47
Sima Dezső 2007 őszi félév (Ver. 2.1) Dezső Sima, 2007 Többmagos Processzorok (5)

Sima Dezső 2007 őszi félév (Ver. 2.1) Dezső Sima, 2007 Többmagos Processzorok (5)

Embed Size (px)

Citation preview

Page 1: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Sima Dezső

2007 őszi félév

(Ver. 2.1) Dezső Sima, 2007

Többmagos Processzorok (5)

Page 2: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

• 10.3.1 POWER line

• 10.3.2 Cell BE

10.3 IBM’s MC processors

Page 3: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3 IBM’s MC processors

• POWER4 180 nm10/2001• POWER4+ 130 nm11/2002

10.3.1 POWER line

• POWER5 130 nm 5/2004

• POWER5+ 90 nm10/2005• POWER6 65 nm2007

Page 4: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: The evolution of IBM’s major RISC lines

92 93 94 95 96 97 98 999190 02 030100 04 058988

OS/400

Commercial computing

IMPI/48

AIX

Technical computing

PowerPC/32

PowerPC AS/64

PowerPC/64

POWER/32

A10 A30

A50 Pulsar SStar

601 604 604e

POWER POWER2

Power3

Power3-II

P2SC

AS/400 e-Server iSeries

RS/6000 e-Server pSeries

(Scalar CISC)

(~2.G. superscalar)

(~1.G. superscalar)

(3.G. superscalar)

(3.G. superscalar)

(1.-2.G. superscalar)

Upwards binary compatible extension

Transition

Derived from

Northstar SStar

POWER4 POWER5

PowerPC/64 ext.

PowerPC AS/64 ext.(1.G. superscalar)

PSC

AS/400-line

06 07

POWER4+ POWER5+

POWER6

10.3.1 Evolution of IBM’s major RISC lines

Page 5: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure : POWER4 chip logical view [3.6]

10.3.1 POWER4 (1)

Built-In-SelfTest

Service Processor

Power On Reset

Core interface Unit(crossbar)

Non-CacheableUnit

MultiChip Module

Page 6: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Logical view of the L3 controller [3.5]

10.3.1 POWER4 (2)

Page 7: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: The memory cotroller of the POWER4 [3.5]

10.3.1 POWER4 (3)

Page 8: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: I/O controller of the POWER4 [3.5]

Fabric Controller

10.3.1 POWER4 (4)

Page 9: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: POWER4 chip [3.11]

10.3.1 POWER4 (5)

Page 10: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.1 POWER4 (6)

Table: Main features of IBM’s dual-core POWER line

Off-chipMem. contr.

L3

L21.44 MB/sharedSize/allocation

On-chipImplementation

32 MBSize

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 11: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.2 POWER4+ (1)

Figure: New features of the POWER5+ [3.3]

Page 12: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.1 POWER4+ (2)

Table: Main features of IBM’s dual-core POWER line

On-chipOff-chipMem. contr.

L3

L21.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipImplementation

32 MB32 MBSize

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 13: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure 5.14: Contrasting POWER4 and POWER5 system structures [3.1]

10.3.1 POWER5 (1)

Page 14: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Block diagram of the POWER5 (1) [3.1]

10.3.1 POWER5 (2)

Page 15: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Block diagram of the POWER5 (2) [3.12]

10.3.1 POWER5 (3)

Page 16: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.1 POWER5 (4)

Figure: Floorplan of the POWER5 [3.13]

Page 17: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

POWER4 POWER5

180 nm, 412 mm2130 nm, 389 mm2 (~3 % enlarged)

10.3.1 POWER5 (6)

Figure: Contrasting the floor plans of the POWER4 and POWER5 dies [3.11], [3.13]

Page 18: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Packaging alternatives of the POWER4/5 processors

Source: Partridge R. and Ghatpande S., IBM Introduces POWER5+ and Quad-Core Modules in System p5,” Tech Trends Monthly, Nov./Dec. 2005,

POWER5+Dual-Core Module

10.3.1 POWER5 (7)

Page 19: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

POWER4 MCM Photo 32-way System Showing 4 MCMs and L3 Cache

                                     

                                          

                                    

Figure: Quad–Chip POWER4 module (MCM) and a 32-way POWER4 system [3.7]

10.3.1 POWER5 (8)

Page 20: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure.: Interpretation of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5 [3.7]

10.3.1 POWER5 (9)

Page 21: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Photos of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5 [3.7]

10.3.1 POWER5 (10)

Page 22: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: The Multi-chip module of the POWER5 [3.10]

10.3.1 POWER5 (11)

Page 23: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.1 POWER5 (12)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOff-chipMem. contr.

L3

L21.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipImplementation

36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 24: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Source: Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

Figure: Block diagram of the POWER5+

10.3.1 POWER5+ (1)

Page 25: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Dual-Core Modules (DCMs) and Quad-Core Modules (QCM) of the POWER5+ [3.14]

10.3.1 POWER5+ (2)

Page 26: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.1 POWER5+ (3)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOn-chipOff-chipMem. contr.

L3

L21.9 MB/shared1.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipOn-chipImplementation

36 MB36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

36 MB

Tags on-chip

DPM6

DCM4/QCM5

70

1.92

276 mtrs

230 mm2

90 nm

10/2005

DC

POWER5+

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

10.3

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 27: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

POWER6 POWER5+

Figure: Contrasting the block diagrams of the POWER5 and POWER6 processors [3.15]

Hardware support of decimal arithmetic

10.3.1 POWER6 (1)

Page 28: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.1 POWER6 (2)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOn-chipOff-chipMem. contr.

L3

L22*4 MB/private1.9 MB/shared1.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipOn-chipOn-chipImplementation

64 MB?36 MB36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

36 MB

Tags on-chip

DPM6

DCM4/QCM5

70

1.92

276 mtrs

230 mm2

90 nm

10/2005

DC

POWER5+

32 MBL3 size

Tags on-chipL3 impl.

n.a.Power management

Dual threaded

n.a.Packaging

~100TDP [W]

Implementation

4-5fc [GHz]

750 mtrsNr. of transistors

341 mm2Die size

65 nmTechnology

2007Introduced

DCDual/Quad-Core

POWER6POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 29: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3 IBM’s MC processors

• Cell BE 90 nm2/2006

10.3.2 Cell BE

Page 30: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: The history and development cost of the Cell BE [3.17], [3.22]

10.3.2 Cell BE (1)

Page 31: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

AUC: Atomic Update Cache

BIC: Bus Interface Contr.

EIB: Element Interface Bus

LS: Local Store of 256 KB

MFC: Memory Flow Controller

MIC: Memory Interface Contr.

PPE: Power Processing Element

PXU: POWER Execution Unit

SMF: Synergistic Memory Flow

Unit

SPU: Synergistic Processor Unit

SXU: Synergistic Execution Unit

XDR: Rambus DRAM

Figure: Block diagram of the Cell BE [3.19]

10.3.2 Cell BE (2)

Page 32: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

PPE: dual-threaded > 200 GFLOPS (SP) > 20 GFLOPS (DP) > 25 GB/s memory BW > 75 GB/s I/O BW > 300 GB/s EIB BW fc > 4 GHz (lab)

Figure: Main design parameters of the Cell BE [3.28]

10.3.2 Cell BE (3)

Design parameters of the Cell BE:

Page 33: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure : Cell SPE architecture [3.16]

10.3.2 Cell BE (4)

Page 34: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Block diagram of the SPE [3.19]

10.3.2 Cell BE (5)

Page 35: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Pipeline stages of the Cell BE [3.19]

10.3.2 Cell BE (6)

Page 36: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Floor plan of a single SPE [3.19]

10.3.2 Cell BE (7)

Page 37: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Principle of operation of the Element Interface Bus (EIB) [3.23]

10.3.2 Cell BE (8)

Page 38: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: The Element Interface Bus EIB) [3.19]

10.3.2 Cell BE (9)

Page 39: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: The Synergistic Memory Flow unit (SMF) [3.19]

10.3.2 Cell BE (10)

Page 40: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: PPE block diagram [3.28]

Page 41: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Figure: Floor plan of the Cell BE processor [3.19]

235 mm2

241 mtrs

10.3.2 Cell BE (11)

Page 42: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3.2 Cell BE (12)

Table: Main features of the IBM’s Cell BE

L3

On-chipMemory controller

Ring basedInterconnection network

Up to 75 MB/sI/O bandwidth

PPE: 2-waySPE:

Multithreading

95 W @ 3GHzTDP [W]

25 GB/sMemory bandwidth

PPE: 512 KBSPE: 256 KB Local Store (128*128 bit)

L2

3.0/3.2fc [GHz]

234 mtrsNr. of transistors

221 mm2Die size

90 nmTechnology

9/2006 (in the QS20 BladeCenter)Introduction

PPE: 64-bit RISCSPE: Dual-issue 32-bit SIMD with 128 bit capability

Cores

PowerPC 2.02Architecture

Heterogeneous1xPPE, 8*SPE

Implementation

Cell BESeries

Page 43: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Source: Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

Figure: Cell BE Blade Roadmap

10.3.2 Cell BE (13)

Page 44: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

Source: Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

Figure: Roadmap of the Cell BE

10.3.2 Cell BE (14)

Page 45: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3 Literature (1)

POWER4, POWER4+

[3.3] Grassl C., „New IBM Components for HPCx”, Dec. 2003, http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

[3.1] Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

[3.2] DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf

[3.4] Krevell K., „IBM’s POWER4 Unveiling Continuues”, Microprocessor Report, Nov. 20. 2000, pp- 1-4

[3.5] Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture, IBM Server, Technical White Paper, October 2001, http://www-03.ibm.coom/servers/eserver/pseries/hardware/whitepapers/power4.pdf

POWER5, POWER5+

[3.9] Grassl C., „New IBM Components for HPCx”, Dec. 2003, http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

[3.7] Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

[3.8] DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf

[3.10] Kalla R., „IBM’s POWER5 Microprocessor Design and Methodology,” 2003, www-csl.csres.utexas.edu/users/billmark/teach/cs352-05-spring/lectures/Lecture22-RonKallaIBM.pdf

[3.6] Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture,, IBM J. Res. & Dev. Vol. 46, No. 1, Jan. 2002, pp. 5-25,

http://www.research.ibm.com/journal/rd/461/tendler.pdf

Page 46: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

[3.11] Kalla R., Sinharoy B., Tendler J.: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003

http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf

[3.12] Krevell K., „POWER5 Tops on Bandwidth”, Microprocessor Report, Dec. 2003 http://studies.ac.upc.edu/ETSETB/SEGPAR/microprocessors/power5%20(2)%20(mpr).pdf

[3.13] Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521

[3.15] Kanter D., „IBM Previews the Power6,” Oct. 2006, [email protected]

[3.14] Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

POWER6

POWER5, POWER5+ (cont.)

Cell BE

[3.17] Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

[3.19] Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

[3.16] Blachford N.: „Cell Architecture Explained Version 2”, http://www.blachford.info/computer/Cell/Cell1_v2.html

[3.18] Day M. and Hofstee P., „Hardware and Software Architectures for the Cell Broadband Engine processor, ” CODES, Sept. 2006, http://www.casesconference.org/cases2005/pdf/Cell-tutorial.pdf

10.3 Literature (2)

Page 47: Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (5)

10.3 Literature (3)

Cell BE (cont.)

[3.23] Keable C., „And we also have hardware...” 17th Machine Evaluation Workshop, Dec. 2006, http://www.cse.clrc.ac.uk/disco/mew17/talks/Keable_IBM_MEW17.pdf

[3.21] Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

[3.26] Solie, D., „Technology Trends Presentation,” Power Symposium, Aug. 2006, http://www-03.ibm.com/procurement/proweb.nsf/objectdocswebview/ file14+-+darryl+solie+-+ibm+power+symposium+presentation/$file/ 14+-+darryl+solie-ibm-power+symposium+presentation+v2.pdf

[3.27] - „Cell Broadband Engine processor – based systems,” White Paper, IBM Corp., 2006

[3.25] Krewell K., „Cell Moves Into The Limelight,” Microprocessor Report, Febr. 14 2005, pp. 1-9

[3.20] Gschwind M., Hofstee H. P., Flachs B. K., Hophkins M., Watanabe Y., Yamazaki T „Synergistic Processing in Cell's Multicore Architecture,” IEEE Micro, Vol. 26, No. 2, 2006, pp. 10-24

[3.24] Krolak D., „Unleashing the Cell Broadband Engine Processor,” MPR Fall Proc. Forum, Nov. 2005, http://www-128.ibm.com/developerworks/power/library/pa-fpfeib/?ca=dgr-lnxwCellConnects

[3.22] Hofstee H. P., „Cell today and tomorrow,” 2005, http://www.stanford.edu/class/ee380/Abstracts/Cell_060222.pdf

[3.28] - „Cell Architecture”, Course Code L1T1H1-10, 2006, http://www.power.org/resources/devcorner/cellcorner/CellTraining_Track1/CourseCode_L1T1H1-10_ CellArchitecture.pdf