 1( )

0

1

mL

1

mL

0

1

. g 1

2 g

2

g 1.

Ackerman’s formula[ ]mLgmLK 2)1( += answer

Check the answer

Formula for closed-loopdenominator∆ s( ) sI A BK( )

[ ]−−=+−=−

21

102)1(

/ 1

0

0

10mLgmL

mLg BK A Find A - BK

∆ s( )s

0

0

s

0

1

1

2

s

1

1

s 2

∆ s( ) s 2 2 s 1 s 1( ) 2 checks

Note the control is given by

=θ θ

xu Kx r where so

r mLgmLu +−+−= θ θ 2)1(control which mustbe implemented

20

Page 207: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 207/213

Computer Implementation

Plant

θ

u

r t( ) u(t) θ y t( )+ Encoder

-

+mL g 1( )

NumericalDifferentiator2 mL

Computer

r mLgmLu +−+−= θ θ 2)1( Control

20

Page 208: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 208/213

Same Example

θ m

What if

L is not available for measurements ?

θ g

Solution: Use a polynomial regulator

u

Polynomial Regulator

V s( ) + Y s( )T s( )R s( )

H s( )ReferenceInput

PolynomialRegulator

-

N s( )

R s( )

Given H s( ) 1

mL s 2 g Open-loop TF

Objective:Place both closed-looppoles at s= -1

Find T(s), R(s) and N(s) such that Y s( )

V s( )

1

s 1( ) 2

Step 1 Determine A(s), B(s), Q(s) and P(s) from the problem statement and check restriction1

H s( ) B s( )

A s( )

1

mL s 2 g.open-loop TF

Hd s( ) Q s( )P s( )

1

s 1( ) 2desired closed-loop TF

Restrictions

1) degree P s( )( ) degree A s( )( ) 2 OK

20

Page 209: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 209/213

)(s B+ )(s B−Step 2 Find and and check restriction 2

H s( ) B s( )

A s( )

1

mL s2

g.

Plant

1)(

1)(

1)(

=

=

=

+

s BmL

s B

mLs B

Restrictions

)(s B−2) Q(s) must contain the roots found in

1)( =− s BQ s( ) 1 OK

Step 3 Define R(s) and T(s) in terms of subpolynomials

11).(

)()()(

)( 11 sT s B

sQsT sT == − mL

s Rs Bs Rs R

)()()()( 1

1 == +

R1 s( ) T 1 s( ), are unknown at this point.

Step 4 Determine the degree of each polynomial

1deg

1121degdeg

1degdeg

1deg

11021degdegdeg

11

1

1

==−=−=

===

=−−=−−= +

N

A N

T R

T

B AT ⇒ L 1

⇒ C 1

Step 5 Define the structure of T1 s( ) R 1 s( ), N s( ),Poles of T1 should be 10 times bigger than the largest pole of P(s) Rule of

ThumbLet a = 10

T1 s( ) s 10( ) L s 10( ) L 1

1deg 1 = RR1 s( ) s r 0 1deg = N N s( ) n 1 s n 0

r0 n1, n0, are unknown at this point

20

Page 210: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 210/213

Step 6 Solve the Diophantine Equation to determine r i ni, coefficients in R1 s( ) and N s( )

)()()()()()( 11 sT sPs N s Bs Rs A =+ −

s2

g s r o. 1( ) n 1 s. n0. s2

2 s 1 s 10( ). Insert Polynomial

s3 r0 s 2. g s. g r 0. n1 s. n0 s 3 12 s 2 21 s 10 Simplify

⇒s2 r0. s 2 12( ). r0 12

⇒ n1 g 21s g n 1. s 21( ).

⇒ n0 10 g r 0. 10 g 12.

g r 0. n0 10

r0 12 n 1 g 21 n 0 12 g 10 Solve for coefficients

R1 s( ) s 12Gives R1 s( ) and N s( )N s( ) g 21( ) s 12 g 10( )

Step 7 Construct R(s) and T(s)

10)1(

)1)(10()(

)()()( 1 +=+== − s

ss B

sQsT sT

mLs

s Bs Rs R 12

)()()( 1+== +

21

Page 211: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 211/213

Plant

V s( ) s 10( )

s 12mL

+ Y s( )1

mL s 2 g.

-

g 21( ) s 12 g 10( )

s 12

mL Block Diagramfor closed-loopsystem

Check your answer

V s( ) Y s( )s 10( )

s 12

mL

s 12( ) 1

mL.

s 12( ) s 2 g. 21 g( ) s 12 g 10( )

.... Feedforward Feedback Combination

V s( ) Y s( )s 10

s3 12 s 2 21 s 10Combine cascade blocks

V s( ) Y s( ) Factordenominator

s 10( )

s 10( ) s 2 2 s 1.

V s( ) Y s( ) Cancel observer pole1

s 1( ) 2

checks sinceY s( )

V s( )

1

s 1( ) 2

21

Page 212: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 212/213

AppendixCausality

We also note that even though only causal systems can be implemented in real time, noncausalsystems are still of inetrest. For one thing, the independent variable may not always be time, asfor example, in optics. Second, even when time is the independent variable, noncausal systems areuseful in providing benchmarks of performance; the ideal band-pass filter is a classic example.Furthermore, as the reader may know, noncausal systems may often be satisfactorily approximatedby causal systems plus a delay. FInally, noncausal systems may arise in the course of analysis,when decomposing or recombining causal systems.

The skeleton-in-the-closet of L Transforms

][•

x+

L [1(t)] = s 1= L [1(t)] and L = s( L x) - x(0+)

+ - + +

==−= − 01.)]([ 1 s st δwe obtain L L [0]+ +

This may be a surprise, though it is consistent with the direct calculation

∫ ∞

+

0

)( dt et st δ)]([ t δL = = 0+

)(t δThe expected formula for the Laplace transforms of is 1. But this actually follows

from the use of the L formulas.-

10. 1 =−− s s)]([ t δ ]/)(1[ dt t d L =L =- -

which also agrees with the direct evaluation.

More detailed discussions of the L transform can be found in many places, e.g., L.A. Zadeh and

C. Desoer, Linear Systems --- A State-Space Approach, MGraw-Hill, New York, 1963.

"Derivatives" of Discontinuous Functions and Delta Functions. The introduction of the deltafunction enables us to give meaning to the derivative of a function at a point of discontinuity. Weshould note that Q δ(.) can be regarded as the derivative of a step function. Thisderivative relationship is certainly true (in the conventional sense) as long as ε 0 and the useof the symbol δ(.) allows us to extend it to the case where ε = 0.

)(1)(1)(1

lim)(lim)(00

t dt d t t

t pt =−−==→→ ε

εδ

εε

ε

Having gotten this far, we can go further and, using the same ideas, introduce a derivativefor the delta function and in fact also second-and higher-order derivatives. To introduce the

derivative, say δ 1( ).( ) , we write

ε

εδδδδ

ε

)()(lim/)()(

0

)1( −−==→

t t dt t d t

21

Page 213: Sisteme Liniare Lab

8/13/2019 Sisteme Liniare Lab

http://slidepdf.com/reader/full/sisteme-liniare-lab 213/213

0→ε A pictorial interpretation using sequences is provided by the figure below. As , the

function in Fig a) tends towards the unit impulse δ(.), while the function in Fig b) approaches

what can be interpreted as its derivative. Since for very small ε the functionin Fig b) approaches whatcan be interpreted as its derivative. Snce for very small ε the function in Fig b) consists of two narrowbut strong pulses of opposite sign, the function in the limit is called the unit doublet . It is an idealizationof a dipole in electromagnetic theory and a couple (torque) in mechanics.

This procedure can be similarly extended to define δ 2( ).( ) δ3

.( ), and so on: We merelywith smoother and smoother approximating sequences for δ(.). The derivatives obtained by theabove procedures may be called generalized derivatives since the conventional derivatives are notdefined.