17
Simulation and modeling of smarter large power grids ADVANCED ENERGY 2012 30-31 Octobre 2012, New York, NY, USA Omar Saad, Researcher IREQ/Hydro-Québec

Simulation and modeling of smarter large power grids

  • Upload
    asta

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

Simulation and modeling of smarter large power grids. Omar Saad , Researcher IREQ/Hydro-Québec . ADVANCED ENERGY 2012 30-31 Octobre 2012, New York, NY, USA . Modern (Future) power systems. Increasingly complex transmission and distribution systems - PowerPoint PPT Presentation

Citation preview

Page 1: Simulation and modeling of smarter large power grids

Simulation and modeling of smarter large power grids

ADVANCED ENERGY 201230-31 Octobre 2012, New York, NY, USA

Omar Saad,Researcher IREQ/Hydro-Québec

Page 2: Simulation and modeling of smarter large power grids

Groupe – Technologie2

Modern (Future) power systems

> Increasingly complex transmission and distribution systems

> Evolution and upgrading of existing systems allowing to increase the penetration of renewable energies and to elevate security and flexibility levels

> Delivery of greener power > Large scale integration of renewable generation > Central and distributed generators, microgrids> Proliferation of HVDC systems> Smart Grids

• Huge needs in information and data for the operation and planning of power systems

Page 3: Simulation and modeling of smarter large power grids

Groupe – Technologie3

Large scale integration of renewable generation

> Deployment of intelligent controls, computer applications and communications

> Smart technologies for the interconnection of renewable energy generators in wide geographic areas

> Management of distributed resources> Power electronics application for: control

and variability> Sophistication of analysis methods

Page 4: Simulation and modeling of smarter large power grids

Groupe – Technologie4

Trends and challenges

> Simulation and analysis of super large networks with wideband models

• Electromagnetic and electromechanical transients> Simulation of super distribution grids (Smart network)> Challenges

• Data and data portability between power system applications• Visualization and analysis of huge systems• Parallel computations• Real-time computations• Online analysis• Unification of simulation methods and environments• Multi-domain simulations

Page 5: Simulation and modeling of smarter large power grids

Groupe – Technologie5

Simulation of very large systems: Hydro-Québec Network in EMTP-RV

Bergeronnes

Périgny

+Z

nO

+Z

nO

+Zn

O

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Zn

O

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Zn

O

+Zn

O

+Z

nO

+Z

nO

+Zn

O

+Z

nO

+Z

nO

+Z

nO

+Z

nO

+Zn

O

+Z

nO

+

ZnO

+Z

nO

+Z

nO

+ CX

C04

+20 06-a jout de 19 ohm s-tot al 44 o hms, 2300A

CX

C7

+ CX

C8

+ CX

C23

+

CX

C1

9

+

CX

C27

+

CX

C28

+

CX

C29

+

CX

C31

+

CX

C32

+

CX

C33

+

CX

C51

+

CX

C52

+

CX

C53

+

CX

C5

9

+

CX

C7

0

+

CX

C6

9

+

CX

C62

+

CX

C6

3

+

CX

C7

6

+

CX

C7

7

+ C

XC

78

+

CX

C8

0

+

CX

C81+

CX

C82

+

CX

C84

+

CX

C85+

CX

C8

6

+

CX

C92

+

CX

C93

+

CX

C94

1

2

abiti

bi_T

61T

62

+Z

nO

CP

2+L7

084_

708

5

192.

3

CP

+

L709

4

286.

6

CP

+

L705

9

273.

6

CP

+ 251.

4

L707

8

C

P+

L708

6

195

CP+

L7027

181. 6

CP +

60 .2

L7011

CP

+

L702

8

171.

2

CP

+

L70

29

CP

+

L705

3

230.

1

CP

+

L705

2

CP

+

L70

51

CP

+

L700

8_B

CP

+

L700

7_B

242

CP

+

L70

97

76.0

CP

+

L70

05

110.

2

CP

+

L703

5

CP +L7034

10 8

CP +

L7024

CP +L7017

22 8.8

CP +

L702525 1. 9

CP +

117. 2L7026

CP

+

L701

6

246.

5

CP

+

L704

5

182.

20

CP

+

L704

4

253.

670

CP +

93 .4

L7042

CP +

46 .1L7038

CP +

L7006

13 2.8

CP +

15 5.3

L7060

CP

+

L706

2

CP

+

L706

3

262.

3

CP

+

L708

0

241.

1

CP

+

L708

1

CP

+

L708

2

217.

8

CP +

31 .7

CP +

61.8

L7090

CP

+

L700

4_B

187.

2

CP

+

L70

04_A

224.

2

CP

+

L703

2

CP

+

L703

1

219.

9

CP

+

L70

33

CP +

Mise En Service =200370 .6 1

L7048

CP +

2003

70.2 0

L7049

CP

2+L7

069

_707

0

217.

7

2 3

1

+

1M

CP+

L7002

176. 8

CP

+

L702

3_B

CP

+

34.8

+Z

nO

CP

2+L7

092_

7093

270.

6

CP

+

L704

7

+Z

nO

CP

2+L7

076

_707

7

235.

3

CP

+L702

3_A

CP

+L700

8_A

CP

+L700

7_A

137.

8

CP +

26 .9

+

330 M X

+

16 5 MX

+

CP +

183.1

L7018

CP

+

L701

9

251.

6

+-

U1

puI1 ti lly_L7055

+- U

1pu

I1

+-

U1

puI1 du

vern

ay_L

7016

+-

U1p

u I1

+-

U1

puI1

+-

U1

puI1

+-

U1

puI1

+-

U1p

u I1

saguenay_L7026

+-

U1

puI1

+- U

1pu

I1

lave

rend

rye_

L709

4

1

2

23

1

+

1M

LF

LF42

1MW

39M

VA

R

SM

chur

chill

_A

1aA

11

?m

+-

U1

puI1

+

33 0 M X

+

16 5 MX

+

16 5 MX

+Z

nO

+

CX

C6

1C

P+

L706

1

261.

0

+

990 M X

+

16 5 MX

SM

lagr

ande

4_A

1aA

9

?m

LF

+-

U1

puI1

LF

+-

U1p

uI1

LF

lagr

ande

3_A

1aA

12la

gran

de3_

A1a

A12

SM

lagr

ande

3_A

1aA

12

?m

LF 0

SM

lagr

ande

2_A

1aA

16

?m

LF+

-U

1pu

I1

+

33 0 MX

CP

+

73.3L7

096

LF

+

1M2 3

1

73 5/23 0/12 .5

+-

U1

puI1

+

20 06

+

2006

2 3

1

20 03

735/ 12 0/12 .5

+

1M

+

96 MX @ 120 KV

LF

+-

U1

pu I1

+

fi ltre CC B2055_capac

2 3

1

+ 1M

+-

U1

puI1

LF

1

2

2 3

1

+ 1M

+-

U1

pu I1

+-

U1

puI1

LF

levi

s_b2

003

+ 97 600uS CXC1_2_3_4

CP

+ 44.7

CP

+

L30

78_3

079_

308

0_30

71_A

139.

020

+-

U1

pu I1 riviereduloup_b472

LF

CP

+

L709

5

102.

0

1

2

1

2

CP

+

L169

5

CP

+

L303

9

1

2

2 3

1

+

LF hartj

aune

+ha

rtja

une

3 gr

LF

+ -U1 pu

I1

LF

arnaud_b1609

2 3

1

CP +

L3115_L3116

70 .46

LF

+[R

,L]

L302

1_L3

022_

L30

23_L

3024

23

1

man

icou

aga

n_T

1aT4

+[ R, L] L3013_L3014 +

+ -U1pu

I1

hauterive_b1643

23

1

LFSM

ma

nic2

_A21

aA

28?m

1

2

ma

nic2

_T1a

T4

1

2

+-

U1

pu I1 +

+[R

,L]

L30

26

1

2

LF

1

2

1

2

CP +

36

CP

+L302

0_L3

012_

L30

11LFbe

rsim

is1_

A1a

A8

LFbe

rsim

is2_

A1a

A5

LF4M

W0.

54M

VA

R

+-

U1

puI1 charlevoixA

+-

U1

pu I1charlevoixB

LF35

7MW

10.5

MV

AR

LF 451M

W87

MV

AR

char

levo

ixB

CP

+

L300

1_L

3002

_L30

03_L

3004

+-

U1

puI1

LF16

98M

W0

CP + 87 .6

L3010

CP

+ 34.8

+-

U1

puI1

LF76

8MW

138M

VA

R

ja

cque

scar

tier_

b31

7

23

1

+

1M

CP +L3100_L3101

83 .9

CP+L3102_L3110_L3106_L310760

+

20 06

B317_capac

CP+

L3015

78 .4

CP+

L3005

11 7. 4

CP+

L3069

45.3

23

1

duve

rna

y_T2

T3

T5

+ [R ,L]

LCD11_LCD22

+

boundarycrt_b1025

LF

LF

2 3

1

+

1M

2 3

1

2 3

1

chen

ier_

T4a

T6

+[ R, L]

L3170_L3171

1 2CP + 10 7.0 7

L3168_L3169CP + 83 .4

L3172_L3173

LF

LFlaforge2_A1A2

CP +

54.9

LF

23

1

765/

315

/12.

5

1 2

CP+

45 .90

L3016

+

990 MX

+

13 20 MX

+

33 0 MX

+

33 0 MX

+

660 M X

CP+

L7055

CP+

L7056

12 0.6

+

330 MX

CP+

L7057

10 4.3

+

16 5 MX

+

495 MX

12

outardes3_T31aT34

LFoutardes3_A1aA4

+[R

,L]

L2375

+[R

,L]

L2329

23

1

+-

U1

puI1 thetford_b2290

LF

23 4MW46 .5 MVAR

+

B2290_capac

+

1M

+

33 0 MX

+

+

330 M X

LF

23

1

+ -U1pu

I 1

lanaudiere_b1262

+

+

1M

23

1

+

1M

23

1

+-

U1

puI1

LF46 0MW66 MVAR

+

1M

+

1M

LF

bouchervilleslack

2 3

1

+-

U1

pu I1

LF94

3MW

420M

VA

R

+

1M

23

1

chibougamau_T2T3

+-U

1pu

I1

LF

91M

W3M

VA

R

chib

oug

amau

_b16

83+

1M

CP+

L3150

CP+

L3151

23

1

abitibi_T1aT3+-U1puI1

lebel_b528LF

590MW48MVA R

+

1M

LF

+ -U1 pu

I1

+ -U1 pu

I1

LFnemiscauCLC LFalbanelCLC

+-U1 puI 1

LFchibougamauCLC

+ -U1 pu

I1

LF

chamouchouaneCLC

LF

1

2

stemarguerite3_T1T2

+

1M

23

1

+

1M

LF

radissonslack-2 00 0 MW du RNCC

1

2

1

2LF

1 2

lagrande1_T21T27

LF

17 MW3MV AR

CP

+L3

152_

L31

53

+

-1/1

E1

5/0

+

66 0 MX

+ [R , L]

L1498

+[R

,L]

L70

88

+[R

,L]

L708

9

CP+

L7054

LFlaurentidesCLC

P=0Q=0

Ph ase: 14

+ -U1 pu

I1

CP +

88 .98 0

L7040

LFmassena_b818

+

massena_b818

1 2

+

23

1

+[R

,L]

L302

7_L

3028

LF

SM?m

manic3_A1aA6+ [ R,L]L3035_L3036

12

1 212

23

1

CP

+

107.

7

L303

1_L

3032

CP

+

L303

3_L

303

4

CP

+

2005

55

L312

3

LF

manic5_b41

LF

SM?m

outardes4_A1aA4

LF

SM?m

manic5PA_A1aA4 LF

SM

manic5_A1aA8?m

1 2

20 05

LF

+

2 3

1

+

1M

1

2

315/

13.8

LF

CP

+

20 06

5.90

000E

+01

L31

76_3

177

1

2

735/

13.8

1

2

735/

13.

8

1

273 5/13. 8

CP

+

34

Mauricie sud

gentilly_b2100

nico let_b2007

Mauricie nord

mauricie_b488

tro is-rivières _b2268

2 3

1

+

1M

LFab

itibi

_CS

1CS

2

LF

LF

SM?m

AVR

-exs

t1-p

ss1a

(pu)

AVR

-iee

ex1

(pu)

SM?m

SM

outa

rdes

2_A

1aA

3?m

AVR

-exs

t1-p

ss1a

(pu)

CP

+

42.5

8

+-

U1p

uI1

AVR

-e xst1-p ss2 a

(pu)

+-U1puI1

SM

stemarguerite3_A1A2

?m

SM

east

man

_A1a

A3

?m

+1m

SM?m

abiti

bi_C

S1C

S2

LFlevis_CLC

P=0Q=0

Ph ase:14

+ -U1 pu

I1

SM?m

levi

s_C

S1C

S2

SM?m

LF

AVR

-expci1-pss2 a

(pu)

expci1 partiel

AVR

-exp ci1-pss2 a

(pu)

expci1 part iel

SM

brisay_A1A2

?m

SM

laforge2_A1A2

?m

SM

la forge1_A11aA16

?m

AVR

-exp

ci1

-pss

2a

(pu)

expc

i1 p

artie

lRé glag e Plani ficat eurSM

lagr

ande

1_A

1aA

12

?m

SM?m

AVR

-exs

t1-ie

eevc

(s.o

.)-p

ss4b(p

u)ou

t

in Vct

AVR

-exs

t1-ie

eevc

(s.o

.)-p

ss4

b(pu)

out in V

ct

+-

U1p

uI1

+-

U1

puI1+

-U

1pu

I1

2 3

1

+

1M

+[R

,L]

L316

2_L

316

3

+ [ R, L]

L7079

+[R

,L]

L7

020

+L3166_L3167

+[R

,L]

L3

104

+

+ L302

9_L3

030

+ [R ,L]

L3009

+[R

,L]

L23

85_A

+L7010

LF

2162

MW

0

+

SM

toulnustouc_A1A2

?m

+-

U1p

uI1

AVR

-exs

t1-p

ss1

a

(pu)

AVR

-exs

t1-p

ss1a

(pu)

AVR

-exst1-pss1a

(pu)

Tw=0. 03s a u li eu de 0.08 s

AVR

-exs

t1-p

ss1a

(pu)

AVR

-e xst 1-p ss1 a

(pu)

AV

R

-exs

t1-p

ss1a

(pu)

AVR

-exst1-pss1a

(pu)

AVR

-exst1-pss1 a

(pu)

Régl age P lanif icat eur

AVR

-e xst1-p ss1 a

(pu)

AVR

-exs

t1-p

ss1

a

(pu)

AVR

-exs

t1-p

ss1

a

(pu)

+

SM?m

AVR

-exp

ci1

-pss

1a

(pu)

expc

i1 p

artie

l

Plan if icateu r

+

66 0 MX

+

33 0 MX

AVR

-exs

t1-p

ss4b

(pu)

KG=0

AVR

-exs

t1-p

ss4b

(pu)

Load-Flow

OFF

I/O FILES

Start EMTP

SimulationOptions

Simulation webShow Load-Flow

AVR

-exst1-pss4 b

(pu)

ks=1

AVR

-exst 1-pss4 b

(pu)

KG=1

+

1M

1 2

V

I

V

I

albanel_CLC

V

I

chibougamauCLC

V

I

chamouchouane_CLC

V

I

laurentidesCLC

V

I

levis_CLC

V

I

laverendrye_CLC

+

3600 Ohm

L1

View Steady-State

+

16 5 MX

+ 1M

PI+L7046

PI+L7

036

PI+L7009

23

1

+

1M

+-

U1

puI1

LF

CP

+

L701

4

51.9

0

+

1M

+

16 5 M X

2 3

1

+

1M

2 3

1

+

1M

AVR

-exs

t1-p

ss4b

(pu)

+34 5.7 M X @ 31 5 KV. Fusible e xt ern e

XC4_boucherville

740.09/_6.4grandbrule_b770

751.51/_26.2saguenay_b718

759.06/_36.0

chibougamau_b783

752.38/_41.1arnaud_b709

759.34/_30.0chamouchouane_b731

753.88/_9.0appalaches_b790

754.73/_34.4abi tibi_b713

752.87/_20.7laverendrye_b714

748.11/_49.6montagnais_b710

749.84/_3.7descantons_b755

748.57/_1.0

monteregie_b784

738.42/_57.9

churchill_b760

763.82/_60.1

742.28/_1.9

carignan_b730

arnaud_b309

750.03/_34.2manicouagan_b705

haut

eriv

e_b

643

748.86/_6.0

nicolet_b707

751.38/_-0.8

chateauguay_b719

322.03/_79.2

767.32/_58.5lemoyne_b723

768.86/_63.5tilly_b724

radisson_b1020

radisson_b320

755.52/_60.3

lagrande2_b749

radisson_b720

micoua_b306

toulnustouc_b476

748.42/_37.7micoua_b706

a ab bc c

cba a b c

305.45/_-1.8mauricie_b488

758.77/_45.7nemiscau_b780

760.56/_46.3albanel_b782

733.88/_0.3duvernay_b702

739.58/_1.4chenier_b715

746.90/_-0.7hertel_b708

748.78/_14.7jacquescartier_b717

326.63/_86.5

310.02/_5.0jacquescartier_b317

314.24/_8.7laurentides_b304

manicouagan_b305

317.28/_33.0bersimis1_b433

315.42/_33.7bersimis2_b434

749.82/_14.5laurentides_b704

752.80/_13.5levis_b703

boucherville_b701

742.00/_-0.0

• 1100 lines• 296 3-ph transformers• 532 loads• 7 SVC• 32 Synchronous

Condenser• 99 SM

Page 6: Simulation and modeling of smarter large power grids

Groupe – Technologie6

EMTP model of Gaspésie system:Integration of wind generation

RIVIÈRE-DU-LOUP 315/230/120 kV

36 M VAR

TO 735 kV SYSTEM

LÉVIS 735/315 kV

KAMOURASKA 315 kV

GOÉMON230/161/69 kV

Mont-LouisGE 100.5 MW

VigerREpower 25 MW

TO NEW-BRUNSWICK

RIMOUSKI 230/69 kV

RIMOUSKI 315/230 kV

MICMAC230/161 kV

CASCAPÉDIA 230/69 kV

MATAPÉDIA 315/230 kV

Gros MorneGE 211.5 MW

CarletonGE 109.5 MW

Vent du KemptEnercon100 MW

St-DamaseEnercon 24 MW

Le PlateauEnercon 161 MW

TemiscouataEnercon 25 MW

DC

TO NEW-BRUNSWICK

New RichmondEnercon 66 MW

St-Ulric/St-Léandre GE127.5 MW

Lac Alf redREpower 325 MW

Nordais-1Neg Micon 43 MW

Mont CopperVestas 54 MW

Montagne-Sèche GE 58.5 MW

Anse-à-Valleau GE 100.5 MW

Baie-des-Sables GE109.5 MW

Mont MillerVestas 54 MW

Nordais-2 Neg Micon 57 MW

DC

LESBOULES 230/120 kV

230 kV

315 kV

315 kV

230 kV 230 kV230 kV

161 kV

161 kV230 kV

230 kV

315 kV

315 kV

Three-Winding Transf ormer

Riv ière-Sainte-AnneCapacitiv e Div ider

AC Filters

AC Filters

Two-Winding Transf ormer

DC

Sy nchronous Condenser

HVDC Interconnection

Zigzag Grounding Transf ormer

Collector Sy stem For WPPLoad

315 kV Lines230 kV Lines

120 kV Lines161 kV Lines

69 kV Lines34,5 kV Lines25 kV or less Lines

+

+

CP+

CP+

CP+

CP+

CP+CP+

CP+

CP+

CP+

CP+

CP+

+

++

+

+

+

+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

+

LF

+

+

CP+

CP2

CP+

CP+

CP+

CP2CP2CP2 CP2

+

+

+

CP+

+

+

CP2

CP2

CP2

CP+

CP+

DF

REpo we r

En erc o n

+

Wind

Ve sta sV 80Op tis l ip

LVRTVRCCAG 04

DF

GE

DF

GEDF

GE

+

Wind

Ve sta sV 80Op tis l ip

LVRTVRCCAG 04

+

CP+

CP+

+

CP+ CP+

CP2

CP+

CP2

+

+

+

+

CP+

CP+

CP+

CP2

CP+

CP+

CP+

CP+

CP2

CP+

CP+ CP+

CP+

CP+

+

CP+

CP+

+CP

+

+

CP+

CP+

LF

+

NEGMICON75 0 k W

M AS àcaged'écur euil

N143 MW

NM 75 0/48

+

NEGMICON75 0 k W

MAS àcaged'écureuil

N257 MW

NM7 50 /4 8

CP+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ ++

++

+

+

++ +

CP+

++

+

+

CP2

CP2

CP2

CP2

+

+

+

++

DF

REpower

Ene rco n

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

LF

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

LF

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

+

+

En erco n

EXP

CP+

LFLF

DF

GE

+

+

DF

GE

12

1 2

12

1 2

12 12

12

12

12

12

1 2

1 2

1 2

CP2

1 2

1 2

2

3

1

2

3

1

2

3

1

1 2 12

1 2

12

1 2

12

12

12

12

12

12

12

12

12

12

1 2

12

12

2

3

1

2

3

1

2

3

1

2

3

1

12

12

12

2

3

1

12

12

12

12

1 212

2

3

1

2

3

1

2

3

1

1 2

1 2

12

12

12

1 2

1 2

12

1 2

2

3

1

2

3

1

12

12

12

12

12

12

12

12

12

12

12

1 2

23

1

23

1

2

3

1

2

3

1

1 2

2

3

1

2

3

1

EXP

+

+

+

+

+

CP2CP2

CP+

+

12

2

3

1

LF

LF

LF

En erc on

LF

LF

LF

LFLF

LF

LF

LF

LF

LF

LF

1 2

1 2

LF

CP+

EXP

2

3

1

Zn O

KAMOURASKA

2

3

1

CP22

3

1

CP2

+

CP+ CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

CP+

En erc on

CP+

23

1

+

+

+

+

+

+

EXP

CP2

EXP

12

EXP

CP+CP+

CP+

CP+

CP+

LF

CP+ DF

GE

LF

+DF

GE

+LF

EXP

121 2

+

SC

12

CP+

1 2

EXP

CP+

CP+

CP+

EXP

EXP

EXP

EXP

12

12

12

12

EXP

12

12

EXP

EXP

12

12

CP+

++

+

CP+

SC

+ + +

+

++

+ + +

+

CP+

2

3

1

2

3

1

1 2

SC

+

+

LF

++

+

++

+

++

++

+

Page 7: Simulation and modeling of smarter large power grids

Groupe – Technologie7

Hydro-Québec

> Pioneered important research and development works on advanced simulation methods for large scale and complex power systems

> Advanced real-time simulation methods> Advance off-line simulation methods> Sophisticated utilization of simulation tools for

transmission and distribution network studies> Integration of wind generation: 4 GW by 2015

• Based on detailed studies of electromagnetic and electromechanical transients

> At Hydro-Québec (TransÉnergie) the frequency range of simulation models has been constantly increasing with increasing computer speed, improved models and numerical performance.

Page 8: Simulation and modeling of smarter large power grids

Groupe – Technologie8

Real-Time simulator

> Capability to solve power systems quickly enough to produce outputs synchronized with the real-time clock

A second of simulation = 1 second of clock time when testing equipment> A real-time simulator can be connected directly to power system

control and protection equipment to test the equipment under realistic conditions

• For detecting abnormal operating conditions that cannot be found through numerical models

• For super-fast contingency analysis> Hydro-Québec develops HYPERSIM: a real-time simulator

Develop, improve and assess new protection and control concepts Optimize the operation and the maintenance power systems Decrease the time required to commission protection relays and

control systems (FACTS, HVDC, SVC, etc..) Reproduce events that occurred in the power system by using the

actual protection and control systems

Page 9: Simulation and modeling of smarter large power grids

Groupe – Technologie9

EMTP-RV

> Simulation and analysis of electromagnetic transients> General purpose circuit analysis tool: wideband, from

steady-state to time-domain> Detailed simulation and analysis of large scale electrical

systems> Network analysis: network separation, power quality,

geomagnetic storm, interaction between compensation and control components, wind generation

> Synchronous machines: SSR, auto-excitation, control> Multiterminal HVDC systems, Power electronics> Series compensation: MOV energy absorption, short-circuit

conditions, network interaction> Transmission line systems: insulation coordination,

switching, design, wideband line and cable models> Switchgear: TRV, shunt compensation, current chopping,

delayed-current zero conditions> Protection: power oscillations, saturation problems> Detailed transient stability analysis: more and more> Off-line tool: May save millions in design and operation!

Page 10: Simulation and modeling of smarter large power grids

Groupe – Technologie10

Simulation and Analysis

> The basis of all problems!> Modern power grids require advanced study and

analysis methods • for power system design• operation• post-mortem analysis

> Numerical models and solution methods now play a dominant role and contribute to all research and development levels.

> The needs for grid simulations increase significantly faster than the capability of researchers to deliver models and faster simulations methods.

Page 11: Simulation and modeling of smarter large power grids

Groupe – Technologie11

Simulation and Analysis

> Simulation and modeling are essential for the evolution and operation of modern power systems

> Can we build an electronic copy of the operated system?> Can we merge real-time and off-line simulation tools?> Can we replicate analog simulator style with numerical

simulators?> What is the highest computational speed?> How far: wideband and size> Can we unify simulation environments to work with

unique data sets and various analysis methods?> Can we create portable models and data?> Use Concurrent and multi-domain simulation methods

Page 12: Simulation and modeling of smarter large power grids

Groupe – Technologie12

New trends: Cloud computing

> Applications for power systems• Generation scheduling, unit commitment

– Complex optimization problems• Load-flow

– Probabilistic methods• Transient stability and electromagnetic transients

– Acceleration of simulations– Sensitivity analysis– Contingency analysis

> Dispatching of computing jobs into a resource pool> Simulation services with centralized and shared data> Increased utilization of available computing services> Higher automation levels

• Reduced human intervention• Private cloud systems• Public cloud systems• Community cloud: organizations working together

Page 13: Simulation and modeling of smarter large power grids

Groupe – Technologie13

New Trends: Parallel computing> Availability of increasing calculation capabilities through

multicore computers> Power system simulations involve the solution of linear sparse

systems> Traditional methods are generally sequential and use only one

CPU > The matrices are very sparse, moderate size, coupled and

unsymmetrical> For Load flow and steady-state studies the matrices are coupled

but the solution is performed once> For time domain it is possible to use the natural delay of the

lines to decouple the system. Not always feasible!> It is essential to explore new ways to increase the speed of

calculations while maintaining accuracy > Hydro-Québec with Ecole Polytechnique of Montreal and RTE

(France) are collaborating in an important research project to increase the speed of calculations using the possibilities offered by new technologies

Page 14: Simulation and modeling of smarter large power grids

Groupe – Technologie14

New Trends: Collaborative computing, Co-simulation

> Parallel computing can be done in a collaborative approach

> Several simulation tools addressing different aspects, telecom, control, electromechanical and electromagnetic transients, collaborate together to simulate the same power system

> Collaborative software environment can be implemented through a co-simulation channel in an indirect interaction (FMI)

> Use Federated simulation systems run-time infrastructure (RTI) to support interoperability (HLA)

> Scalable performance via parallel and distributed simulation techniques

Page 15: Simulation and modeling of smarter large power grids

Groupe – Technologie

Application: Large-scale Case diverse simulators (EMTP, Simulink)

PI

+P

I3

PI

+P

I7

PI

+ PI32PI

+ PI34

PI

+ PI33

PI

+P

I31

PI

+P

I26

PI

+ PI25

PI

+P

I21

PI

+P

I24

12

YgY

g_np

3

?

20/500

PI

+P

I29

PI

+P

I28

PI

+P

I20

PI

+P

I6

PI

+P

I9

PI

+P

I10

PI

+P

I14

PI

+P

I15

12

YgY

g_np

5

?

500/500

12

YgY

g_np

10

?

500/500

12

YgY

g_np

4

?

20/500

LF

500M

W18

4MV

AR

Load

2

PI

+P

I11

PI

+P

I12

PI

+P

I18

PI

+P

I17

PI

+P

I19 P

I

+P

I22

LF 320M

W15

3MV

AR

Load

6

LF 628M

W10

3MV

AR

Load

9

LF

224M

W47

.2M

VA

R

Load

13

LF 139M

W17

MV

ARLo

ad14

LF

206M

W27

.6M

VA

R

Load

161

2Y

gYg_

np9

?

20/500

12

YgY

g_np

11

?

20/500

12

YgY

g_np

8

?

20/500

PI

+P

I23

LFLF9

P=

830M

WV

=20

.8kV

RM

SLL

SM

:G9

LF LF7

P=

560M

WV

=20

.2kV

RM

SLL

SM

:G7

+SW1 ?vi

1E15|1E15|0

AVR+

Gov

(pu)

-exc

. se

xs-p

ss ie

eest

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out

in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_9

AVR+

Gov

(pu)

-exc

. se

xs-p

ss ie

eest

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_5

SM

20kV

1000

MV

AP

Vbu

s:LF

5?mG

5

AVR+

Gov

(pu)

-exc

. se

xs-p

ss ie

eest

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_7

SM

20kV

1000

MV

AP

Vbu

s:LF

7

?mG

7

LFLF6

P=

650M

WV

=20

.1kV

RM

SLL

SM

:G6

LF

247.

5MW

84.6

MV

AR

Load

11

SM?m

G9

PQ

DEV2

PI

+P

I5

+SW8 ?vi

1E15|1E15|0

+S

W14

?vi-1|1

E15

|0

+S

W16

?vi

-1|1

E15

|0

+SW20 ?vi

-1|1E15|0

+S

W25

?vi-1|1

E15

|0

+S

W26

?vi-1|1

E15

|0

PI

+P

I1

Om

ega_

1

Om

ega_

1 Om

ega_

1

PQ

DE

V1

LFLF5

P=

508M

WV

=20

.2kV

RM

SLL

SM

:G5

LF

158M

W30

MV

AR

Load

8

LFLoad19

1104MW250MVAR

LFLF1

Slack: 502.4kVRMSLL/_0SM:G1

Phase:0

AVR+Gov (pu)

-exc. sexs-pss ieeest-gov ieeeg3

Network frequencyor rotor speed (pu)

out

in

avr_sexs_ieeest_govG3_pu

AVR_Gov_1

SM

500kV1000MVASlack:LF1

?m

G1

Omega_1

PI

+ PI2

LF

522M

W17

6MV

AR

Load

4

PI

+P

I13

LF

233.

8MW

84M

VA

RLo

ad3

LF LF2

P=

527M

WV

=20

.9kV

RM

SLL

SM

:G2 Pha

se:0

AVR+

Gov

(pu)

-exc

. se

xs-p

ss ie

eest

-gov

ieee

g3

Net

wor

k fr

eque

ncy

or r

otor

spe

ed (

pu)

out in

avr_

sexs

_iee

est_

govG

3_pu

AV

R_G

ov_2

SM

20kV

1000

MV

AP

Vbu

s:LF

2 ?m

G2

LF

322M

W2.

4MV

AR

LFLo

ad18 9.

2MW

4.6M

VA

R

+SW

3?v

i

1E15

|1E

15|0

+SW

6?v

i

1E15

|1E

15|0

LF

7.5M

W88

MV

AR

Load

5

12

YgY

g_np

6

?

500/500

+SW

7?v

i

-1|1

E15

|0

+S

W9

?vi-1|1

E15

|0

LF

329M

W32

.3M

VA

R

Load

7

LF28

1MW

75.5

MV

AR

Load

15

+SW18 ?vi

-1|1E15|0

LF

283.

5MW

26.9

MV

AR

?i?p

Load

17

SM

20kV

1000

MV

AP

Vbu

s:LF

6

?m

G6

AVR+

Gov

(pu)

f(pu

)

out

in AV

R_G

ov_6

avr_

sexs

_iee

est_

govG

3_pu

Om

ega_

1

PI

+P

I30

PI

+P

I4

PI

+P

I16

LF

308.

6MW

-92M

VA

RLo

ad12

+S

W10

?vi

-1|1

E15

|0+S

W27

?vi -1

|1E

15|0

PI

+P

I8

+S

W4

?vi

-1|1

E15

|0+S

W2?

vi

-1|1

E15

|0

LF27

4MW

115M

VA

R

Load

10

PI

+ PI27

Om

ega_

1

+SW

5?v

i-1

|1E

15|0

+S

W11

?vi 10

|10.

1|0

DF

IG

Qre

fGE_DFIG_mean_b19

c-1.8

e-1

Qre

fb19

1 2DYg_2

500/0.575

p

b19vRMS

PQ

PQb19+ A?i

Ieolb19

12

DY

g_4

500/

0.57

5

pb25vRMS

PQ

PQb25

+A ?i

Ieolb25

12

DY

g_5

500/

0.57

5pb2vRMS

PQ

PQb2

12D

Yg_

3

500/

0.57

5

p

b10vRMS

PQPQb10

vab2 vbb2 vcb2 ibb2 iab2

va

vc

iaibvb

interface_b2

+A ?i

Ieolb2

vab19

vbb19

vcb19

ibb19

iab19

va vc

ia ibvb

Interface_b19

vab25 vbb25 vcb25 ibb25 iab25

va

vc

iaibvb

Interface_b25

+A ?i

Ieolb10

vab10vbb10vcb10ibb10iab10

va

vc

iaib vb

interface_b10

PQ

PQb10_2

+A ?i

Ieolb10_2

vab10_2vbb10_2

vcb10_2ibb10_2iab10_2

va

vc

iaib vb

interface_b10_2

PQ

PQb25_2

+A ?i

Ieolb25_2

vab25_2vbb25_2

vcb25_2 ibb25_2 iab25_2

va

vc

iaibvb

Interface_b25_2

BU

S1

BUS2

BUS22

BUS9

BUS13

BUS10

BUS7

BUS8

BUS6

BUS20

BUS5

BUS17

BUS38

BU

S39

BUS34

BUS18

BUS3

BUS14

BUS12

BUS29

BUS28

BUS16

BUS27

BUS24

BUS35

BUS26

BUS11

BUS15

BUS4 BUS21

BUS31

BUS23

BUS36

BUS19

BUS25

Page 16: Simulation and modeling of smarter large power grids

Groupe – Technologie

Challenges

>Decoupling : Where & How ???• Delays (measurement/controlled source)• Transfer of slowly changing states: need for

filters!• Automation of decoupling!

>Diverse solution methods: • Synchronization issues (e.g. Check for

instantaneous power injected by WTG !)> Global solution for all variables (not

only interface) & impact on validity for all types of studies

Page 17: Simulation and modeling of smarter large power grids

Groupe – Technologie17

Conclusions

> Research on power system simulation and analysis tools is now facing new and major challenges:

• Simulation of extremely large networks• Very complex networks, penetration of renewables

energy• Smart Grids

> New trends and means for solving increasingly complex problems

• Parallel computations• Cloud computing• Collaborative computing• Advanced visualization methods• Data portability with CIM

> Major research and revisions are needed in existing simulation tools