31
December,2001 1 Simulation of Tightly Coupled INS/GPS Navigator Ade Mulyana, Takayuki Hoshizaki December, 2001 Purdue University

Simulation of Tightly Coupled INS/GPS Navigator

  • Upload
    koen

  • View
    44

  • Download
    5

Embed Size (px)

DESCRIPTION

Simulation of Tightly Coupled INS/GPS Navigator. Ade Mulyana, Takayuki Hoshizaki. December, 2001. Purdue University. Model and Parameters to Drive Simulation. Trajectory Input. Aircraft. Turbulence Input. Model. Time Input. Aircraft Motion. Satellite Constellation. Errors. - PowerPoint PPT Presentation

Citation preview

Page 1: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 1

Simulation of Tightly Coupled INS/GPS Navigator

Ade Mulyana, Takayuki Hoshizaki

December, 2001

Purdue University

Page 2: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 2

Model and Parameters to Drive Simulation

Aircraft Motion

Aircraft Model

Trajectory Input

Time Input

Turbulence Input

Errors

GPS

Satellite Constellation

Processing Mode

AntennasNumber, Location

Errors

INS Position, Attitude, Rates Position, Attitude, Rates

Filter

Aircraft Position & Attitude Estimate and Uncertainty

Transformation to Sensor Position, Attitude, and Uncertainty

Errors

ErrorsSensor Parameters

Image AcquisitionParameters

Site Model

Imaging System

Target CoordinatesUncertainty, CE90

Graphic Animation

Multi-ImageIntersection

Synthetic Image GenerationErrors

Target Tracking

Covariance data passing

Page 3: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 3

Outline

1. Overview

2. Structure of Simulation

3. Simulation Models

4. Kalman Filter

5. Initial Conditions

Error Source Specifications

6. Results

7. Conclusions

Page 4: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 4

Overview

(1)UAV Dynamics

Nominal Trajectory

(2) Navigation Equation

INS Output

(3) Tightly Coupled INS/GPS

INS/GPS Output

Covariance Data

(4) Covariance data is passed to Imagery Analysis

Page 5: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 5

GPS Receiver

IMU Nav

Structure of Simulation

Tightly Coupled INS/GPS

Position

Velocity

Orientation

Covariance

UAV

Kalman Filter

+

-

INS

Bias Correction

Position, Velocity, Orientation and Covariance correction

Page 6: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 6

Simplified IMU Model

äxxx~ −=where

äx = Bias + White Noise

: Sensor Output

: Sensor Input

Bias : Markov Process, tc=60s

for all

x~

x

⎩⎨⎧

ωωω=zyx

zyx

,,a,a,a

xAccelerometer Outputs

Rate Gyro Outputs

Page 7: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 7

GPS Receiver Model

dt

dñÄ

dt

tdc

dt

dt

ÄñÄtc2z)(Z2y)(Y2x)(Xñ

GPS

GPS

+=

++−+−+−=

: Platform Position

dt

d

dt

tdc

tcz,y,xZ,Y,X

where

ρΔ

ρΔ

Δ

Δ

: Satellite Position

: Pseudorange equvalent

Clock Bias (Random Walk)

: Pseudorange rate equivalent

Clock Drift (Random Walk): Normally Distributed Random Number

: Normally Distributed Random Number

Pseudorange

Pseudorange Rate

Page 8: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 8

Kalman Filter: Error Dynamics

]dt

tdct,c

,B,B,B,B,B,B

äh,äë,äö,,äv,äv,äv

äã,äâ,äá,[äx

dt

d

azayax

ùzùyùx

DEN

GväxFäx

ΔΔ

=

+=

Orientation Angle Errors

17 States Kalman Filter

Velocity Errors

Position Errors

Gyro Biases

Accelerometer Biases

Clock Bias and Drift

Page 9: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 9

Kalman Filter: Output Equation

( )

( )

INSINSINS

INS2

INS2

INS2

INSINS

GPS

222GPS

dt

tdc

dt

d

dt

dtc)zZ()yY(xX

dt

d

dt

tdc

dt

d

dt

dtc)zZ()yY(xX

Δ+

ρ=

ρΔ+−+−+−=ρ

ρΔ+

Δ+

ρ=

ρρΔ+Δ+−+−+−=ρ

Measurement: ⎥⎥

⎢⎢

⎡ρρ

=dt

dZ Random Noise: ⎥⎥

⎢⎢

⎡ρ

Δ

ρΔ=Δ

dt

d

Δ+δ=− xHZZ INSGPS

Output Equation:

xH

δ∂ρ∂

=where

Page 10: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 10

Initial Error Condition

])s/m(,m[]S,S[)d,b(Pg)B(P

)s/rad()B(P

)s/m(]v,v,v[)v,v,v(Prad)],,[),,(P

)]s/m(,m[]S,S[]d,b[

g],,[]B,B,B[s/rad],,[]B,B,B[

m1hrad]7e57.1,7e57.1[],[

s/m]1.0,1.0,1.0[]v,v,v[rad]002.0,001.0,001.0[]3E,2E,1E[

thatso],,[

22db0

22aiai0

22ii0

20

2D0

2E0

2NDEN0

220

20

200

db0

BaBaBa0azayax

BBB0zyx

0

0

0DEN

000

000

=σ=σ=

δδδ=δδδδγδβδα=δγδβδα

=

σσσ=σσσ=

=δ−−=δλδφ

=δδδ=δδδ=δγδβδα

ωω

ωωωωωω

• Initial Errors

• Initial Covariance Values

Page 11: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 11

Error Source Specifications

r)deg/sqrt(h0.070.0015Ndeg/hr 0.35 0.003

)Hz(sqrt/g505Ng5025

B

a

Ba

ω

ωσ

μμμμσ

INS

AccelerometersBias White Noise (sqrt(PSD))

Bias White Noise (sqrt(PSD))

Notation LN-100G LN-200IMU Units

Rate Gyros

(good) (worse)

• 2 levels of INS are used for Simulation

)(σ

)(σ

(deg/hr/sqrt(Hz))

Page 12: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 12

Error Source Specifications

GPS

GPS Receiver Notation Receiver 1 Receiver 2 Units

Pseudorange 6.6 33.3 m

Pseudorange Rate 0.05 0.5 m/s

ClockBias White Noise(PSD) 0.009 0.009

ClockDrift White Noise(PSD) 0.0355 0.0355

rrσ

bS

dS

2m2)s/m(

)(σ)(σ

(good) (worse)

• 2 levels of GPS Receivers are used for Simulation

Page 13: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 13

Satellite Geometry during the Simulation

Page 14: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 14

Local Frame: x, y, z

Xecef

Yecef

Zecef

x

y

z

x=Zecef

y=-Yecef

z=Xecef-6378137m

Nominal Trajectory

)ft20000()m(6096h)s/ft200(

)s/m(61v

0

x

=

=

Page 15: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 15

Result 1:Comparisons between INS/GPS and Unaided INS;(Good INS,Good GPS)

0 50 100 150 200 250 300 350 400-500

0

500

1000Local Frame Position Errors

dx (m)

0 50 100 150 200 250 300 350 400-500

0

500

1000

dy (m) INS/GPS Error

Unaided INS Error

0 50 100 150 200 250 300 350 400-10

0

10

20

30

dz (m)

time (s)

Local Frame Position Errors: (true) – (estimated)

dx (m)

dy (m)

dz (m)

0 400 (sec)• INS/GPS works very well

Page 16: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 16

0 50 100 150 200 250 300 350 400-2

0

2

4Local Frame Velocity Errors

dvx (m/s)

0 50 100 150 200 250 300 350 400-2

0

2

4

dvy (m/s)

INS/GPS ErrorUnaided INS Error

0 50 100 150 200 250 300 350 400-0.1

0

0.1

0.2

0.3

dvz (m/s)

time (s)

Local Frame Velocity Errors: (true) – (estimated)

)s/m(dvx

)s/m(dvy

)s/m(dvz

400 (sec)0• INS/GPS works very well

Result 1:Comparisons between INS/GPS and Unaided INS;(Good INS,Good GPS)

Page 17: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 17

0 50 100 150 200 250 300 350 400-2

-1

0

1x 10

-3 Euler Angle Errors

dE1 (rad)

0 50 100 150 200 250 300 350 400-15

-10

-5

0

5x 10

-4

dE2 (rad) INS/GPS Error

Unaided INS Error

0 50 100 150 200 250 300 350 400-3

-2

-1

0x 10

-3

dE3 (rad)

time (s)

Local Frame Euler Angle Errors: (true) – (estimated)

droll (rad)

dpitch (rad)

dyaw (rad)

• Roll and Pitch errors are quickly corrected• Yaw error correction takes time

400 (sec)0

Effect on Geo Positioning?

Result 1:Comparisons between INS/GPS and Unaided INS;(Good INS,Good GPS)

Page 18: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 18

Result 2:Ensembles (Good INS,Good GPS)

Local Frame Position Errors: (true) – (estimated)

0 50 100 150 200 250 300 350 400-2

-1.5

-1

-0.5

0Local Frame Position Errors

dx (m)

0 50 100 150 200 250 300 350 400-4

-2

0

2

dy (m)

0 50 100 150 200 250 300 350 400-2

-1

0

1

2

dz (m)

time (s)

dx (m)

dy (m)

dz (m)

0 400 (sec)• Position error is less than 3m±

• Error value is not 0 mean locally

LN-100G:10mCEP

Page 19: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 19

0 50 100 150 200 250 300 350 400-0.1

-0.05

0

0.05Local Frame Velocity Errors

dvx (m/s)

0 50 100 150 200 250 300 350 400-0.1

-0.05

0

0.05

dvy (m/s)

0 50 100 150 200 250 300 350 400-0.1

-0.05

0

0.05

0.1

dvz (m/s)

time (s)

Result 2:Ensembles (Good INS,Good GPS)

0 400 (sec)

)s/m(dvx

)s/m(dvy

)s/m(dvz

Local Frame Velocity Errors: (true) – (estimated)

• Velocity error is less than 0.05m/s±

LN-100G:0.015m/s(rms)

Page 20: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 20

0 50 100 150 200 250 300 350 400-2

-1

0

1x 10

-3 Euler Angle Errors

dE1 (rad)

0 50 100 150 200 250 300 350 400-2

-1

0

1x 10

-3

dE2 (rad)

0 50 100 150 200 250 300 350 400-3

-2

-1

0

1x 10

-3

dE3 (rad)

time (s)

Result 2:Ensembles (Good INS,Good GPS)

0 400 (sec)

Local Frame Euler Angle Errors: (true) – (estimated)

droll (rad)

dpitch (rad)

dyaw (rad)

• Angle error is about 0.003 deg for roll and pitch,0.06 deg for yaw,

LN-100G:0.002deg (rms) for all pitch, roll and yaw

Page 21: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 21

Result 3: Comparisons between 4patterns

0 50 100 150 200 250 300 350 400-5

0

5

10Local Frame Position Errors

dx (m)

0 50 100 150 200 250 300 350 400-5

0

5

10

dy (m)

gIgGwIgGwIwGgIwG

0 50 100 150 200 250 300 350 400-10

-5

0

5

dz (m)

time (s)

0 400 (sec)

dx (m)

dy (m)

dz (m)

Local Frame Position Errors: (true) – (estimated)

blue red (:) black (-.) green (--)INS good worse worse goodGPS good good worse worse

• GPS performance directly affects position errors

200~300s covariance and nominal trajectory data are passed to imagery analysis

Page 22: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 22

0 50 100 150 200 250 300 350 400-0.1

0

0.1

0.2

0.3Local Frame Velocity Errors

dvx (m/s)

0 50 100 150 200 250 300 350 400-0.2

-0.1

0

0.1

0.2

dvy (m/s)

gIgGwIgGwIwGgIwG

0 50 100 150 200 250 300 350 400-0.1

0

0.1

0.2

0.3

dvz (m/s)

time (s)0 400 (sec)

)s/m(dvx

)s/m(dvy

)s/m(dvz

Result 3: Comparisons between 4 patternsblue red (:) black (-.) green (--)

INS good worse worse goodGPS good good worse worse

Local Frame Velocity Errors: (true) – (estimated)

• GPS performance directly affects velocity errors

Page 23: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 23

0 50 100 150 200 250 300 350 400-2

-1

0

1x 10

-3 Euler Angle Errors

dE1 (rad)

0 50 100 150 200 250 300 350 400-15

-10

-5

0

5x 10

-4

dE2 (rad)

gIgGwIgGwIwGgIwG

0 50 100 150 200 250 300 350 400-3

-2

-1

0x 10

-3

dE3 (rad)

time (s)0 400 (sec)

droll (rad)

dpitch (rad)

dyaw (rad)

Result 3: Comparisons between 4patternsblue red (:) black (-.) green (--)

INS good worse worse goodGPS good good worse worse

Local Frame Euler Angle Errors: (true) – (estimated)

• INS accuracy helps orientation accuracy

Page 24: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 24

Conclusions

• We have successfully built a realistic integrated INS/GPS which will be used to study the effects of navigation accuracy on target positioning accuracy.

• The INS/GPS is good at correcting roll and pitch angles, but not yaw angle.

• Improving GPS accuracy improves aircraft position accuracy. Improving INS accuracy improves aircraft attitude accuracy. Both aircraft position and attitude are needed to locate the target.

Page 25: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 25

Future Work

GPS

•Use of carrier phase observations

•Use of dual frequencies

•Differential carrier phase GPS

INS

•Estimate Scale Factor and Nonlinearity as well as Bias:

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎥

⎢⎢⎢

⎡=δ

z

y

x

z

y

x

z

y

x

zzyzx

yzyyx

xzxyx

DDD

BBB

aaa

SMMMSMMMS

ar

Page 26: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 26

References

(INS)

[1] Titterton, D. H. and Weston, J. L. (1997). “Strapdown Inertial Navigation Technology”. Peter Peregrinus Ltd.

[2] Rogers, R. M. (2000). “Applied Mathematics In Integrated Navigation Systems”. AIAA Education Series.

[3] Chatfield, A. B. (1997). “Fundamentals of High Accuracy Inertial Navigation”. Volume 174, Progress in Astronautics and Aeronautics. AIAA.

[4] Britting, K. R. (1971). “Inertial Navigation Systems Analysis”. Wiley Interscience.

(Kalman Filter)

[5] Brown, R. G. and Hwang, P. Y. C. (1985). “Introduction to Random Signals and Applied Kalman Filtering”. John Wiley & Sons.

[6] Gelb, A. (1974). “Applied Optimal Estimation”. M.I.T. Press.

Page 27: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 27

References (Cont.)

(Navigation Sensors)

[7] B. Stieler and H. Winter (1982). “Gyroscopic Instruments and Their Application to Flight Testing”. AGARDograph No.160 Vol.15.

[8] Lawrence, A. (1992). “Modern Inertial Technology”. Springer-Verlag.

[9] “IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros”. IEEE Std. 647-1995.

(GPS)

[10] Kaplan. E. D. (1996). “Understanding GPS Principles and Applications”. Artech House.

(Others)

[11] Military Standard for Flying Qualities of Piloted Aircraft 1797A.

[12] Department of Defense World Geodetic System 1984, “Its Definition and Relationships with Local Geodetic Systems”, National Imagery And Mapping Agency Technical Report

Page 28: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 28

Kalman Filter:Output Equation

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

δδδ

δδδ

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

ρ

ρρ

ρ

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

ρ

ρρ

ρ

×

×

dzyxbzyx

z~y~x~1

z

h

y

h

x

h

1z

h

y

h

x

h

1z

h

y

h

x

h

1z

h

y

h

x

h

e

e

e

e

e

e

kkk

111

kkk

111

INSk

1

k

1

GPSk

1

k

1

4k0

4k0

&&&

MMMM

MMMM

&M&

M

&M&

M

1H

2i

2i

2i

ii

eee

)zZ()yY()xX(

xX

x

hsCoordinateECEFPlatform:z,y,x

SatellitesVisibleofNumber:k

−+−+−

−−=

∂∂

Page 29: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 29

Kalman Filter:Output Equation

x

340

340

340T

340

340

340

340

340

10000000

000

ECEFNED

01000000

000h

zzzh

yyyh

xxx

dzyxbzyx

e

e

e

e

e

e

δ

××××

××××

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

∂∂

λ∂∂

φ∂∂

∂∂

λ∂∂

φ∂∂

∂∂

λ∂∂

φ∂∂

=

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

δδδ

δδδ

&&&

]d,b,B,B,B,B,B,B,h,,,v,v,v,,,[x

azayaxzyx

DEN

ωωω

δδλδφδδδδγδβδα=δ2H

Page 30: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 30

Simplified IMU Error Model

Gyrosfor)hrdeg/0015.0(

tersAcceleromefor)g5(PSDNoiseWhite:Di

Gyrosforhrdeg/003.0tersAcceleromeforg25

ensemblesforSTDBias)(Bias:B

InputSensor:aOutputSensor:a

~DDD

BBB

aaa

SMMMSMMMS

a

where

2

2D

B

i

z

y

x

z

y

x

z

y

x

zzyzx

yzyyx

xzxyx

aaa~

μ=

μ=σ

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎥

⎢⎢⎢

⎡=δ

δ−=

essMarkovProc

rr

r

rrr0

Page 31: Simulation of Tightly Coupled  INS/GPS Navigator

December,2001 31

Clock Error Model

d

b

DdDdb

=+=

&&

2d

2b

)s/m(0355.0PSD,NoiseWhiteDm009.0PSD,NoiseWhiteD

DriftClock:tcdBiasClock:tcb

====

Δ=Δ=&

Updating & Propagation in the Kalman Filter

⎥⎦

⎤⎢⎣

⎡⎥⎦⎤

⎢⎣⎡=⎥

⎤⎢⎣

−+⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

+

+

−+

−+

+

+

k

k

1k

1k

INSGPSk

k

k

k

k

b̂10T1

)ZZ(Kd̂