25
Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO20 11

Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Single-ion Quantum Lock-in Amplifier

Shlomi KotlerNitzan AkermanYinnon GlickmanAnna Kesselman

Roee Ozeri

The Weizmann Institute of Science

FRISNO2011

Page 2: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

measurement

coherence

Information carriers• Physical memory• transmission channels• Weak coupling to the environment

Information getters• Measurement probe• Couples to its environment

Information is Physical

Noise as a common enemy.

Page 3: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Radio transmission

• Transfer an audio-frequency electro-magnetic signal, f(t), over a noisy medium.• AM: modulate f(t) with a frequency m , outside the noise bandwidth:

• At the receiver, mix the recieved signal with and low-pass filter

• Recover at base-band frequencies the signal

Page 4: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Lock-in amplifier and measurement

• Modulate Y at a frequency m outside the noise bandwidth:

• Invented in the 50’s by Princeton physicist, Robert Dicke

• Electronically mix the detected Y signal with:and low-pass filter

• Want to measure a (noisy) physical quantity Y

Page 5: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

“Quantum Radio”: Dynamic de-coupling•Protect coherence in a quantum system (e.g. qubit) which is subject to a noisy environment or coupled to a non-Markovian bath

• Engineer a time dependent system Hamiltonian: H(t)

•Decoherence rate is proportional to the spectral overlap of the system time evolution with the noise/bath spectrum.

Sagi, Almog and Davidson, Phys. Rev. Lett., 104, 253003 (2010)Gordon, Erez and Kurizki, J. of Phys. B, 40, S75 (2007)

Page 6: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Y = (i 2Y = (i 2

X = ( 2X = ( 2

ZZ =

Z

Y

X

The Bloch sphere

Quantum two-level probe

0 = 0(B)

L 0 = (B)

Page 7: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

1st Ramsey pulse 2nd Ramsey pulse

Quantum phase estimation

T

i i

Bloch sphere

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

P

phase

• Noise reduces fringe contrast• Repeat the experiment many times• Reduced contrast = more experiments

Page 8: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

1st Ramsey pulse 2nd Ramsey pulse

echoecho

N Echo-pulses

Quantum Lock-in

T

J. R. Mae et. al. Nature, 455, 644, (2008)

S. Kotler et. al. arXiv:1101.4885[quant-ph] (2011); accepted in Nature

Page 9: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

A single trapped ion

Page 10: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Electronic levels in 88Sr+

5 2P1/2

5 2P3/2

5 2S1/2

5 2P Fine structure

Turn on small B field2.8 MHz/G

4 2D3/2

4 2D5/2

4 2D

422 nm

408 nm

1092 nm

1033 nm

674 nm

Page 11: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Probe initialization

5P1/2

5P3/2

5S1/2

2.8 MHz/G

Optical pumping

Fidelity > 0.9999

Page 12: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Coherent probe rotations

i i

Bloch sphere

Pulse time RF phase

Page 13: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Qubit Detection

0 10 20 30 40 500

50

100

150

200

250

2P1/2

2P3/2

2S1/2

Detection

422nm

2D5/2

674nm Shelving

2D3/2

0 10 20 30 40 500

50

100

150

200

250

= 0.4 Hz

dark bright

1092nm

2.8 MHz/G

Fidelity = 0.9989

Page 14: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

0 1 2 3 4 5 6 7 8 9 10 11 12

-20

0

20

40

60

80

100

Pha

se c

ontr

ast

%

arm (ms)

1

0 1 2 3 4 5 6 7 8 9 10 11 12

-20

0

20

40

60

80

100

Pha

se c

ontr

ast

%

arm (ms)

1

5

0 1 2 3 4 5 6 7 8 9 10 11 12

-20

0

20

40

60

80

100

Pha

se c

ontr

ast

%

arm (ms)

1

5

9

0 1 2 3 4 5 6 7 8 9 10 11 12

-20

0

20

40

60

80

100

Pha

se c

ontr

ast

%

arm (ms)

1

5

9

13

1st Ramsey pulse 2nd Ramsey pulse

echoecho

N Echo-pulses

0 1 2 3 4 5 6 7 8 9 10 11 12

-20

0

20

40

60

80

100

Pha

se c

ontr

ast

%

arm (ms)

1

5

9

13

17

Echo Pulse Train

Page 15: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

17 Echo-pulses

Long Coherence time and Measurement Sensitivity

A = contrast

2.6 G3.9 G 5.4 G

Page 16: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Long Coherence time and Measurement Sensitivity

A=1; Standard Quantum Limit

Page 17: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Coherence time = 1.4 Sec

Fast Lock-in Modulation

Modulation at 312.5 Hz

1st Ramsey pulse 2nd Ramsey pulse

N Echo-pulses

Sensitivity= 0.4 Hz/Hz1/2 =0.15 G/Hz1/2

Page 18: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Allen deviation analysis

Minimum uncertainty: 9 mHz (3 nG) after 3720 sec

Page 19: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

100

101

102

103

104

105

106

10710

-2

100

102

104

106

108

1010

1012

Resolution (nm)

Se

nsi

tivity

(fT

/Hz1

/2)

NV DiamondHarvard 2008

Single ionWeizmann 2010

BECBerkeley 2006

CommercialSQUID's

SERFPrinceton 2003

SQUID

Magnetometer Performance

100

101

102

103

104

105

106

10710

-2

100

102

104

106

108

1010

1012

Resolution (nm)

Se

nsi

tivity

(fT

/Hz1

/2)

NV DiamondHarvard 2008

Single ionWeizmann 2010

BECBerkeley 2006

CommercialSQUID's

SERFPrinceton 2003

SQUID

1/(resolution)3/2

100

101

102

103

104

105

106

10710

-2

100

102

104

106

108

1010

1012

Resolution (nm)

Se

nsi

tivity

(fT

/Hz1

/2)

NV DiamondHarvard 2008

Single ionWeizmann 2010

BECBerkeley 2006

CommercialSQUID's

SERFPrinceton 2003

SQUID

Page 20: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Light shift Detection

1st Ramsey pulse 2nd Ramsey pulse

Echo pulses

Off-resonance 674 nm beam(Line-width ≤ 80 Hz)

5 2S1/2

4 2D5/217 kHz

674 nm

Page 21: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Small Signal Lock-in Detection

Measured light shift: 9.7(4) Hz

Calculated: 9.9(4) Hz

Page 22: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Light shift Spectroscopy

5 2S1/2

4 2D5/2

674 nm

• Scan the laser frequency across the S →D transition

Page 23: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Light shift Spectroscopy

Page 24: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Summary• Quantum Lock-in amplifier: Dynamic coupling/de-coupling can improve

on measurement SNR

With a single trapped ion coupled to a magnetically noisy environment:

• A long coherence time: 1.4 sec.

• Frequency shift measurement sensitivity : 0.4 Hz/Hz1/2 (15 pT/Hz1/2)

• Frequency shift measurement uncertainty: 9 mHz (300 fT) after 1 hour integration time

• Applications: magnetometery; direct magnetic spin-spin coupling

• Applications: Precision measurements; frequency metrology.

S. Kotler et. al. arXiv:1101.4885[quant-ph] (2011); accepted in Nature.

Page 25: Single-ion Quantum Lock-in Amplifier Shlomi Kotler Nitzan Akerman Yinnon Glickman Anna Kesselman Roee Ozeri The Weizmann Institute of Science FRISNO2011

Thank you

Roee

Yinnon

Anna

ShlomiNitzan

Yoni Ziv Elad