216
Studies in Systems, Decision and Control 16 Edward Layer Krzysztof Tomczyk Signal Transforms in Dynamic Measurements

Signal Transforms in Dynamic Measurements

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Signal Transforms in Dynamic Measurements

Studies in Systems, Decision and Control 16

Edward LayerKrzysztof Tomczyk

Signal Transforms in Dynamic Measurements

Page 2: Signal Transforms in Dynamic Measurements

Studies in Systems, Decision and Control

Volume 16

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Polande-mail: [email protected]

Page 3: Signal Transforms in Dynamic Measurements

About this Series

The series “Studies in Systems, Decision and Control” (SSDC) covers both newdevelopments and advances, as well as the state of the art, in the various areas ofbroadly perceived systems, decision-making and control-quickly, up to date and witha high quality. The intent is to cover the theory, applications, and perspectives on thestate of the art and future developments relevant to systems, decision-making, con-trol, complex processes and related areas, as embedded in the fields of engineering,computer science, physics, economics, social and life sciences, as well as the para-digms and methodologies behind them. The series contains monographs, textbooks,lecture notes and edited volumes in systems, decision making and control spanningthe areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks,Control Systems, Energy Systems, Automotive Systems, Biological Systems,Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation,Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, SocialSystems, Economic Systems, and other. Of particular value to both the contributorsand the readership are the short publication time frame and the world-wide distri-bution and exposure which enable both a wide and rapid dissemination of researchoutput.

More information about this series at http://www.springer.com/series/13304

Page 4: Signal Transforms in Dynamic Measurements

Edward Layer • Krzysztof Tomczyk

Signal Transformsin Dynamic Measurements

123

Page 5: Signal Transforms in Dynamic Measurements

Edward LayerFaculty of Electrical and ComputerEngineering

Cracow University of TechnologyCracowPoland

Krzysztof TomczykFaculty of Electrical and ComputerEngineering

Cracow University of TechnologyCracowPoland

ISSN 2198-4182 ISSN 2198-4190 (electronic)Studies in Systems, Decision and ControlISBN 978-3-319-13208-2 ISBN 978-3-319-13209-9 (eBook)DOI 10.1007/978-3-319-13209-9

Library of Congress Control Number: 2014955797

Springer Cham Heidelberg New York Dordrecht London© Springer International Publishing Switzerland 2015This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar ordissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exemptfrom the relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, express or implied, with respect to the material containedherein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media(www.springer.com)

Page 6: Signal Transforms in Dynamic Measurements

Preface

The essence of every measurement is the determination of an unknown quantity,being a signal of various kinds generated by physical objects, the properties ofwhich are the subject matter of our research. For this purpose, we use differentsystems and measurement procedures, enabling the determination of that quantitywith the least error possible. The world surrounding us is analog, thus for obviousreasons measured signals also have an analogous and continuous form. For mea-surement purposes, these signals are usually converted into voltages and then, bymeans of a data acquisition card in cooperation with a computer, processed intodigital form. Measurements are taken mainly for purposes of documentation,control, and optimization, as well as for cognitive reasons, comprising widelyunderstood identification.

Depending on the purpose and destination of a measurement result, in eachof the cases above, one deals with a different set of input and output signals, whichconstitute the excitation and response of the object of interest, respectively.

The set of input signals may contain deterministic, periodic, and nonperiodicsignals, as well as random, stationary, and nonstationary ones. Within periodicdeterministic signals, one can include sinusoidal signals, as well as complex peri-odic ones, whereas in the case of nonperiod deterministic signals, they are almostperiodic and transient ones. The latter includes so-called standard pulse signals,often applied in measurement techniques. They are most often used for the purposeof object identification, both on the basis of the knowledge of dynamic properties ofthose objects and the measurement of the response signal.

In many cases, input signals are dynamically changing nonstationary signalswith characteristics that cannot be foreseen a priori. These are signals that are non-repetitive and occur most often in the reality surrounding us. In geology, forexample, they are earthquake vibrations; in meteorology—wind intensity anddirection in case of sudden weather changes; in mechanics—stroke of force,pressure, and moments; in electrical engineering—surges of voltages in powersystems; in biology and medicine—bioelectric ECG, EEG, and EMG signals, aswell as bioacoustic or biomagnetic signals, etc.

v

Page 7: Signal Transforms in Dynamic Measurements

A substantial variety of phenomena in the research areas listed above, having inmind the relatively limited amount of measurement methods and ways of signalprocessing, requires the development of measurement systems that are character-ized by being pretty versatile. Unfortunately, such versatility of systems automat-ically generates many problems concerning their matching to the measured signals.Among the main factors that are subject to matching are:

• solutions used in dedicated measurement systems,• processing algorithms,• signal variability range,• system errors,• system sensitivity to external disturbances.

Solving the problem of versatility thus requires the development of ever morecomplex and computerized measurement systems, which invariably causes anincrease in their production costs. Unfortunately, these costs increase in a definitelynonlinear manner; additionally, very sophisticated equipment can only be operatedby well-trained specialists, which additionally increases the cost of measurement inexperimental studies of every kind. Model studies are an alternative to experimentalstudies which, although less reliable and less accurate, are generally much cheaper.For this purpose, we use more or less accurate mathematical models of a givenobject, obtained in the identification process, models of which describe theirbehavior in the definite moment of study and assigned time range. If the modelobtained fails to meet our requirements, we verify its adequacy, and when this is notsatisfactory, we repeat the identification procedure for another, more complexstructure of the model and estimate its new parameters, etc. Finding an optimalstructure of the model may be difficult in many cases, as its parameters do not havedirect physical interpretation, but are only a reflection of the conformity of suchmodel with experimental data. Additionally, difficulties may arise with correctestimation of model parameters, as the data used for this purpose are usuallyburdened with errors of various kinds. Despite the above difficulties, in a situationwhere computers of a higher class are commonly available, while existing softwareis continuously updated and completely new software developed, the use of modelsof various objects is gaining in popularity. This is caused mainly by their commonfeature, namely the expectation that such models will meet the prediction justifi-cation principle. This means that on the basis of their analysis, it will be possibleboth to predict the phenomena that may occur in the object modeled, as well aspredict their future responses to various external influences.

Signals are described by functions usually of time or frequency. The parametersof these functions result from certain mathematical relations and are scalar quan-tities. For example, one may include amplitude, mean value, rms value, shapefactor, peak factor, filling factor, standard deviation, etc. Functions of time orfrequency describe single signals or their mutual relations. These are, among others,autocorrelation function, cross-correlation function, distribution functions, andspectral characteristics.

vi Preface

Page 8: Signal Transforms in Dynamic Measurements

In measurements, specific properties of signals are often used, which refer totheir orthogonal or orthonormal features. Properties of such type are used, amongothers, in digital measurements of electrical quantities, as well as for example, in thesynthesis of optimal mathematical models.

In the engineering practice, one often deals with the necessity of performingcertain mathematical operations on signals, among which the most frequent areconvolution transforms, Laplace, Fourier, Hilbert, wavelet transforms, and Ztransform. Convolution is most often applied for the determination of the outputsignal, knowing the form of the input and kernel of the object. The Laplacetransform may be of use in solving linear differential equations, state equations indetermining the exp(At) series, presenting models in the form of transfer function,solving transient states and checking stability, as well as the simplification of ordermathematical models. Similar to the former, and equally frequently used, theFourier transform is applied in the frequency analysis of signals. The Hilberttransform enables easy creation of analytic signals, commonly used in signalmodulation theory. Wavelet analysis of the signals, similar to Short Time FourierTransform, enables their decomposition, which is useful in such cases, for which inaddition to information about the frequency spectrum of the signal, informationabout their location over time is also needed. The Z transform is used for solvinglinear difference equations, analyzing linear systems with discrete data, and fordesigning digital filters.

Besides the transforms listed above, properties of signals are often described bymeans of systems of equations containing variables, their derivatives, and integrals.For systems with one variable, their differentiation allows elimination of integralsand differential equations to be obtained due to just one independent variable.Often, time is this variable, in which case it is convenient to present the equations inthe form of the state of equations, which is very popular, especially in technicaldomains. In engineering practice, linear equations are used, as in the great majorityof cases the linearity of the modeled objects is assumed or, alternatively, theassumption made is that the nonlinearities occurring in them are minor enough to beapproximated by means of linear equations. Such approximation is justified inmany practical cases, and the accuracy of the description is sufficient.

The measured signals most often are disturbed, in the majority of cases, by anadditive disturbance. The problem of disturbance reduction is an important partof the measurement process, and is particularly important in mathematical pro-cessing of signals, mainly differentiation, which causes amplification of such dis-turbance. Various methods of disturbance reduction are applied, among themKalman filtration and the time window method seem to be particularly attractive.The time window method is characterized by moving the differentiation operationto the window, and hence disturbances are not amplified.

Measurement data are obtained from experiments carried out using computer-aided measurement systems, and then processed using software dedicated for thepurpose. In such case, the computer must be equipped with a data acquisition card,which is a basic part of such a system. For measurement data processing, we usevarious procedures and mathematical operations realized by measurement and

Preface vii

Page 9: Signal Transforms in Dynamic Measurements

control programs as well as software for numerical computation. The problem liesin the fact that the available and commonly used mathematical software is dedicatedto solving problems for continuous time variables, whereas the measurement dataare received at sampling moments, and have a discrete form. Hence, direct use ofsuch software is not possible. The development of special dedicated algorithms isthus required, which enable their application for discrete data. Several examples ofsolutions of such type can be found in the book.

The book is divided into ten chapters of which, following the introduction,Chap. 1 is devoted to classification and parameters of signals, Chaps. 2 and 3 toLaplace and Fourier transforms, Chap. 4 to the Z transform, and Chaps. 5 and 6 towavelet and Hilbert transforms, respectively. Besides the theoretical foundations,each of these chapters contains several examples of practical applications of thetransforms discussed. Chapter 7 discusses orthogonal signals and their applicationin the measurement of electrical quantities, while Chap. 8 is devoted to problems ofanalog and digital modulation. The two final Chaps. 9 and 10 discuss problemsconcerning convolutions and deconvolutions, as well as disturbance and itsreduction.

The authors hope that the book may be of interest to a wide group of engineersand specialists dealing with problems of measurement and signal processing, aswell as to students of various engineering disciplines.

viii Preface

Page 10: Signal Transforms in Dynamic Measurements

Contents

1 Classification and Parameters of Signals . . . . . . . . . . . . . . . . . . . 11.1 Characteristics of Deterministic Signals . . . . . . . . . . . . . . . . . 11.2 Characteristics of Random Signals . . . . . . . . . . . . . . . . . . . . 31.3 Parameters of Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 Examples of Analog Signals with Limited Energy. . . . . . . . . . 61.5 Examples of Analog Signals with Limited Power . . . . . . . . . . 101.6 Examples of Distributive Signals . . . . . . . . . . . . . . . . . . . . . 121.7 Discrete Signals with Limited Energy . . . . . . . . . . . . . . . . . . 131.8 Discrete Signals with Limited Power . . . . . . . . . . . . . . . . . . . 151.9 Examples of Analog Signals in MathCad . . . . . . . . . . . . . . . . 161.10 Examples of Discrete Signals in MathCad . . . . . . . . . . . . . . . 18

2 Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1 Initial and Final Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2 Surface and Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.3 Examples of Laplace Transforms . . . . . . . . . . . . . . . . . . . . . 242.4 Properties of Laplace Transform . . . . . . . . . . . . . . . . . . . . . . 252.5 Laplace Transform in Solving Differential Equation . . . . . . . . 262.6 Laplace Transform in Solving State Equation . . . . . . . . . . . . . 292.7 Simplification of Model Order . . . . . . . . . . . . . . . . . . . . . . . 342.8 Discretization of State Equation . . . . . . . . . . . . . . . . . . . . . . 362.9 Example in MathCad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.1 Continuous Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 433.2 Properties of Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 453.3 Example of Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . 463.4 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 523.5 Short-time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 553.6 Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix

Page 11: Signal Transforms in Dynamic Measurements

3.7 Properties of Time Windows . . . . . . . . . . . . . . . . . . . . . . . . 573.8 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603.9 Examples in MathCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Z Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.1 Properties of Z Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 854.2 Determination of Z Transform . . . . . . . . . . . . . . . . . . . . . . . 864.3 Changing Sampling Interval . . . . . . . . . . . . . . . . . . . . . . . . . 894.4 Inverse Z Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904.5 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.6 Example in MathCad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.1 Continuous Wavelet Transform. . . . . . . . . . . . . . . . . . . . . . . 975.2 Wavelet Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.3 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . 1005.4 Discrete Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.5 Example of Three-Stage Wavelet Transform in LabVIEW . . . . 105

6 Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.1 Examples of Hilbert Transform. . . . . . . . . . . . . . . . . . . . . . . 1106.2 Examples in MathCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Orthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177.1 Orthonormal Polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . 1217.2 Digital Measurement of Electrical Quantities . . . . . . . . . . . . . 124

7.2.1 Measurement of Active Power . . . . . . . . . . . . . . . . . . 1267.2.2 Measurement of Reactive Power . . . . . . . . . . . . . . . . . 1277.2.3 Digital Form of Current, Voltage, and Power . . . . . . . . 127

7.3 Measurement of Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 1287.4 Examples in MathCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297.5 Examples in LabVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418.1 Analog Modulations (AM) . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.1.1 Double-Sideband Large Carrier Modulation(DSBLC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.1.2 Double Sideband with SuppressedCarrier Modulation (DSBSC) . . . . . . . . . . . . . . . . . . . 146

8.1.3 Single-Sideband (SSB) . . . . . . . . . . . . . . . . . . . . . . . 1478.1.4 Single Sideband with Suppressed Carrier (SSBSC)

Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488.1.5 Vestigial Sideband (VSB) Modulation . . . . . . . . . . . . . 148

x Contents

Page 12: Signal Transforms in Dynamic Measurements

8.2 Angle Modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498.2.1 Phase Modulation (PM) . . . . . . . . . . . . . . . . . . . . . . . 1508.2.2 Frequency Modulation (FM) . . . . . . . . . . . . . . . . . . . 151

8.3 Impulse Modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518.3.1 Pulse Width Modulation (PWM). . . . . . . . . . . . . . . . . 1518.3.2 Pulse Amplitude Modulation (PAM) . . . . . . . . . . . . . . 1528.3.3 PAM with Ideal Sampling . . . . . . . . . . . . . . . . . . . . . 1538.3.4 PAM with Real Sampling . . . . . . . . . . . . . . . . . . . . . 1538.3.5 PAM with Instantaneous Sampling . . . . . . . . . . . . . . . 1558.3.6 Pulse Duration Modulation (PDM) . . . . . . . . . . . . . . . 1568.3.7 Pulse Position Modulation (PPM) . . . . . . . . . . . . . . . . 1568.3.8 Pulse Code Modulation (PCM). . . . . . . . . . . . . . . . . . 1568.3.9 Differential Pulse Code Modulation (DPCM) . . . . . . . . 158

8.4 Digital Modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1588.4.1 Modulation with Amplitude Shift Keying (ASK) . . . . . 1588.4.2 Modulation with Frequency Shift Keying (FSK) . . . . . . 1588.4.3 Phase Shift Keying (PSK) Modulation. . . . . . . . . . . . . 1598.4.4 Quadrature Amplitude Modulation (QAM). . . . . . . . . . 162

8.5 Examples in MathCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9 Convolution and Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . 1699.1 Analog and Digital Convolution . . . . . . . . . . . . . . . . . . . . . . 1699.2 Properties of Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 1709.3 Continuous and Digital Deconvolution . . . . . . . . . . . . . . . . . 1769.4 Deconvolution for Low-Pass System . . . . . . . . . . . . . . . . . . . 1789.5 Conjugate Operator and Maximum Integral Square

Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1799.6 Examples in MathCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10 Reduction of Signal Disturbance . . . . . . . . . . . . . . . . . . . . . . . . . 18910.1 Time Windows in Reduction of Disturbance . . . . . . . . . . . . . 18910.2 Signal Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19210.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19210.4 Examples in MathCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19610.5 Kalman Filter in LabVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 202

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Contents xi

Page 13: Signal Transforms in Dynamic Measurements

Chapter 1Classification and Parameters of Signals

We encounter signals in many fields of science, in particular in experimentalsciences, which deal with examination of the reality that surrounds us. The infor-mation carried by the signals enables description and analysis of that reality, if oneknows the mathematical relations concerning them. On the one hand, those relationsshould be general enough, to comprise the wide class of physical signals, while onthe other hand, they should enable easy analysis of the reality represented. Moreover,they should reflect certain characteristic properties, common for a given class ofsignals, and differentiate them from others. Deterministic signals are those that arerepeatable; that is, the measure of their value in a given time interval, determined in agiven moment, may be repeated at any moment at a later date. Such signals may bedescribed by means of strict mathematical relations, which can be real or complexfunctions of time. If signals do not repeat their values later, they are classified asrandom signals, which cannot be described by means of exact mathematical rela-tions, due to their uniqueness. The classification of deterministic signals is presentedin Fig. 1.1, while that of random signals is presented in Fig. 1.2.

1.1 Characteristics of Deterministic Signals

Periodic signals fulfill the condition

xðtÞ ¼ xðt � nTÞ for n ¼ �1; 2; 3; . . . ð1:1Þ

where A—amplitude and T—period.Monoharmonic signals consist of a single harmonic. They are

xðtÞ ¼ A sinðxt þ /Þ ð1:2Þ

where / is the initial phase.Polyharmonic signals have at least two harmonics, which have different

amplitudes and initial phases. An example of a polyharmonic signal is the sum oftwo harmonics.

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_1

1

Page 14: Signal Transforms in Dynamic Measurements

Polyharmonic signals meet the following condition

xðtÞ ¼X1n¼1

An sinðxnt þ /nÞ ð1:3Þ

Polyharmonic signals become periodic signals, if all the frequencies contained inthem are integral multiples of the basic frequency.

Non-periodic signals are signals which fail to meet the condition of periodicity.Almost periodic signals are generated by summing two or more harmonic sig-

nals, for which the quotient of all possible pairs of frequencies is expressed by anirrational number. These signals are not periodic, despite the fact that they con-stitute periodic signals.

Transient signals may be described by means of time functions that are neitherperiodic nor almost periodic. They do not have a discrete spectrum, but a contin-uous spectrum, determined by a Fourier transform—Eq. (3.2).

Fig. 1.1 Classification of deterministic signals

Fig. 1.2 Classification of random signals

2 1 Classification and Parameters of Signals

Page 15: Signal Transforms in Dynamic Measurements

1.2 Characteristics of Random Signals

Random signals cannot be presented by means of mathematical functions, becauseit is not possible to predict their values on the basis of previous values. Statisticalparameters are applied for the description of such signals, i.e., probability distri-bution, expected value, and variance.

Statistical parameters of stationary signals do not change in time, whereas suchchanges are possible in the case of non-stationary signals.

For ergodic signals, it is possible to determine statistical parameters, which is notpossible in the case of non-ergodic signals, even with long observation times.

1.3 Parameters of Signals

• Deterministic SignalsMean value

�x ¼ 1T

Zt0þT

t0

xðtÞdt

�x ¼ 1N

Xn 0þðN�1Þ

n¼n0

x½n�ð1:4Þ

where xðtÞ—signal, t0—initial time, x½n�—discrete signal, N—number ofsamples, and n0—initial sample.Mean value in the set interval

�x ¼ 1tn � t0

Ztnt0

xðtÞdt

�x ¼ 1nn � n0

Xnnn0

x½n�ð1:5Þ

RMS value

xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1T

Ztnt0

x2ðtÞdt

vuuut

xrms ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1N

Xnnn0

x2½n�vuut

ð1:6Þ

1.2 Characteristics of Random Signals 3

Page 16: Signal Transforms in Dynamic Measurements

Peak value

xpeak ¼ maxt0\t� t0þT

xðtÞj jxpeak ¼ max

n0\n� n0þðN�1Þx½n�j j ð1:7Þ

Shape factor

ks ¼ xrms

�xð1:8Þ

Peak factor

kp ¼ xpeakxrms

ð1:9Þ

Filling factor

kf ¼ �xxpeak

ð1:10Þ

Distortion factor

THD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1

n¼2 x2rmsn

pxrms1

100 % ð1:11Þ

where xrmsn and xrms1 are the RMS of the nth harmonic and fundamentalcomponent of the signal.Nonlinear distortion factor

THDn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1

n¼2 x2rmsn

pxrms

100 % ð1:12Þ

Signal power

P ¼ 1t2 � t1

Zt2t1

x2ðtÞdt

Px ¼ 1n2 � n1

Xn 2

n¼ n1

x2½n�ð1:13Þ

4 1 Classification and Parameters of Signals

Page 17: Signal Transforms in Dynamic Measurements

Signal energy

E ¼Zt2t1

x2ðtÞdt

E ¼Xn 2

n¼ n1

x2½n�ð1:14Þ

Autocorrelation

RxxðsÞ ¼ limT!1

1T

ZT0

xðtÞxðt � sÞdt

RxxðmÞ ¼Xn¼1

n¼0

x½n�x½n� m�ð1:15Þ

Substituting into Eq. (1.15), the signals xðt � sÞ and x½n� m� by the signalsyðt � sÞ and y½n� m� gives the cross-correlation

RxyðsÞ ¼ limT!1

1T

ZT0

xðtÞyðt � sÞdt

RxyðmÞ ¼Xn¼1

n¼0

x½n�y½n� m�ð1:16Þ

If RxyðsÞ ¼ 0, then signals xðtÞ; x½n� and yðtÞ; y½n� are not correlated.The cross-correlation RxyðsÞ may have either a positive or a negative value; itdoes not have to have a maximum for s ¼ 0 and does not have to be an evenfunction.

• Random SignalsMean value

�x ¼ limT!1

1T

ZT0

xðtÞdt ¼Zþ1

�1xðtÞdðxÞdx

�x ¼ 1N

XNn¼1

x½n� ¼Xn¼N

n¼�N

x½n�p½n�ð1:17Þ

where dðxÞ—density function of the random variable and p½n�—probability thatthe random variable will assume a given value.

1.3 Parameters of Signals 5

Page 18: Signal Transforms in Dynamic Measurements

Variance

r2 ¼ limT!1

1T

ZT0

xðtÞ � �x½ �2dt

r2 ¼ 1N

XNn¼1

x½n� � �xf g2ð1:18Þ

where r—standard deviation.

1.4 Examples of Analog Signals with Limited Energy

• Rectangular signal (Fig. 1.3)

xðtÞ ¼ PðtÞ ¼ a for tj j\p

0 for tj j[ p

��x ¼ a; Ex ¼ 2a2p

ð1:19Þ

• Rectangular signal shifted in time (Fig. 1.4)

xðtÞ ¼ aPt � cb

� ��x ¼ a; Ex ¼ a2b

ð1:20Þ

Fig. 1.3 Rectangular signal

Fig. 1.4 Rectangular signal shifted in time

6 1 Classification and Parameters of Signals

Page 19: Signal Transforms in Dynamic Measurements

• Triangular signal (Fig. 1.5)

xðtÞ ¼ KðtÞ ¼ a� tj j for tj j � a

0 for tj j[ a

�x ¼ a2; Ex ¼ 2

3a3

ð1:21Þ

• Cosinusoidal signal (Fig. 1.6)

xðtÞ ¼ X0 cosðx0tÞPðtÞ

�x ¼ 2X0

p; Ex ¼ pX2

0

2x0

ð1:22Þ

• Exponentially decreasing signal (Fig. 1.7)

xðtÞ ¼ X0e�a t for t� 0; a[ 0

0 for t\0

�x ¼ 0; Ex ¼ X20

2a

ð1:23Þ

Fig. 1.5 Triangular signal

Fig. 1.6 Cosinusoidal signal

1.4 Examples of Analog Signals with Limited Energy 7

Page 20: Signal Transforms in Dynamic Measurements

• Exponentially decreasing sinusoidal signal (Fig. 1.8)

xðtÞ ¼ X0e�a t sinðx0tÞ for t � 0; a[ 0

0 for t [ 0

�x ¼ 0; Ex ¼ X20

4ax2

0

a2 þ x20

aðtÞ ¼ �X0e�a t

ð1:24Þ

• Sa signal (Fig. 1.9)

xðtÞ ¼sinðx0tÞx0t

for t 6¼ 0

0 for t ¼ 0

(

�x ¼ 0; Ex ¼ px0

ð1:25Þ

Fig. 1.7 Exponentially decreasing signal

Fig. 1.8 Exponentially decreasing sinusoidal signal

8 1 Classification and Parameters of Signals

Page 21: Signal Transforms in Dynamic Measurements

• Gaussian signal (Fig. 1.10)

xðtÞ ¼ e�p t2

�x ¼ 0; Ex ¼ 1ffiffiffi2

p ð1:26Þ

• Unit step signal (Fig. 1.11)

xðtÞ ¼ 1ðtÞ ¼ 1 for t� 0

0 for t\0

�x ¼ 12; Px ¼ 1

ð1:27Þ

Fig. 1.10 Gaussian signal

Fig. 1.9 Sa signal

1.4 Examples of Analog Signals with Limited Energy 9

Page 22: Signal Transforms in Dynamic Measurements

• Exponentially increasing signal (Fig. 1.12)

xðtÞ ¼ ð1� e�a tÞ1ðtÞ; a[ 0

�x ¼ 12; Px ¼ 1

2

ð1:28Þ

1.5 Examples of Analog Signals with Limited Power

• Harmonic signal (Fig. 1.13)

xðtÞ ¼ X0 sinðx0t þ uÞ; �1\t\þ1�x ¼ 0; Px ¼ 1

2X20

ð1:29Þ

Fig. 1.12 Exponentially increasing signal

Fig. 1.11 Unit step signal

10 1 Classification and Parameters of Signals

Page 23: Signal Transforms in Dynamic Measurements

• Bipolar rectangular signal (Fig. 1.14)

�x ¼ 0; Px ¼ X20 ð1:30Þ

• Unipolar rectangular signal (Fig. 1.15)

�x ¼ TT0

X0; Px ¼ TT0

X20 ð1:31Þ

Fig. 1.14 Bipolar rectangular signal

Fig. 1.15 Unipolar rectangular signal

Fig. 1.13 Harmonic signal

1.5 Examples of Analog Signals with Limited Power 11

Page 24: Signal Transforms in Dynamic Measurements

1.6 Examples of Distributive Signals

• Dirac delta (Fig. 1.16)

dðtÞ ¼ 0 for t 6¼ 0

1 for t ¼ 0

�Z1�1

dðtÞdt ¼ 1ð1:32Þ

• Comb signal (Fig. 1.17)

dTðtÞ ¼X1n¼�1

d t � nTð Þ ð1:33Þ

Fig. 1.16 Dirac delta

Fig. 1.17 Comb signal

12 1 Classification and Parameters of Signals

Page 25: Signal Transforms in Dynamic Measurements

1.7 Discrete Signals with Limited Energy

Kronecker delta (Fig. 1.18)

x½n� ¼ d½n� ¼ 1 for n ¼ 0

0 for n 6¼ 0

��x ¼ 1; Ex ¼ 1

ð1:34Þ

Rectangular signal (Fig. 1.19)

x½n� ¼ 1 for n� Nj j0 for n[ Nj j

��x ¼ 1; Ex ¼ 2N þ 1

ð1:35Þ

Triangular signal (Fig. 1.20)

x½n� ¼ 1� nj jN for n� Nj j

0 for n[ Nj j

(

�x ¼ N2N þ 1

; Ex ¼ 2N2 þ 13N

ð1:36Þ

Fig. 1.18 Kronecker delta

Fig. 1.19 Rectangular signal

1.7 Discrete Signals with Limited Energy 13

Page 26: Signal Transforms in Dynamic Measurements

Exponential signal (Fig. 1.21)

x½n� ¼ an; n� 0; 0\a\1

�x ¼ 0; Ex ¼ 11� a2

ð1:37Þ

Sa signal (Fig. 1.22)

x½n� ¼ Sa x0n½ � ¼sinðx0nÞx0n

for n 6¼ 0

1 for n ¼ 0

(

�x ¼ 0; Ex ¼ xtx

p

ð1:38Þ

Fig. 1.21 Exponential signal

Fig. 1.20 Triangular signal

Fig. 1.22 Sa signal

14 1 Classification and Parameters of Signals

Page 27: Signal Transforms in Dynamic Measurements

1.8 Discrete Signals with Limited Power

Unit signal (Fig. 1.23)

x½n� ¼ 1½n� ¼ 1 for n� 0

0 for n\0

�x ¼ 12; Px ¼ 1

ð1:39Þ

Harmonic signal (Fig. 1.24)

x½n� ¼ X0 sin nxttþ u

� �; �1\n\1

�x ¼ 0; Px ¼ X20

2

ð1:40Þ

Fig. 1.23 Unit signal

Fig. 1.24 Harmonic signal

1.8 Discrete Signals with Limited Power 15

Page 28: Signal Transforms in Dynamic Measurements

1.9 Examples of Analog Signals in MathCad

Exponentially decreasing signal

t :¼ �2;�1:99. . .8

X0 :¼ 1 a :¼ 0:5

xðtÞ :¼ X0 � e�a�t if t� 0

0 if t\ 0

����

−5 0 5 100

0.2

0.4

0.6

0.8

1

x(t)

t

t1 :¼ 0 t2 :¼ 1

xav :¼ 1t2 � t1

�Zt2t1

xðtÞdt E :¼Z10

xðtÞ2dt

xav ¼ 0 E ¼ 1

Exponentially decreasing sinusoidal signal

t :¼ �1; �0:99. . .8

X0 :¼ 1 a :¼ 0:5 x0 :¼ 3

xðtÞ :¼ X0 � e�a�t � sinðx0 � tÞ if t� 0

0 if t\0

����a1ðtÞ :¼ X0 � e�a�t

2 ðtÞ :¼ �X0 � e�a�t

−2 0 2 4 6 8 10−2

−1

0

1

2

)(tx

a1 )(t

a2 )(t

t

16 1 Classification and Parameters of Signals

Page 29: Signal Transforms in Dynamic Measurements

t1 :¼ 0 t2 :¼ 1

xav :¼ 1t2 � t1

�Zt2t1

xðtÞdt E :¼Z10

xðtÞ2dt

xav ¼ 0 E ¼ 0:486

E1 :¼ X20

4 � a �x2

0

a2 þ x20

E1 ¼ 0:486

Sa signal

t :¼ �6;�5:99. . .6

x0 :¼ 3

xðtÞ :¼sinðx0�tÞðx0�tÞ if t 6¼ 0

1 if t ¼ 0

�����

t1 :¼ �3000 t2 :¼ 3000

xav :¼ 1t2 � t1

�Zt2t1

xðtÞdt E :¼Z1�1

xðtÞ2dt

xav ¼ 1:745� 10�4 E ¼ 1:047

Gaussian signal

t :¼ �1:5;�1:49. . .1:5

xðtÞ :¼ e�p�t2

−10 −5 0 5 10−0.5

0

0.5

1

(t)x

t

1.9 Examples of Analog Signals in MathCad 17

Page 30: Signal Transforms in Dynamic Measurements

t1 :¼ �1 t2 :¼ 1

xav :¼ 1t2 � t1

�Zt2t1

xðtÞdt E :¼Z1�1

xðtÞ2dt

xav ¼ 0 E ¼ 0:707

1.10 Examples of Discrete Signals in MathCad

nstart :¼ �3 nend :¼ 3

n :¼ nstart. . .nend

Dirac delta signal

dðnÞ :¼ 1 if n ¼ 0

0 otherwise

����k :¼ 1

−2 −1 0 1 20

0.2

0.4

0.6

0.8

1

(t)x

t

−4 −2 0 2 40

0.5

1

n

18 1 Classification and Parameters of Signals

Page 31: Signal Transforms in Dynamic Measurements

Unit signal

xðnÞ :¼ 1 if n� 00 if n\0

����

−4 −2 0 2 40

0.5

1

(n)x

n

Sinusoidal signal

x0 :¼ 1

xðnÞ :¼ sinðx0 � nÞ

−4 −2 0 2 4−1

0

1

(n)x

n

1.10 Examples of Discrete Signals in MathCad 19

Page 32: Signal Transforms in Dynamic Measurements

Chapter 2Laplace Transform

The comprehensive use of information contained in signals requires performing onthem various mathematical operations, transforms, or conversions. One of the mostuseful transforms, commonly used in various fields of technical sciences andmathematics, is the Laplace transform. It has several practical applications, ofwhich some of the most noteworthy are the solution of ordinary linear differentialequations having constant coefficients, the examination of dynamic properties ofsystems, the synthesis of mathematical models, the simplification of their order, orthe determination of the expðAtÞ matrix, which is indispensable for solving the stateequation presented in the matrix form.

In case of linear differential equations, the Laplace transform algebraizes thoseequations, transforming them into algebraic equations. In consequence, the nth deriv-ative of a differential equation gets replaced by the nth power of an algebraic equation.The final solution of the differential equation is obtained by applying an inverse Laplacetransform, in which the pools of algebraic equation previously obtained are used.

The Laplace transform is

XðsÞ ¼Z1�1

xðtÞ e�stdt ð2:1Þ

which, for real signals that start at the time of t ¼ 0, is reduced to the form

XðsÞ ¼Z10

xðtÞ e�stdt for 0� t\1 ð2:2Þ

The Laplace integral Eq. (2.2) assigns to signal xðtÞ its transform, being afunction of the complex variable s ¼ rþ jx, while it is assumed that

Z10

xðtÞe�r tdt\1; r 2 Re ð2:3Þ

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_2

21

Page 33: Signal Transforms in Dynamic Measurements

The range of ðr; xÞ values, for which the integral is convergent, is defined as theconvergence area.

If the Laplace integral of the function xðtÞ is convergent for s0 ¼ r0 þ jx, it isalso convergent in all the points in which r[ r0. The r0 is referred to as con-vergence abscissa (Fig. 2.1).

2.1 Initial and Final Value

From Eq. (2.2), we can easily determine the initial value for t ¼ 0 as well as thefinal value for t!1. Calculating the Laplace transform of derivative xðtÞ, we get

Z10

_xðtÞ e�stdt ¼ xðtÞe�stj10 þsZ10

xðtÞ e�stdt ¼ �xð0Þ þ sXðsÞ ð2:4Þ

where xð0Þ is the right-hand limit of xðtÞ for t ¼ 0.For the s! 0, left-hand side of Eq. (2.4) is

lims!0

Z10

_xðtÞ e�stdt ¼ limt!1 xðtÞ � xð0Þ½ � ð2:5Þ

Comparing for s! 0, the right-hand sides of Eqs. (2.4) and (2.5) give

limt!1 xðtÞ � xð0Þ½ � ¼ lim

s!0sXðsÞ � xð0Þ½ � ð2:6Þ

hence,

limt!1 xðtÞ ¼ lim

s!0sXðsÞ ð2:7Þ

and it is assumed that the limt!1 xðtÞ exists.

Fig. 2.1 Convergence area for Laplace integral

22 2 Laplace Transform

Page 34: Signal Transforms in Dynamic Measurements

For s!1, the left-hand side of Eq. (2.4) equals zero

Z10

_xðtÞ e�stdt ¼ 0 ð2:8Þ

thus,

xð0Þ ¼ lims!1 sXðsÞ: ð2:9Þ

2.2 Surface and Moments

In order to calculate the surface under the signal xðtÞ, let us write the integralR10 xðtÞdt as a limit of Eq. (2.2) for s! 0

Z10

xðtÞdt ¼ lims!0

Z10

xðtÞ e�stdt ¼ Xð0Þ ð2:10Þ

The higher-order derivatives of Eq. (2.2) for s ¼ 0 give successive moments

Z10

tkxðtÞdt; k ¼ 1; 2; . . .; n ð2:11Þ

as we have

dds

Z10

xðtÞ e�stdt24

35 ¼ � Z1

0

t xðtÞ e�stdt ð2:12Þ

d2

ds2

Z10

xðtÞ e�stdt24

35 ¼ Z1

0

t2xðtÞ e�stdt ð2:13Þ

and

dk

dsk

Z10

xðtÞ e�stdt24

35 ¼ ð�1Þk Z

1

0

tkxðtÞ e�stdt ð2:14Þ

Substituting s ¼ 0 into Eqs. (2.12)–(2.14) gives

2.1 Initial and Final Value 23

Page 35: Signal Transforms in Dynamic Measurements

• the moment of the first order

dds

XðsÞ½ �����s¼0¼ �

Z10

t xðtÞ dt ð2:15Þ

• the moment of the second order

d2

ds2XðsÞ½ �

����s¼0¼

Z10

t2xðtÞ dt ð2:16Þ

• the moment of the kth order

dk

dsk½XðsÞ�

����s¼0¼ ð�1Þk

Z10

tkxðtÞ dt: ð2:17Þ

2.3 Examples of Laplace Transforms

1. Dirac delta dðtÞ

L½dðtÞ� ¼Z10

dðtÞ e�stdt ¼ 1 ð2:18Þ

2. Unit step signal 1ðtÞ

L½1ðtÞ� ¼Z10

1 � e�stdt ¼ e�st

�s����1

0¼ 1

sfor Re s[ 0 ð2:19Þ

3. Signal e�a t

L½e�a t� ¼Z10

e�a t e�stdt ¼ e�ðs�aÞ t

�ðs� aÞ����1

0¼ 1

s� afor Re s[ � a ð2:20Þ

24 2 Laplace Transform

Page 36: Signal Transforms in Dynamic Measurements

4. Signal e�jxt

L½e�jx t� ¼ 1s� jx

ð2:21Þ

5. Signal at

L½t� ¼Z10

at e�stdt ¼ a �eð�sÞ t� � s t þ 1

s2

����1

0¼ a

s2for Re s[ 0 ð2:22Þ

6. Signals sinx t and cosx t

L½cosx t þ j sinx t� ¼Z10

ejx t e�stdt ¼ e�ð s�jxÞ

�ðs� jxÞ����1

0

¼ 1s� jx

¼ sþ jxs2 þ x2 for Re s [ 0

ð2:23Þ

Comparing the real and imaginary parts of the last equation, we have

L½cosx t� ¼ ss2 þ x2 ð2:24Þ

and

L½sinx t� ¼ xs2 þ x2 : ð2:25Þ

2.4 Properties of Laplace Transform

1. Linearity

L½ax1ðtÞ þ bx2ðtÞ� ¼ a X1ðsÞ þ b X2ðsÞ ð2:26Þ

2. Shift in the s domain—multiplication by e�at

L½e�atxðtÞ� ¼ Xðsþ aÞ ð2:27Þ

3. Shift in the time domain

L½hðtÞ xðt � sÞ� ¼ XðsÞ e�s s ð2:28Þ

where hðtÞ is the unit step

2.3 Examples of Laplace Transforms 25

Page 37: Signal Transforms in Dynamic Measurements

4. Integration in the time domain—division by s

L

Z t

0

xðsÞds24

35 ¼ 1

sXðsÞ ð2:29Þ

5. Change of time scale

L xðatÞ½ � ¼ 1aX

sa

� �ð2:30Þ

6. Differentiation in s domain—multiplication by t in time domain

L½t xðtÞ� ¼ � dds

XðsÞ ð2:31Þ

7. Transform of the first derivative

L x0ðtÞ½ � ¼ sXðsÞ � xð0þÞ ð2:32Þ

8. Transform of the second derivative

L x00ðtÞ½ � ¼ s2XðsÞ � s xð0þÞ � x0ð0þÞ ð2:33Þ

9. Transform of the nth derivative

L xnðtÞ½ � ¼ sn XðsÞ � sn�1 xð0þÞ � sn�2 x0ð0þÞ � � � � � xðn�1Þð0þÞ: ð2:34Þ

2.5 Laplace Transform in Solving Differential Equation

Applying the Laplace transform to both sides of linear differential equation

dnyðtÞdtn

þ an�1dn�1yðtÞdtn�1

þ � � � þ a1dyðtÞdtþ a0yðtÞ

¼ b0xðtÞ þ b1dxðtÞdtþ � � � þ bm�1

dm�1xðtÞdtm�1

þ bmdmxðtÞdtm

ð2:35Þ

with initial conditions that equal zero

yð0þÞ ¼ 0; y0ð0þÞ ¼ 0; . . .; yðn�1Þð0þÞ ¼ 0 for m\n; ak; bk 2 < ð2:36Þ

26 2 Laplace Transform

Page 38: Signal Transforms in Dynamic Measurements

gives

YðsÞ sn þ an�1sn�1 þ � � � þ a1sþ a0� �

¼ XðsÞ bmsm þ bm�1sm�1 þ � � � þ b1sþ b0� � ð2:37Þ

The ratio of output YðsÞ to input XðsÞ in Eq. (2.37) is defined as the Laplacetransfer function KðsÞ

KðsÞ ¼ YðsÞXðsÞ ¼

bmsm þ bm�1sm�1 þ � � � þ b1sþ b0sn þ an�1sn�1 þ � � � þ a1sþ a0

ð2:38Þ

If the input XðsÞ is given, the solution of yðtÞ can be obtained by the inverseLaplace transform

yðtÞ ¼L�1½YðsÞ� ¼ 12p j

Zaþj1a�j1

YðsÞestds ð2:39Þ

In Eq. (2.39), the constant a must be selected in such a way that the integrationrange is contained within the convergence range. Because of calculation difficulties,the formula (2.39) is rarely used. Instead, the most commonly used method ofcalculating the inverse transform is the residue method. Depending on the form ofthe denominator poles, two cases can occur here:

• If YðsÞ has n single poles si, then

yðtÞ ¼Xni¼1

resYðsÞesit s ¼ 1; 2; . . .; n ð2:40Þ

where

res YðsÞ ¼ lims!siðs� siÞYðsÞ ð2:41Þ

• If YðsÞ has m multiple poles sm, then

yðtÞ ¼Xr

k¼1res YðsÞ tðk�1Þ

ðk � 1Þ!esmt ð2:42Þ

where r is the order of multiple pole sm, while

resYðsÞ ¼ 1ðr � kÞ! lims!sm

dðr�kÞ

dsðr�kÞ½ðs� smÞrYðsÞ� ð2:43Þ

Equation (2.41) is a specific case of Eq. (2.43) for r = k = 1. If in YðsÞ, bothsingle and multiple poles are present, then the solution yðtÞ is the sum of solutions

2.5 Laplace Transform in Solving Differential Equation 27

Page 39: Signal Transforms in Dynamic Measurements

Eqs. (2.40) and (2.42). Poles occurring in YðsÞ may be real or complex conjugate.For t!1, poles with a negative real part give solutions for yðtÞ that approach aconstant value, whereas poles with a positive real part give solutions for yðtÞ thattend to infinity exponentially. Imaginary poles cause the generation of oscillations,which in the case of a negative real part decrease exponentially and in the case of apositive real part increase exponentially. The occurrence of complex conjugatedpoles without real part results in the generation of sustained oscillations.

Solving linear differential equations with constant coefficients consists oftransforming them into Laplace equations and then using the inverse transform toobtain the required form of time response.

Example 2.1 Solve the equation

d3

dt3yðtÞ þ 9

d2

dt2yðtÞ þ 26

ddtyðtÞ þ 24yðtÞ ¼ sin t ð2:44Þ

Writing Eq. (2.44) in Laplace transform form, we have

YðsÞ s3 þ 9s2 þ 26sþ 24� � ¼ 1

s2 þ 1ð2:45Þ

thus,

YðsÞ ¼ 1s2 þ 1ð Þ s3 þ 9s2 þ 26sþ 24ð Þ ð2:46Þ

or

YðsÞ ¼ 1ðs2 þ 1Þðsþ 2Þðsþ 3Þðsþ 4Þ ð2:47Þ

The transform YðsÞ has in the poles s1 ¼ �2, s2 ¼ �3, s3 ¼ �4, s4 ¼ þj, ands5 ¼ �j the following residues:

ResY s1ð Þ ¼ 110

; ResY s2ð Þ ¼ � 110

; ResY s3ð Þ ¼ 134

ResY s4ð Þ ¼ 1340

�3j� 5ð Þ; ResY s5ð Þ ¼ 1340

þ3j� 5ð Þð2:48Þ

The solution of the equation thus has the form

yðtÞ ¼ 110

expð�2tÞ � 110

expð�3tÞ þ 134

expð�4tÞ � 134

cosðtÞ þ 3170

sinðtÞ:ð2:49Þ

28 2 Laplace Transform

Page 40: Signal Transforms in Dynamic Measurements

2.6 Laplace Transform in Solving State Equation

Differential equations with constant coefficients of the nth order Eq. (2.35) may bewritten in the form of state equations, that is, a system of n equations of the firstorder

_xðtÞ ¼ AxðtÞ þ BuðtÞyðtÞ ¼ CxðtÞ þ DuðtÞ ð2:50Þ

where x(t), y(t), and u(t) are state, output, and input vectors, while A, B, C, andD are state, input, output, and feedthrough matrices, respectively.

By applying the Laplace transform to both sides of Eq. (2.50), we have

sXðsÞ � Xð0Þ ¼ AXðsÞ þ BUðsÞYðsÞ ¼ CXðsÞ þ DUðsÞ ð2:51Þ

Simple transformations of Eq. (2.51) give

XðsÞ ¼ Is� Að Þ�1Xð0Þ þ Is� Að Þ�1BUðsÞYðsÞ ¼ C Is� Að Þ�1Xð0Þ þ C Is� Að Þ�1Bþ D

h iUðsÞ ð2:52Þ

Equation (2.52) in many practical cases is simplified, due to zeroing of thematrix D. This happens if in Eq. (2.38) the order of the numerator m is less than theorder of the denominator n. As a result, we have

XðsÞ ¼ Is� Að Þ�1Xð0Þ þ Is� Að Þ�1BUðsÞYðsÞ ¼ C Is� Að Þ�1Xð0Þ þ C Is� Að Þ�1B

h iUðsÞ ð2:53Þ

The solution of Eq. (2.53) is

xðtÞ ¼ eAtxð0Þ þZ t

0

eAðt�sÞBuðsÞds

yðtÞ ¼ CeAtxð0Þ þ CZ t

0

eAðt�sÞBuðsÞdsð2:54Þ

2.6 Laplace Transform in Solving State Equation 29

Page 41: Signal Transforms in Dynamic Measurements

For zero initial conditions, Eq. (2.54) in the equivalent form is

xðtÞ ¼ eAðt�t0Þxðt0Þ þZ t

t0

eAðt�sÞBuðsÞds

yðtÞ ¼ CeAðt�t0Þxðt0Þ þ CZ t

t0

eAðt�sÞBuðsÞdsð2:55Þ

For Xð0Þ ¼ 0 and on the base of Eq. (2.53), we have

KðsÞ ¼ YðsÞUðsÞ ¼ C Is� A½ � �1B ð2:56Þ

For a single input UðsÞ and a single output YðsÞ, if the state equation is given inphase-variable canonical form, then matrices A, B, C, and D are

A ¼

0 1 0 . . . 0

0 0 1 . . . 0

..

. ... ..

. ... ..

.

0 0 0 . . . 1

�a0 �a1 . . . . . . �an�1

26666664

37777775

B ¼

0

0

..

.

0

1

26666664

37777775

C ¼ b0 b1 . . . bm½ � D ¼ lims!1KðsÞ ¼ 0 for m\n

ð2:57Þ

and the transfer function (2.56) equals (2.38).The expression expðAtÞ in solutions of Eq. (2.55) represents an infinite series

eAt ¼ Iþ At þ 12!A2t2 þ 1

3!A3t3 þ � � � ð2:58Þ

in which I is the unit matrix. This series may be determined by the inverse Laplacetransform. We thus have

L½eAt� ¼ ½Is� A��1 ð2:59Þ

from that

eAt ¼L�1½ðIs� AÞ�1� ð2:60Þ

Example 2.2 Calculate the state equations, where the state variables are: currenti1ðtÞ and voltages across the capacitors uC1ðtÞ; uC2ðtÞ and the output is voltage uðtÞacross the resistor R3—Fig. 2.2.

30 2 Laplace Transform

Page 42: Signal Transforms in Dynamic Measurements

By assumption, the vector of state variables has the form

xðtÞ ¼uC1ðtÞuC2ðtÞi1ðtÞ

264

375 ð2:61Þ

from that

_xðtÞ ¼_uC1ðtÞ_uC2ðtÞ_i1ðtÞ

264

375 ð2:62Þ

and the output vector yðtÞ

yðtÞ ¼ uðtÞ ¼ i3ðtÞR3 ð2:63Þ

Voltage across the capacitor C1 is

_uC1 ¼1Ci1ðtÞ ð2:64Þ

The Kirchhoff’s current law for the node gives

_uC2 ¼i1ðtÞC2� i3ðtÞ

C2ð2:65Þ

We have to eliminate the current i3ðtÞ from the last equation, as it does not appearin the state equation. From Kirchhoff’s voltage law for the second loop, we have

i3ðtÞ ¼ 1R3

uC2ðtÞ þR2C2

R3_uC2 �

e2ðtÞR3

ð2:66Þ

R1

L

e1(t)

uC2(t)

e2(t)

R3 R2

i1(t)

i3(t)

i2(t)

u(t)uC1(t)

C1 C2

Fig. 2.2 Electrical circuit, for which the state variables are uC1 ðtÞ; uC2 ðtÞ; i1ðtÞ

2.6 Laplace Transform in Solving State Equation 31

Page 43: Signal Transforms in Dynamic Measurements

which, after substituting into Eq. (2.65) and simplifying, gives

_uC2 ¼i1ðtÞR3

C2 R2 þ R3ð Þ �uC2ðtÞ

C2 R2 þ R3ð Þ þe2ðtÞ

C2 R2 þ R3ð Þ ð2:67Þ

From Kirchhoff’s voltage law for the first loop, we have

i1ðtÞR1 þ L_i1ðtÞ þ uC1ðtÞ þ uðtÞ ¼ e1ðtÞ ð2:68Þ

Voltage uðtÞ does not appear in the state equation; thus, we have to eliminate it.From Kirchhoff’s voltage law for the second loop, we have

i3ðtÞ ¼ uC2ðtÞR2 þ R3

þ i1ðtÞR2

R2 þ R3� e2ðtÞR2 þ R3

ð2:69Þ

then

uðtÞ ¼ i3ðtÞR3 ¼ uC2ðtÞR3

R2 þ R3þ i1ðtÞR2R3

R2 þ R3� e2ðtÞR3

R2 þ R3ð2:70Þ

Substituting Eq. (2.70) into Eq.(2.68), we get the state variable _i1ðtÞ in the form

_i1ðtÞ ¼ � uC1ðtÞL� uC2ðtÞR3

LðR2 þ R3Þ �i1ðtÞðR1R2 þ R1R3 þ R2R3Þ

LðR2 þ R3Þþ e2ðtÞR3

LðR2 þ R3Þ þe1ðtÞL

ð2:71Þ

Equations (2.64), (2.67) and (2.71) expressed in the matrix form give therequired state equation:

_uC1ðtÞ_uC2ðtÞ_i1ðtÞ

264

375 ¼

0 0 1C

0 � 1C2ðR2 þ R3Þ

R3C2ðR2 þ R3Þ

� 1L � R3

LðR2 þ R3Þ � R1R2 þ R1R3 þ R2R3LðR2 þ R3Þ

2664

3775

uC1ðtÞuC2ðtÞiðtÞ

264

375

þ0 0

0 1C2ðR2 þ R3Þ

1L

R3LðR2 þ R3Þ

2664

3775 e1ðtÞ

e2ðtÞ

" # ð2:72Þ

The output equation is obtained directly from Eq. (2.70) and is

uðtÞ ¼ 0 R3R2 þ R3

R2R3R2 þ R3

h i uc1ðtÞuc2ðtÞi1ðtÞ

24

35 þ 0 �R3

R2 þ R3

h i e1ðtÞe2ðtÞ

� �ð2:73Þ

32 2 Laplace Transform

Page 44: Signal Transforms in Dynamic Measurements

Example 2.3 Solve the state equation Eq. (2.54) for zero initial conditions, ifmatrices A, B, and C have the form

A ¼0 1 00 0 1�4 �8 �5

24

35; B ¼

001

24

35; C ¼ 1 0 0½ �; and uðtÞ ¼ 1ðtÞ

ð2:74Þ

Matrix Is� A½ � equals

Is� A½ � ¼s �1 00 s �14 8 sþ 5

24

35 ð2:75Þ

From that

Is� A½ ��1¼s2þ5sþ8

s3þ5s2þ8sþ4sþ5

s3þ5s2þ8sþ41

s3þ5s2þ8sþ4�4

s3þ5s2þ8sþ4sðsþ5Þ

s3þ5s2þ8sþ4s

s3þ5s2þ8sþ4�4s

s3þ5s2þ8sþ4�4ð2sþ1Þ

s3þ5s2þ8sþ4s2

s3þ5s2þ8sþ4

264

375 ð2:76Þ

Applying inverse Laplace transform to Eq. (2.76) gives

eAt ¼4e�t � 2te�2t � 3e�2t 4e�t � 3te�2t � 4e�2t e�t � te�2t � e�2t

�4e�t þ 4te�2t þ 4e�2t �4e�t þ 6te�2t þ 5e�2t �e�t þ 2te�2t þ e�2t

4e�t � 8te�2t � 4e�2t 4e�t � 12te�2t � 4e�2t e�t � 4te�2t

24

35

ð2:77Þ

thus, Eq. (2.54) is

yðtÞ ¼Z t

0

1 0 0½ �4e�ðt�sÞ � 2ðt � sÞe�2ðt�sÞ � 3e�2ðt�sÞ

�4e�ðt�sÞ þ 4ðt � sÞe�2ðt�sÞ þ 4e�2ðt�sÞ

4e�ðt�sÞ � 8ðt � sÞe�2ðt�sÞ � 4e�2ðt�sÞ

264

4e�ðt�sÞ � 3ðt � sÞe�2ðt�sÞ � 4e�2ðt�sÞ e�ðt�sÞ � ðt � sÞe�2ðt�sÞ � e�2ðt�sÞ

�4e�ðt�sÞ þ 6ðt � sÞe�2ðt�sÞ þ 5e�2ðt�sÞ �e�ðt�sÞ þ 2ðt � sÞe�2ðt�sÞ þ e�2ðt�sÞ

4e�ðt�sÞ � 12ðt � sÞe�2ðt�sÞ � 4e�2ðt�sÞ e�ðt�sÞ � 4ðt � sÞe�2ðt�sÞ

375

0

0

1

264

375dsð2:78Þ

which, after simple calculations, gives

yðtÞ ¼ 14� e�t þ 3

4e�2t þ 1

2te�2t: ð2:79Þ

2.6 Laplace Transform in Solving State Equation 33

Page 45: Signal Transforms in Dynamic Measurements

2.7 Simplification of Model Order

Let the Laplace transform of n-order model (Eq. (2.38)) be expressed by numeratorand denominator in the form of Ruth tables, which are as follows:

• for the numerator

b1;1 b1;2 b1;3 b1;4 . . .b2;1 b2;2 b2;3 b2;4 . . .b3;1 b3;2 b3;3. . .bm;1bmþ1;1

ð2:80Þ

• for the denominator

a1;1 a1;2 a1;3 a1;4 . . .a2;1 a2;2 a2;3 a2;4 . . .a3;1 a3;2 a3;3. . .an;1anþ1; 1

ð2:81Þ

where in (2.80)

b1;1 ¼ bm b1;2 ¼ bm�2 b1;3 ¼ bm�4 b1;4 ¼ bm�6b2;1 ¼ bm�1 b2;2 ¼ bm�3 b2;3 ¼ bm�5 b2;4 ¼ bm�7

bi;j ¼ � 1bi�1;1

bi�2;1 bi�2;jþ1bi�1;1 bi�1;jþ1

�������� i ¼ 3; 4; . . .; n j ¼ 1; 2; . . .

ð2:82Þ

and in (2.81)

a1;1 ¼ an ¼ 1 a1;2 ¼ an�2 a1;3 ¼ an�4 a1;4 ¼ an�6a2;1 ¼ an�1 a2;2 ¼ an�3 a2;3 ¼ an�5 a2;4 ¼ an�7

ai;j ¼ � 1ai�1;1

ai�2;1 ai�2;jþ1ai�1;1 ai�1;jþ1

�������� i ¼ 3; 4; . . .; n j ¼ 1; 2; . . .

ð2:83Þ

The model of Eq. (2.38) of the nth order is described by the first two lines oftables (2.82) for the numerator and (2.83) for the denominator. Subsequent lines, (2)and (3), (3) and (4), (4) and (5), etc., allow us to reduce this model, respectively, toorders ðn� 1Þ; ðn� 2Þ; ðn� 3Þ, etc. Thus, the model of order ðn� 1Þ is

34 2 Laplace Transform

Page 46: Signal Transforms in Dynamic Measurements

Kn�1ðsÞ ¼ bm�1sm�1 þ b3;1sm�2 þ bm�3sm�3 þ b3;2sm�4 þ � � �an�1sn�1 þ a3;1sn�2 þ an�3sn�3 þ a3;2sn�4 þ � � � ð2:84Þ

and the model of order ðn� 2Þ is

Kn�2ðsÞ ¼ b3;1sm�2 þ b4;1sm�3 þ b3;2sm�4 þ b4;2sm�5 þ � � �a3;1sn�2 þ a4;1sn�3 þ a3;2sn�4 þ a4;2sn�5 þ � � � ð2:85Þ

In a similar way, one can determine further models of lower orders.

Example 2.4 Obtain, using the Ruth’s method, a third-order model of a seventh-order pitch rate of a supersonic aircraft (given by Sinha and de Bruin 1973)described by the transfer function

K7ðsÞ ¼ 375;000 ðsþ 0:08333Þs7 þ 83:64 s6 þ 4;097 s5 þ 70;342 s4 þ 853;703 s3

� � � þ2;814;271 s2 þ 3;310;875 sþ 281;250

ð2:86Þ

Ruth table (2.83) of the model denominator has the form

1 4;097 853;703 3;310;87583:64 70;342 2;814;271 281;2503:256� 103 8:201� 105 3:308� 106

4:928� 104 2:729� 106 281;2506:398� 105 3:289� 106

2:476� 106 281;2503:216� 106

ð2:87Þ

Fig. 2.3 Impulse responses of models K7ðsÞ (2.86) and K3ðsÞ (2.88)

2.7 Simplification of Model Order 35

Page 47: Signal Transforms in Dynamic Measurements

It can be easily checked that the third-order model is generated by the fifth andsixth lines of the table (2.87). One thus obtains

K3ðsÞ ¼ 375;000 ðsþ 0:08333Þ6:398� 105s3 þ 2:476� 106s2 þ 3:289� 106sþ 281;250

ð2:88Þ

The plots in the Fig. 2.3 show the impulse responses of the models k7ðtÞ and k3ðtÞ.

2.8 Discretization of State Equation

In order to discretize the solution yðtÞ of the state equation (2.55), let us assume thatthe signal yðtÞ will be sampled with the D step.

t ¼ ½nþ 1�D; t0 ¼ nD for n ¼ 0; 1; 2; . . . ð2:89Þ

Substituting Eq. (2.89) into Eq. (2.55), we have

yf½nþ 1�Dg ¼ CeAf½nþ1�D�nDgxðnDÞ þ CZðnþ1ÞDnD

eAf½nþ1�D�sgBuðsÞds ð2:90Þ

Equation (2.90) can be simplified to the form

y½ðnþ 1ÞD� ¼ CeADxðnDÞ þ CZðnþ1ÞDnD

eA½ðnþ1ÞD�s�BuðsÞds ð2:91Þ

Assuming that uðsÞ is constant between consecutive sampling moments

uðsÞ ¼ uðnDÞ for nD\s\½nþ 1�D ð2:92Þ

and substituting Eq. (2.92) into Eq. (2.91), we have

yf½nþ 1�Dg ¼ CeADxðnDÞ

þ CZðnþ1ÞDnD

eAf½nþ1�D�sgdsBuðnDÞ; s 2 nD; ½nþ 1�Df g ð2:93Þ

Let

k ¼ ½nþ 1�D� s ð2:94Þ

36 2 Laplace Transform

Page 48: Signal Transforms in Dynamic Measurements

then,

y ½nþ 1�Df g ¼ eADyðnDÞ �Z0

D

eAkdkBuðnDÞ; k 2 D; 0½ � ð2:95Þ

Changing the limits of integration in Eq. (2.95), we have

y ½nþ 1�Df g ¼ eADyðnDÞ þZD0

eAkdkBuðnDÞ; k 2 D; 0½ � ð2:96Þ

Equation (2.96) may be written in the simple form

yf½nþ 1�Dg ¼ UyðnDÞ þWuðnDÞ ð2:97Þ

where

U ¼ eAD and W ¼ZD0

eAkdkB ð2:98Þ

Due to difficulties connected with the determination of the series expðADÞ;matrix U may be presented in the equivalent form

U ¼ IþX1k¼1

ADð Þkk!

ð2:99Þ

Rewriting Eq. (2.97) in the matrix form

y1½nþ 1�...

yk½nþ 1�

264

375 ¼

u1;1 � � � u1;k

..

. ...

uk;1 � � � uk;k

264

375

y1½n�...

yk½n�

264

375þ

w1

..

.

wk

264

375u½n� ð2:100Þ

and taking into account that the state variable y1½n� is measured directly, we canwrite

y1½n� ¼ y½n�; y1½nþ 1� ¼ y½nþ 1� ð2:101Þ

and then,

2.8 Discretization of State Equation 37

Page 49: Signal Transforms in Dynamic Measurements

y½nþ 1�y2½nþ 1�...

yk½nþ 1�

26664

37775 ¼

u1;1 u1;2 . . . u1;nu2;1 u2;2 . . . u2;n

..

. ... ..

. ...

uk;1 uk;2 . . . uk;k

26664

37775

y½n�y2½n�...

yk½n�

26664

37775þ

w1w2

..

.

wk

26664

37775u½n� ð2:102Þ

where yð0Þ; y2ð0Þ; . . .; ykð0Þ ¼ 0:Equation (2.102) provides an easy way to perform recurrent calculations of the

signal yðtÞ using appropriate mathematical software, e.g., MathCad, MATLAB, etc.

Example 2.5 Determine the output response of the model

KðsÞ ¼ 1s2 þ 0:8sþ 4

ð2:103Þ

to the input

uðtÞ ¼ sinð0:3p tÞ þ cosð0:5p tÞ ð2:104Þ

Model Eq. (2.103) has the impulse response which is

kðtÞ ¼ 0:51 expð�0:4 tÞ sinð1:96 tÞ ð2:105Þ

From Eqs. (2.103) and (2.57), we have

A ¼ 0 1�4 �0:8

� �; B ¼ 0

1

� �ð2:106Þ

Fig. 2.4 Signals uðtÞ (2.104) and kðtÞ (2.105)

38 2 Laplace Transform

Page 50: Signal Transforms in Dynamic Measurements

and

U ¼ 1 0�0:04 0:992

� �; W ¼ 0

0

� �ð2:107Þ

Figures 2.4 and 2.5 present the input uðtÞ; the response kðtÞ in [0, 10s.], and theoutput y½n� for 104 samples.

2.9 Example in MathCad

T :¼ 10 D :¼ 0:01

t :¼ 0;D;. . .; T

KðsÞ :¼ 1s2 þ 0:8sþ 4

KðtÞ :¼ 0:510eð�0:400Þ�t � sinð1:96tÞ

Fig. 2.5 Output y½n�

0 2.5 5 7.5 10

0

0.25

0.5

k(t)

t

− 0.25

− 0.5

2.8 Discretization of State Equation 39

Page 51: Signal Transforms in Dynamic Measurements

uðtÞ :¼ sin 3 � p � f � tð Þ þ cos 5 � p � f � tð Þ

yðtÞ :¼Z t

0

kðt � sÞ � uðsÞds

A :¼ 0 1�4 �0:8

B :¼ 0

1

U :¼for k 2 0; . . .; TD� 1Uk uðk � DÞU

������ TD :¼for i 2 0; . . .; TD� 1TDi i � DTD

������eA�D :¼ 0:99980053891365841134 0:009959442460565568843

�0:039837769842262275375 0:99183298494520595626

U :¼ 0:99980053891365841134 0:009959442460565568843�0:039837769842262275375 0:99183298494520595626

0 2 4 6 8 10− 2

− 1

0

1

2

u(t)

t

0 2.5 5 7.5 10

0

0.5

1

y(t)

t

− 0.5

− 1

40 2 Laplace Transform

Page 52: Signal Transforms in Dynamic Measurements

ZD0

e

0 1�4 �0:8

�kdk � 0

1

! 0

0

W :¼ 00

Y :¼

Y0;0 0Y10;0 0for k 2 0; . . .; TD� 1

Ykþ1;0 U0;0 � Yk;0 þ U0;1 � Y1k;0 þW0;0 � Uk;0

Y1kþ1;0 U1;0 � Yk;0 þ U1;1 � Y1k;0 þW1;0 � Uk;0

�����Y

�������������

0 2 4 6 8 10− 1

− 0.5

0

0.5

1

Y

2.9 Example in MathCad 41

Page 53: Signal Transforms in Dynamic Measurements

Chapter 3Fourier Transform

The Fourier transform converts the signal x(t) from the time domain to thefrequency domain, showing the way in which particular frequencies create theoriginal signal. The Fourier transform X(ω) of the signal x(t) presents a specific caseof the Laplace transform, for which s = jω, and for which the x(t) signal it assumedto meet the Dirichlet condition that it is periodic, monotonic in every finite sub-interval, absolutely convergent on the whole axis, which means that the integral ofits absolute value is finite

Z1�1

xðtÞj jdt\1; ð3:1Þ

in the interval of one period it has a finite number of local maxima and minima, italso has in it a finite number of discontinuity points, in which it has its left-hand andright-hand limit.

3.1 Continuous Fourier Transform

The continuous Fourier transform (CFT) is

XðxÞ ¼Z1�1

xðtÞe�jx tdt ð3:2Þ

which can be presented by

XðxÞ ¼Z1�1

xðtÞ cosðxtÞdt � jZ1�1

xðtÞ sinðxtÞdt ð3:3Þ

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_3

43

Page 54: Signal Transforms in Dynamic Measurements

The module and phase of the spectrum equal

XðxÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ1�1

xðtÞ cosðx tÞdt24

352

þZ1�1

xðtÞ sinðx tÞdt24

352

vuuut ð3:4Þ

and

uðxÞ ¼ arctg

R1�1 xðtÞ sinðx tÞdtR1�1 xðtÞ cosðx tÞdt ð3:5Þ

The transform Eq. (3.2) is lossless, which means that the signal x(t) may becompletely reconstructed. For that purpose, we use the inverse transform

xðtÞ ¼ F�1½XðxÞ� ¼ 12p

Z1�1

XðxÞejx tdx ð3:6Þ

If the signal x(t) does not meet the Dirichlet conditions, generally one of thefollowing two cases occurs:

• The signal x(t) is not periodic, but we can find the range [−T/2, T/2], over whichit will overlap with a periodic signal, and the Fourier transform may be per-formed on it—Fig. 3.1.

• The signal x(t) is not absolutely integrable, and in order to apply the Fouriertransform, we multiply it by e�r t; and then

Z1�1

xðtÞj j e�r tdt\1 ð3:7Þ

Fig. 3.1 Non-periodic and periodic signals

44 3 Fourier Transform

Page 55: Signal Transforms in Dynamic Measurements

and

xðtÞe�r t ¼ 12p

Z1�1

Z10

xðtÞe�rte�jx tdt ejx tdx ð3:8Þ

while x(t) in Eq. (3.8) is calculated as limit

xðtÞ ¼ limr!0

xðtÞe�r t ¼ limr!0

12p

Z1�1

ejx tdxZ10

e�r txðtÞ e�jx tdt ð3:9Þ

3.2 Properties of Fourier Transform

1. Linearity

xðtÞ $ XðxÞ and yðtÞ $ YðxÞ;axðtÞ þ byðtÞa$ a XðxÞ þ bYðxÞ ð3:10Þ

2. Symmetry

XðxÞ $ 2pxð�xÞ ð3:11Þ

3. Change of scale

xta

� �$ aj jX x

a

� �ð3:12Þ

4. Shift

– in the time domain

xðt � t0Þ $ X ðxÞ e�jxt0 ð3:13Þ

– in the frequency domain

xðtÞ e�jx0 t $ X ðx� x0Þ ð3:14Þ

3.1 Continuous Fourier Transform 45

Page 56: Signal Transforms in Dynamic Measurements

5. Convolution

xðtÞ � yðtÞ $ XðxÞ YðxÞ ð3:15Þ

6. Multiplication

xðtÞ � yðtÞ $ 12p

XðxÞ � YðxÞ ð3:16Þ

7. Differentiation

– in the time domain

dnxðtÞdtn

$ ðjxÞnXðxÞ ð3:17Þ

– in the frequency domain

ð�jÞntn xðtÞ $ dnXðxÞdxn

ð3:18Þ

8. Integration

Z t

�1xðsÞ ds$ 1

jxXðxÞ ð3:19Þ

9. Parseval equality

Z1�1

xðtÞj j2dt$ 12p

Z1�1

XðxÞj j2dx ð3:20Þ

3.3 Example of Fourier Transforms

1. Dirac delta

xðtÞ ¼ dðtÞXðxÞ ¼ 1

ð3:21Þ

2. Unit signal

xðtÞ ¼ 1

XðxÞ ¼ 2pdðxÞ ð3:22Þ

46 3 Fourier Transform

Page 57: Signal Transforms in Dynamic Measurements

3. Dirac impulse series

xðtÞ ¼X1k¼�1

dðt � kTÞ

X xð Þ ¼ x0

X1k¼�1

dðx� kx0Þ; x0 ¼ 2pT

ð3:23Þ

4. Harmonic signal

xðtÞ ¼ a ejx0 t

XðxÞ ¼ 2apd ðx� x0Þð3:24Þ

5. Cosinusoidal signal

xðtÞ ¼ cosðx0tÞ ¼ 12ðejx0 t þ e�jx0tÞ

XðxÞ ¼ p dðx� x0Þ þ dðxþ x0Þ½ �ð3:25Þ

6. Sinusoidal signal

xðtÞ ¼ sinðx0tÞ ¼ 12j

ejx0t þ e�jx0t� �

XðxÞ ¼ �jp dðx� x0Þ � dðxþ x0Þ½ �ð3:26Þ

7. Sign signal

xðtÞ ¼ sgnðtÞ ¼�1 for t\0

0 for t ¼ 0

1 for t[ 0

8><>:

XðxÞ ¼ 2jx

ð3:27Þ

8. Unit step signal

xðtÞ ¼ �1 for t\0

1 for t[ 0

XðxÞ ¼ p dðxÞ þ 1jx

ð3:28Þ

9. Sa signal

xðtÞ ¼ sinðXtÞXt

X xð Þ ¼ p2Sx0ð�xÞ; Sx0ðxÞ ¼ Sx0ðxÞ ¼

0 for xj j[X

1 for xj j �X

� ð3:29Þ

3.3 Example of Fourier Transforms 47

Page 58: Signal Transforms in Dynamic Measurements

10. Gaussian signal

xðtÞ ¼ e�at2

X xð Þ ¼ffiffiffipa

re�x24a

ð3:30Þ

11. Exponential signal

xðtÞ ¼ 0 for t\0

e�at for t 0

X xð Þ ¼ 1aþ jx

; a[ 0ð3:31Þ

Example 3.1 Determine the spectrum of a rectangular signal of magnitude one over[0, T]. From Eq. (3.2), we have

XðxÞ ¼ZT0

e�jxTdt ¼ 1jxð1� e�jxTÞ ¼ 1

jxð1� e�j

xT2 � e�jxT2 Þ

¼ 2xsin

xT2

� e�j

xT2 ¼ T

xT2

sinxT2

� e�j

xT2 ¼ T � SaxT

2

� e�j

xT2 ð3:32Þ

where

KðxÞj j ¼ T � SaxT2

ð3:33Þ

is the module of the spectrum and

uðxÞ ¼ x T2

for 0\x\2pT

ð3:34Þ

is its phase. It is easy to see that

KðxÞj j ¼ 0 forx T2¼ np; n ¼ 1; 2; 3; . . . ð3:35Þ

and

KðxÞj j ¼ 2Tpð2nþ 1Þ for

x T2¼ p

2ð2nþ 1Þ ð3:36Þ

Figure 3.2 presents this signal and its characteristics.

48 3 Fourier Transform

Page 59: Signal Transforms in Dynamic Measurements

while

uðxÞ ¼ xT2� p for

2npT

\x\ð2nþ 2Þp

T; n ¼ 1; 2; 3; . . . ð3:37Þ

Example 3.2 Determine the output of an ideal filter with zero attenuation over[−ω0, ω0] when a rectangular input signal over [0, T] and unit step input signal areapplied.

From Eqs. (3.6) and (3.31), we have

yðtÞ ¼ 12p

Zx0

�x0

1jxð1� e�jxTÞ ejxtdx ¼ 1

2p

Zx0

�x0

ejxT � e�jx ðt�TÞ

jxdx

¼ 12p j

Zx0

�x0

cosx t � cosx ðt � TÞx

dxþ 12p

Zx0

�x0

sinxt � sinx ðt � TÞx

dx

ð3:38Þ

Fig. 3.2 Rectangular signal x(t), frequency distribution K(ω) and phase uðxÞ

3.3 Example of Fourier Transforms 49

Page 60: Signal Transforms in Dynamic Measurements

The first integral of the last equation is equal to zero, hence

yðtÞ ¼ 1p

Zx0

0

sinx tx� sinxðt � TÞ

x

� dx

¼ 1p

Zx0t

0

sin xx

dx�Zx0ðt�TÞ

0

sin xx

dx

264

375

¼ 1pSiðx0tÞ � Siðx0t � TÞ½ �

ð3:39Þ

Figure 3.3 presents the solution of Eq. (3.39).

For the unit step, we have directly

yðtÞ ¼ limr!0

12p

Z1�1

ejxtdxZ10

e�ðrþjxÞtdt ¼ limr!0

12p

Z1�1

ejxt

rþ jxdx

¼ limr!0

12p

Z1�1

cosx trþ jx

dxþ jZ1�1

sinx trþ jx

dx

24

35

ð3:40Þ

After calculations, Eq. (3.40), we have

yðtÞ ¼ limr!0

12p

p e�rt þ jZ1�1

sinx trþ jx

dx

24

35 ¼ 1

2þ 1p

Z10

sinx tx

dx ð3:41Þ

Fig. 3.3 Response of an ideal low-pass filter to rectangular signal

50 3 Fourier Transform

Page 61: Signal Transforms in Dynamic Measurements

A similar result can be obtained by extending the window from [0, T] to [0, ∞]in Eq. (3.39). We then have

yðtÞ ¼ 1p

Zx0t

0

sin xx

dx�Zx0ðt�1Þ

0

sin xx

dx

264

375 ð3:42Þ

Substituting

Zx0ðt�1Þ

0

sin xx

dx ¼Z�10

sin xx

dx ¼ � p2

ð3:43Þ

into Eq. (3.42), we have

yðtÞ ¼ 12þ 1p

Zx0t

0

sin xx

dx ¼ 12þ 1p

Zx0

0

sinxx

dx ð3:44Þ

Let ω0 → ∞, then, we finally obtain

yðtÞ ¼ 12þ 1p

Z10

sinxx

dx ð3:45Þ

.

3.4 Discrete Fourier Transform

The discrete Fourier transform DFT and its inverse transform are

X½k� ¼XN�1n¼0

x½n� e�j 2 p k nN ; k ¼ 0; 1; . . .; N � 1 ð3:46Þ

and

x½n� ¼ 1N

XN�1k¼0

X½k� ej 2p k nN ; n ¼ 0; 1; . . .; N � 1 ð3:47Þ

.

3.3 Example of Fourier Transforms 51

Page 62: Signal Transforms in Dynamic Measurements

3.4.1 Fast Fourier Transform

Fast Fourier Transform FFT is an algorithm for determining the DFT and the IDFTwith fewer arithmetic operations. FFT allows to reduce the N2 multiplications andthe N additions required in the DFT to approximately N

2 log2 N:Reducing the number of calculations for the DFT can be realized in many ways.

We will present two of them as an example:

1. Decomposition of N point DFT in two N/2 point DFTThis is a very effective procedure for determining the DFT, provided that thesize of the DFT is the total power of two. The method is based on the division ofthe number of samples of the input signal

xðnÞ ¼ xð0Þ; xð1Þ; . . .; xðN � 1Þ ð3:48Þ

into two parts

xð0Þ; xð1Þ; . . .; x N2� 1

� �ð3:49Þ

and

xN2

� �; x

N2þ 1

� �; . . .; x N � 1ð Þ ð3:50Þ

The DFT Eq. (3.46) of both sequence of samples (3.48) and (3.49) is

X½k� ¼XðN=2Þ�1n¼0

x½n�e�j 2 p k nN þXN�1n¼N=2

x½n�e�j 2 p k nN ð3:51Þ

Substituting

n ¼ nþ N=2 ð3:52Þ

into the second component of the sum (3.51) gives

X½k� ¼XðN=2Þ�1n¼0

x½n�e�j 2p k nN þXðN=2Þ�1n¼0

x nþ N2

� e�j 2pðnþN=2Þ k

N ð3:53Þ

52 3 Fourier Transform

Page 63: Signal Transforms in Dynamic Measurements

Recalculation of Eq. (3.53) gives

X½k� ¼XðN=2Þ�1n¼0

x½n�e�j 2 p k nN þ e�j kpXðN=2Þ�1n¼0

x nþ N2

� e�j 2p k n

N ð3:54Þ

Taking into account that

e�j kp ¼ ðe�j pÞk ¼ cos p� j sinpð Þk¼ ð�1Þk ð3:55Þ

equation (3.54) takes the form

X½k� ¼XðN=2Þ�1n¼0

x½n� þ ð�1Þkx nþ N2

� � e�j 2p k n

N ð3:56Þ

For even values of k, Eq. (3.56) is

X½k� ¼XðN=2Þ�1n¼0

x½n� þ x nþ N2

� � e�j 2p k n

N ð3:57Þ

while for odd values of k, it is

X½k� ¼XðN=2Þ�1n¼0

x½n� � x nþ N2

� � e�j 2p k n

N ð3:58Þ

Substituting k = 2k for even k and k = 2k + 1 for odd k into Eqs. (3.57) and(3.58) gives

X½2k� ¼XðN=2Þ�1n¼0

x½n� þ x nþ N2

� � e�j 4p k n

N ð3:59Þ

and

X½2k þ 1� ¼XðN=2Þ�1n¼0

x½n� � x nþ N2

� � e�j 2p n

N e�j 4p k n

N ð3:60Þ

Let us introduce in Eqs. (3.59) and (3.60) the following notations

a½n� ¼ x½n� þ x nþ N2

� ; b½n� ¼ x½n� � x nþ N

2

� ð3:61Þ

3.4 Discrete Fourier Transform 53

Page 64: Signal Transforms in Dynamic Measurements

and

e�j 4p k n

N ¼ e�j 2 p k n

N=2 ð3:62Þ

Then, we have

X½2k� ¼XðN=2Þ�1n¼0

a½n�WnkN=2 ð3:63Þ

and

X½2k þ 1� ¼XðN=2Þ�1n¼0

b½n�WnNW

nkN=2 ð3:64Þ

where (Fig 3.4)

WmN ¼ exp

�j 2 pmN

� �ð3:65Þ

2. Decomposition of two N/2 point DFT into four N/4 point DFT

The method is based on the division of the sequences að0Þ; að1Þ; . . .; a N2 � 1� �

and bð0ÞW0N ; bð1ÞW1

N ; . . .; bN2 � 1� �

WN2�1N

obtained in the first step into four N/4point sequences (Fig 3.5).

Fig. 3.4 Example of the decomposition of an N point DFT into two N/2 point DFT for N = 8

54 3 Fourier Transform

Page 65: Signal Transforms in Dynamic Measurements

3.5 Short-time Fourier Transform

The short-time Fourier transform (STFT) in the time domain is

STFTTx ðt; f Þ ¼

Zþ1�1

xðsÞwðs� tÞe�j 2 p f sds ð3:66Þ

while in the frequency domain it is

STFTFx ðt; f Þ ¼ e�j 2 pft

Zþ1�1

XðvÞWðv� f Þe�j 2 p v tdv ð3:67Þ

where W(f) is the Fourier spectrum of the time window w(t).The inverse Fourier transform normalized by the window w(t) in t = 0 is

xðtÞ ¼ 1wð0Þ

Zþ1�1

STFTFx ðt; f Þej2 p f tdf ð3:68Þ

The signal spectrum is represented by the second power of STFTFx ðt; f Þ

SSPECx ðt; f Þ ¼ STFTFx ðt; f Þ

2 ð3:69Þ

Fig. 3.5 Example of the decomposition of two N/2 point DFT into four N/4 point DFT for N = 8

3.5 Short-time Fourier Transform 55

Page 66: Signal Transforms in Dynamic Measurements

In the STFT, a narrow window w(t) gives good time resolution but poor fre-quency resolution. A wide window gives the reverse result. It is thus impossible toattain high resolution in the time and the frequency domain at the same time.

The discrete form STFT is expressed as

DSTFTðn; kÞ ¼Xþ1

m¼�1x½m�w½n� m� ej 2p

N kð Þm; k ¼ 0; 1; . . .; N � 1 ð3:70Þ

In Eq. (3.70), N should be greater than or equal to the number of samples M ofthe window w(n).

3.6 Time Windows

The time windows occurring in Eqs. (3.65) and (3.66) are used for “cutting out” onthe time axis a sector of the signal, in order to perform its spectral analysis. Theapplication of the inverse transform IDFT enables the reproduction of sample seriesfor the signal analyzed.

For a periodic signal, the part used for analysis is a multiple of its period, and theanalysis is referred to as synchronous. In such a case, the best results are obtainedwhen a rectangular time window is applied. That is due to the fact that frequenciesof the signal considered are located exactly at the points, for which the Fourierspectrum is calculated. The spectrum values, except for the fundamental compo-nent, occur at zero points of the Fourier spectrum. The application of windows otherthan rectangular worsens the frequency resolution.

In the case of non-periodic signals, the application of a rectangular window inthe IDFT generates side lobes after transformation. For this reason, the window of

Fig. 3.6 Synchronous spectral analysis

56 3 Fourier Transform

Page 67: Signal Transforms in Dynamic Measurements

the shape different than the rectangular is applied. Such an analysis is referred to asasynchronous.

Figures 3.6 and 3.7 present synchronous and asynchronous spectral analysiswith the application of a rectangular window and a Hanning window as an example.

3.7 Properties of Time Windows

The time windows used in practice have a specific shape which is symmetricalabout the peak of the curve, which occurs at the midpoint of its width. Due to thesymmetrical shape of the window, its phase spectrum is linear. The limited lengthof a window causes an infinite amplitude spectrum which starts at zero from a valueequal to the sum of the samples. The window spectrum consists of the main lobeand side lobes. An ideal time window should have the main lobe as narrow aspossible, and its side lobes should be as small as possible. This is a contradictoryrequirement, as narrowing of the main lobe causes widening of side lobes. Theexisting windows are a compromise between the two above requirements. How-ever, it is worth underlining that even a small, insignificant change to the windowshape may cause substantial change in the spectrum distribution (Fig 3.8).

The two most important parameters which influence the quality of a time win-dow are as follows:

1. Width of the main lobe Sg, which is the distance between the point of charac-teristics occurring for f = 0 and the point for which the amplitude spectrumachieves the nearest minimum value. Because the width of the main lobe isinversely proportional to the width of the window N, it is convenient to use theproduct Sg N as a window comparative measure.

Fig. 3.7 Asynchronous spectral analysis

3.6 Time Windows 57

Page 68: Signal Transforms in Dynamic Measurements

2. Attenuation of the side lobe Ps expressed in decibel as the difference betweenthe maximum of the main lobe and maximum of the highest side lobe.Eqs. (3.70)–(3.79) present formulae for the discrete and continuous timewindows.

– Rectangular window

Rectang ðnÞ ¼ 1 for n ¼ 1; 2; . . .;N

Rectang ðtÞ ¼ 1 for t 2 0; Tð Þ ð3:71Þ

– Triangular window

TriangðnÞ ¼ 1� 2n� NN

for n ¼ 1; 2; . . .;N

TriangðtÞ ¼ 1� 2t � TT

for t 2 0; Tð Þ

ð3:72Þ

– Barlett window

BarlettðnÞ ¼ N � 12� n� N � 1

2

for n ¼ 1; 2; . . .; N

BarlettðtÞ ¼ T2� t � T

2

for t 2 0; Tð Þ

ð3:73Þ

– Hanning window

HanðnÞ ¼ 0:5� 0:5 cos2p nN

� �for n ¼ 1; 2; . . .; N

HanðtÞ ¼ 0:5� 0:5 cos2p tT

� �for t 2 0; Tð Þ

ð3:74Þ

Fig. 3.8 Shape of a typical time window and its amplitude spectrum

58 3 Fourier Transform

Page 69: Signal Transforms in Dynamic Measurements

– Hamming window

HamðnÞ ¼ 0:54� 0:46 cos2p nN

� �for n ¼ 1; 2; . . .;N

HamðtÞ ¼ 0:54� 0:46 cos2p tT

� �for t 2 0; Tð Þ

ð3:75Þ

– Blackman window

BlackðnÞ ¼ 0:42� 0:5 cos2p nN � 1

� �þ 0:08 cos

4p nN � 1

� �for n ¼ 1; 2; . . .;N

BlackðtÞ ¼ 0:42� 0:5 cos2p tT

� �þ 0:08 cos

4p tT

� �for t 2 ð0; TÞ

ð3:76Þ

– Gaussian window

GaussðnÞ ¼ exp �0:5 n N�12

r N�12

!224

35 for n ¼ 1; 2; . . .;N; r� 0:5

GaussðtÞ ¼ exp �0:5 n T2

r T2

� �2" #

for t 2 ð0; TÞ; r� 0:5

ð3:77Þ

– Flat Top window

FTðnÞ ¼ 0:28� 0:52 cos2pnN � 1

� �� 0:2 cos

4pnN � 1

� �for n ¼ 1; 2; . . .;N

FTðtÞ ¼ 0:28� 0:52 cos2ptT

� �� 0:2 cos

4ptT

� �for t 2 ð0; TÞ

ð3:78Þ

– Exponential window

ExpðnÞ ¼ fn

N�1ð Þ for n ¼ 1; 2; . . .;N; f 2 ð0; 1ÞExpðtÞ ¼ f

tTð Þ for t 2 ð0; TÞ; f 2 ð0; 1Þ

ð3:79Þ

3.7 Properties of Time Windows 59

Page 70: Signal Transforms in Dynamic Measurements

– Kaiser window

KaðnÞ ¼I0 pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1� 2n

N�1� 1� �2q�

I0ðpaÞ for n ¼ 1; 2; . . .;N; a ¼ 3

where I0ðmÞ ¼ 1þX1k¼1

m2

� �kk!� zero order Bessel function

KaðtÞ ¼I0 pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1� 2t

T � 1� �2q�

I0ðpaÞ for t 2 ð0; TÞ; a ¼ 3

where I0ðxÞ ¼ 1þX1k¼1

x2

� �kk!

ð3:80Þ

3.8 Fourier Series

In measurement practice, we usually deal with two types of signal: periodic signalsand undetermined signals. For periodic signals, the share of particular frequenciesin the original signal is determined by decomposition of the x(t) signal into aFourier series. As a result, we obtain the constant component a0 of this signal,as well as sinusoidal and cosinusoidal components, having frequencies x1; 2x1;3x1; . . .; nx1—Eq. (3.81)

xðtÞ ¼ a0 þX1n¼1

an cosðnx1tÞ þ bn sinðnx1tÞ½ � ¼ a0 þX1n¼1

cn cosðnx1t þ /nÞ½ �

ð3:81Þ

In order to determine coefficients a0, an, bn of the series in Eq. (3.81), let usintegrate it in the limits of T=2; T=2½ �: We obtain then

ZT2

�T2

xðtÞdt ¼ZT

2

�T2

a0dtþX1n¼1

an

ZT2

�T2

cosðnx1tÞdt þ bn

ZT2

�T2

sinðnx1tÞdt

264

375 ð3:82Þ

and, as the right side of Eq. (3.82) is equal to zero, we have

60 3 Fourier Transform

Page 71: Signal Transforms in Dynamic Measurements

ZT2

�T2

xðtÞdt ¼ZT

2

�T2

a0dt ð3:83Þ

from that

a0 ¼ 1T

ZT2

�T2

xðtÞdt ð3:84Þ

The constant component a0 thus represents the mean value of the signal x(t) in�T=2; T=2½ �: Let us now multiply the series (3.81) by cos(mω1t) and integrate it in�T=2; T=2½ �: We thus obtain

ZT2

�T2

cosðmx1tÞxðtÞdt¼ a0

ZT2

�T2

cosðmx1tÞdt

þX1n¼1

an

ZT2

�T2

cosðnx1tÞ cosðmx1tÞ dt þ bn

ZT2

�T2

sinðnx1tÞ cosðmx1tÞdt

264

375

ð3:85Þ

As we have

ZT2

�T2

cosðmx1tÞdt ¼ 0

ZT2

�T2

sinðnx1tÞ cosðmx1tÞdt ¼ 0

ð3:86Þ

and for m = n

ZT2

�T2

cosðnx1tÞ cosðnx1tÞdt ¼ T2

ð3:87Þ

3.8 Fourier Series 61

Page 72: Signal Transforms in Dynamic Measurements

equation (3.87) becomes

ZT2

�T2

cosðnx1tÞxðtÞdt ¼ anT2

ð3:88Þ

from that

an ¼ 2T

ZT2

�T2

xðtÞ cosðnx1tÞdt ð3:89Þ

Multiplication of the series (3.81) by sin(mω1t) and integration in the limits of�T=2; T=2½ �; gives

ZT2

�T2

sinðmx1tÞxðtÞdt¼ a0

ZT2

�T2

sinðmx1tÞdt

þX1n¼1

an

ZT2

�T2

cosðnx1tÞ sinðmx1tÞdt þ bn

ZT2

�T2

sinðnx1tÞ sinðmx1tÞdt

264

375ð3:90Þ

As we have

ZT2

�T2

sinðmx1tÞdt ¼ 0;ZT

2

�T2

cosðnx1tÞ sinðmx1tÞdt ¼ 0 ð3:91Þ

and for m = n

ZT2

�T2

sinðnx1tÞ sinðmx1tÞdt ¼ T2

ð3:92Þ

so Eq. (3.85) becomes

ZT2

�T2

sinðnx1tÞxðtÞdt ¼ bnT2

ð3:93Þ

62 3 Fourier Transform

Page 73: Signal Transforms in Dynamic Measurements

from that

bn ¼ 2T

ZT2

�T2

xðtÞ sinðnx1tÞdt ð3:94Þ

Depending on the shape of the signal x(t), the trigonometric series contain onlyparticular components:

For odd x(t), we have

a0 ¼ 1T

ZT2

�T2

xðtÞdt ¼ 1T

Z0�T2

xðtÞdt þZT

2

0

xðtÞdt

264

375 ¼ 0 ð3:95Þ

an ¼ 2T

ZT2

�T2

xðtÞ cosðnx1tÞdt¼ 2T

Z0�T2

xðtÞ cosðnx1tÞdt

þ 2T

ZT2

0

xðtÞ cosðnx1tÞdt ¼ 0

ð3:96Þ

bn ¼ 2T

ZT2

�T2

xðtÞ sinðnx1tÞdt¼ 2T

Z0�T2

xðtÞ sinðnx1tÞdt

þ 2T

ZT2

0

xðtÞ sinðnx1tÞdt 6¼ 0

ð3:97Þ

and the series (3.81) contain only sinusoidal components.For even x(t), we have

a0 ¼ 1T

Z�T2�T2

xðtÞdt ¼ 2T

ZT2

0

xðtÞdt ð3:98Þ

an ¼ 2T

ZT2

�T2

xðtÞ cosðnx1tÞdt ¼ 4T

ZT2

0

xðtÞ cosðnx1tÞdt ð3:99Þ

3.8 Fourier Series 63

Page 74: Signal Transforms in Dynamic Measurements

bn ¼ 2T

ZT2

�T2

xðtÞ sinðnx1tÞdt¼ 2T

Z0�T2

xðtÞ sinðnx1tÞdt

þ 2T

ZT2

0

xðtÞ sinðnx1tÞdt ¼ 0

ð3:100Þ

and the series (3.81) contains only cosinusoidal components and the constantcomponent.

Fourier series may be presented in exponential or trigonometric form. Theexponential form of the Fourier series is

xðtÞ ¼X1n¼�1

Anej nx1t ¼ A0 þ A1ej x1t þ A2ej 2x1t þ � � � þ A�1e�j x1t

þ A�2e�j 2x1t þ � � � þ A�ne�j nx1t þ � � �ð3:101Þ

where

A0 ¼ 1T

ZT2

�T2

f ðtÞdt; An ¼ 1T

ZT2

�T2

xðtÞe�jnx1tdt;

A�n ¼ 1T

ZT2

�T2

xðtÞejnx1tdt

ð3:102Þ

Example 3.3 Determine the first 5 components of the Fourier series for the signalx(t) in [−1, 3]—Fig. 3.9

Fig. 3.9 Signal x(t)

64 3 Fourier Transform

Page 75: Signal Transforms in Dynamic Measurements

The constant component equals

a0 ¼ 14

Z3�1

xðtÞ cos 02pT

t

� �� dt ¼ 1 ð3:103Þ

The particular components an of the Fourier series are

an ¼ 24

Z3�1

xðtÞ cos n2pT

t

� �� dt ð3:104Þ

From (3.103), we have a1 = 0.637, a2 = 0, a3 = −0.212, a4 = 0, and a5 = 0.127,and the Fourier series is the sum

xðtÞ ¼ a0 þX5n¼1

an cos n2pT

t

� �ð3:105Þ

Figures 3.10, 3.11 and 3.12 present particular components of these sums andsignal corresponding to them.

Fig. 3.10 Components x1(t) and x3(t) of the signal x(t)

3.8 Fourier Series 65

Page 76: Signal Transforms in Dynamic Measurements

3.9 Examples in MathCad

Discrete windows

N :¼ 100

n :¼ 0; 1; . . .;N � 1

Rectangular

Rect nð Þ :¼ 1

Fig. 3.12 Sum of components x013 ðtÞ ¼ a0 þ x1ðtÞ þ x3ðtÞ and x0135ðtÞ ¼ a0 þ x1ðtÞ þ x3ðtÞþx5ðtÞ

Fig. 3.11 Components x5(t) and x01ðtÞ ¼ a0 þ x1ðtÞ

66 3 Fourier Transform

Page 77: Signal Transforms in Dynamic Measurements

0 20 40 60 80 1000.999

0.9995

1

1.0005

1.001

Rect(n)

nTriangular

TriangðnÞ :¼ 1� 2 � n� NN

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Triang(n)

nBartlett

BartðnÞ :¼ N � 12� n� N � 1

2

0 20 40 60 80 1000

10

20

30

40

50

Bart(n)

nHanning

HanðnÞ :¼ 0:5� 0:5 � cos 2 � p � nN

� �

3.9 Examples in MathCad 67

Page 78: Signal Transforms in Dynamic Measurements

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Han(n)

nHamming

HamðnÞ :¼ 0:54� 0:46 � cos 2 � p � nN

� �

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Ham(n)

n

Gaussianσ := 0.4

�0:5 � n� N�12

r � N�12

!2

Gaussa(n) := e

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Gaussa(n)

n

68 3 Fourier Transform

Page 79: Signal Transforms in Dynamic Measurements

Flat top

a0 :¼ 0:28 a1 :¼ 0:52 a2 :¼ 0:2

FTðnÞ :¼ a0 � a1 � cos 2 � p � nN

� �þ a2 � cos 4 � p � n

N

� �� �

0 20 40 60 80 1000.5−

0

0.5

1

FT(n)

nExponential

f :¼ 0:2

ExpðnÞ :¼ fn

N�1ð Þ

0 20 40 60 80 1000.2

0.4

0.6

0.8

1

Exp(n)

nBlackman

a0 :¼ 0:41 a1 :¼ 0:5 a2 :¼ 0:08

FTðnÞ :¼ a0 � a1 � cos 2 � p � nN � 1

� �þ a2 � cos 4 � p � n

N � 1

� �� �

3.9 Examples in MathCad 69

Page 80: Signal Transforms in Dynamic Measurements

0 20 40 60 80 1000.2−0

0.2

0.4

0.6

0.8

1

FT(n)

nSynchronous discrete analysis of signal x(t) for rectangular and Hanning

windows

D :¼ 0:001 T :¼ 1 f :¼ 5

t :¼ 0;D; . . .; T

xðtÞ :¼ sinð2 � p � f � tÞ

0 0.2 0.4 0.6 0.8 11−

0.5−

0

0.5

1

x(t)

tDiscretization of x(t)

xn :¼for i 2 0; . . .;

TD

xi xði � DÞX

n :¼

for i 2 0; . . .;TD

ni i

n

N ¼ TD

70 3 Fourier Transform

Page 81: Signal Transforms in Dynamic Measurements

0 6001−

0.5−

0

0.5

1

xn

Spectral analysis of the product of signal x[n] and rectangular window

DFTSPEC Rec x :¼

for k 2 0; . . .;N � 1

DFTSPEC Rec xk 1N

PN�1n¼0

1 � xnn � e�i�2�p�k�n

N

� �

DFTSPEC Rec x

k :¼ 0; . . .; 20

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

DFTSPEC_Rec_xk

kHanning window

HanðnÞ :¼ 0:5� 0:5 � cos 2 � p � nN

� �

0 400 8000

0.2

0.4

0.6

0.8

1

Han(n)

n

3.9 Examples in MathCad 71

Page 82: Signal Transforms in Dynamic Measurements

Han x :¼for k 2 0; . . .;N

Han xk HanðkÞ � xnkHanx

0 400 8001−

0.5−

0

0.5

1

Han_x

nSpectral analysis of the product of the signal x[n] and Hanning window

DFTSPEC Han xk :¼

for k 2 0; . . .;N � 1

DFTSPEC Han xk 1N

XN�1n¼0

Han xn � e�i�2�p�k�nN

� �

DFTSPEC Han x

0 5 10 15 200

0.1

0.2

0.3

DFTSPEC_Han_xk

kAsynchronous discrete analysis of the signal for rectangular and Hanning

windowsSignal shifted by 100 samples to the left. Analysis refers to 900 samples.

D :¼ 0:001 T :¼ 1 f :¼ 5

t :¼ 0; D; . . .; T

xðtÞ :¼ sinð2 � p � f � tÞshift :¼ 100

72 3 Fourier Transform

Page 83: Signal Transforms in Dynamic Measurements

xsn :¼for i 2 0; . . .;

TD� shift

xsn xði � DÞxsn

n1 :¼

for i 2 0; . . .;TD� shift

n1 i

n1

N1 :¼ T

D� shift

Spectral analysis of the product of the signal x[n] and rectangular window

DFTSPEC Rec x :¼

for k 2 0; . . .;N1

DFTSPEC Rec xk 1N1

XN1�1

n¼0

1 � p � k � nN1

� �

DFTSPEC Rec x

k :¼ 0; . . .; 20

0 5 10 15 200

0.1

0.2

0.3

0.4

DFTSPEC_Rec_xk

k

Spectral analysis of the product of the signal x[n] and Hanning window

DFTSPEC Han x :¼

for k 2 0; . . .;N1 � 1

DFTSPEC Han xk 1N1

PN1�1

n¼0Han xn � e

�1�p�k�nN1

� �

DFTSPEC Han xk

0 5 10 15 200

0.1

0.2

0.3

DFTSPEC_Han_xk

k

3.9 Examples in MathCad 73

Page 84: Signal Transforms in Dynamic Measurements

STFT in MathCad for rectangular window

D :¼ 0:05 T :¼ 10 F :¼ 8

t :¼ 0; D; . . .; T

f 1 :¼ 3 f 2 :¼ 5 f 3 :¼ 1 f 4 :¼ 7

f :¼ 0; D. . .F

xðtÞ :¼

0 if 0� t \ 1sin 2 � p � f1 � tð Þ if 1� t \ 20 if 2� t \ 4sin 2 � p � f2 � tð Þ if 4� t \ 50 if 5� t \ 7sin 2 � p � f3 � tð Þ þ sin 2 � p � f4 � tð Þ if 7� t \ 90 if 9� t \ 10

0 2 4 6 8 102−

1−

0

1

2

x(t)

tSTFT for good time resolution

OtðtÞ :¼ 2 if 0� t \ 0:40 otherwise

����

0 2 4 6 8 100

0.5

1

1.5

2

Ot )(t

t

74 3 Fourier Transform

Page 85: Signal Transforms in Dynamic Measurements

STETt�SPECðt; f Þ :¼ZT0

xðvÞ � Otðv� tÞ � e�i�2�p�f �vdv

0@

1A

2

Atðt; f Þ :¼STETt�SPECðt; f Þtf

0@

1A

ta :¼ 0 tb :¼ 10

f a :¼ 0 f b :¼ 8

grida :¼ 30 gridb :¼ 30

St :¼ CreateMesh ðAt; ta; tb; f a; f b; grida; gridb

StSTFT for good frequency resolution

Of ðtÞ :¼ 2 if 0� t \ 60 otherwise

0 2 4 6 8 100

0.5

1

1.5

2

Of )(t

t

3.9 Examples in MathCad 75

Page 86: Signal Transforms in Dynamic Measurements

STFTt�SPFCðt; f Þ :¼ZT0

xðvÞ � O2ðv� tÞ � e�i�2�p�f �vdv

0@

1A

2

Atðt; f Þ :¼STFTt�SPECðt; f Þtf

0@

1A

Sf :¼ CreateMesh ðAf ; ta; tb; f a; f b; grida; gridbÞ

Sf

STFT for resolution being a compromise between time and frequency

Otf ðtÞ :¼ 2 if 0� t \ 0:20 otherwise

0 2 4 6 8 100

0.5

1

1.5

2

Otf )(t

t

76 3 Fourier Transform

Page 87: Signal Transforms in Dynamic Measurements

STFTtf �SPECðt; f Þ :¼ZT0

xðvÞ � Otf ðv� tÞ � e�i�2�p�f �vdv

0@

1A

2

Atf ðt; f Þ :¼STFTtf �SPECðt; f Þtf

0@

1A

Stf :¼ CreateMesh ðAtf ; ta; tb ; f a ; f b; grida; gridbÞ

StfFourier seriesEven function

t :¼ �2;�0:99; . . .; 2

xðtÞ :¼

x �1 if � 2� t \ � 1

x t if � 1� t \ 0

x �t if 0� t \ 1

x �1 if 1� t \ 2

x

2− 1− 0 1 21−

0.8−

0.6−

0.4−

0.2−

x t( )

t

3.9 Examples in MathCad 77

Page 88: Signal Transforms in Dynamic Measurements

N :¼ 5

T :¼ 4 n :¼ 1; . . .;N

a0 :¼ 1T�Z2�2

xðtÞ � cos 0 � 2 � pT� t

� �� �dt

an :¼ 2T�Z2�2

xðtÞ � cos n � 2 � pT� t

� �� �dt

x1ðtÞ :¼ a0 þXNn¼1

an � cos n � 2 � pT� t

� �

2− 1− 0 1 21.5−

1−

0.5−

0

)(tx

x1 )(t

tOdd function

xðtÞ :¼

x �1 if � 8� t \ � 6x 1 if � 6� t \ � 4x 0 if � 4� t \ � 2x �1 if 0� t \ 2x 1 if 2� t \ 4x 0 if 4� t \ 6x �1 if 6� t \ 8x

5− 0 51−

0

1

)(tx

t

78 3 Fourier Transform

Page 89: Signal Transforms in Dynamic Measurements

N :¼ 20

T :¼ 16 n :¼ 1; . . .;N

bn :¼ 2T�Z8�8

xðtÞ � sin n � 2 � pT� t

� �� �dt

x1ðtÞ :¼XNn¼1

bn � sin n � 2 � pT� t

� �

5− 0 5

1−

0

1

)(tx

x1 )(t

t

3.9 Examples in MathCad 79

Page 90: Signal Transforms in Dynamic Measurements

Chapter 4Z Transform

In Chap. 2, we discussed the Laplace transform, which is widely used in theanalysis of linear systems described by linear differential equations with constantcoefficients. However, many systems are described by means of difference equa-tions referring to discrete moments of time. They occur wherever we deal with A/Dconverters, digital transmission and signal processing, digital filters, etc. For suchsystems, the Z transform realizes a similar mathematical operation to that of theLaplace transform for systems with continuous time. In systems with continuoustime, in which inputs and outputs are represented by means of differential equa-tions, the Laplace transform enables solving them, and transfer function enablestheir description. Difference equations describing systems in discrete moments aresolved by means of the Z transform, while the transfer function in Z space is used torepresent them. This chapter is devoted to the methods of determining and appli-cation of the Z transform in the description of systems with discrete data.

Let us consider the x[n] series of samples of the x(t) analog signal. This series,with amplitudes proportional to x(t) is obtained by the process of sampling—Fig. 4.1.

Series of sampling impulses is

dTðtÞ ¼ dðtÞ þ dðt � TÞ þ dðt � 2TÞ þ � � � ð4:1Þ

which can be represented in the simple form

dTðtÞ ¼X1n¼0

dðt � nTÞ ð4:2Þ

Because the values x(t) in the sampling process are read only for t = nT, theoutput signal from the sampling system, if x(t) = 0 for t < 0, is

x nTð Þ ¼X1n¼0

x nTð Þd t � nTð Þ ð4:3Þ

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_4

81

Page 91: Signal Transforms in Dynamic Measurements

The Laplace transform of Eq. (4.3) gives

LX1n¼0

xðnTÞdðt � nTÞ ¼X1n¼0

xðnTÞe�nTs ð4:4Þ

Let us define Z transform as

z ¼ eTs; ð4:5Þ

and then, the Eq. (4.4) may be expressed as

LX1n¼0

xðnTÞdðt � nTÞ ¼ Z½xðnTÞ� ¼ X½z� ¼X1n¼0

xðnTÞz�n ð4:6Þ

where z is a complex number. The domain of the Z transform is a set of complexnumbers, for which the series (4.6) is convergent.

In order to simplify the notation, the series x[nT] is usually defined by x[n].Then, the formula (4.6) is

Z x n½ �gf ¼ X z½ � ¼X1n¼0

x nð Þz�n ð4:7Þ

Let us consider the transform Z x n½ �gf of sample series x n½ � ¼ an

X z½ � ¼X1n¼0

anz�n ¼X1n¼0

az

� �n

¼ 11� a

z

¼ zz� a

ð4:8Þ

Fig. 4.1 Sampling principle for analog signals

82 4 Z Transform

Page 92: Signal Transforms in Dynamic Measurements

Transform X[z] Eq. (4.8) has the pole at z = a and zero at z = 0. It represents aninfinite geometric series tending to zero if 0\a\1 and to infinity if a > 1. Thesetwo behaviors are similar to the behavior of the inverse transform X(s) for realnegative poles and for real positive poles, respectively. For a negative value of a,oscillations are generated for which �1\a\0 tends toward zero and for a < − 1tends toward infinity. This time, the two behaviors are similar to the behavior of theinverse transform of X(s) for complex conjugate poles with negative real parts andpositive real parts, respectively (Fig. 4.2).

The significant difference between the systems defined by means of the trans-form X(s) and X[z] lies in the fact that for the generation of oscillations for X(s), atleast two complex conjugate poles are necessary, whereas for oscillations for X[z],one negative pole is enough. In the general case, the stability of the s plane isdetermined by the abscissa of convergence σ, and of the z plane by a circle of radiusexp rTð Þ. For signals that are absolutely integrable, for which σ = 0, we are dealingwith an imaginary axis for plane s and a unitary circle for plane z. The mapping of

Fig. 4.2 Transform X½z� for n ¼ 20 sample series Eq. (4.8)

4 Z Transform 83

Page 93: Signal Transforms in Dynamic Measurements

the plane s into the plane z results directly from the definition of the transformZ—Eq. (4.5). Substitution s ¼ rþ jx into Eq. (4.5) gives

z ¼ eTs ¼ er T cosxT þ j sinxTð Þ ð4:9Þ

Dividing the imaginary axis of Eq. (4.9) into sections with a width of xs=4;where xs ¼ 2p=T , we get

for x ¼ xs=4 ! e jx T ¼ e jp=2

for x ¼ xs=2 ! e jx T ¼ e jp

for x ¼ 3xs=4 ! e jx T ¼ e j3p=2

and for x ¼ xs ! e jxT ¼ e j2p

In this way, the Z transform maps the ordinate rþ j1 into a circle of radius erT .The situation is identical for the ordinate r� j1. We have now

for x ¼ �xs=4 ! e jx T ¼ e�jp=2;

for x ¼ �xs=2 ! e jxT ¼ e�jp etc. (Fig. 4.3).

In the analysis of properties of systems with continuous time, two importantsignals are used. These are the Dirac delta dðtÞ and the unit step 1ðtÞ. Let usdetermine the Z transforms for these signals. The Z transform of Dirac delta dðtÞEq. (1.34) is (Fig. 4.4)

Z d n½ �gf ¼X1�1

d nð Þ z�n ¼ z�0 ¼ 1 ð4:10Þ

Fig. 4.3 Mapping of s plane into z plane

84 4 Z Transform

Page 94: Signal Transforms in Dynamic Measurements

The Z transform of Dirac delta dðtÞ shifted by nT of samples is

Z d t � nTð Þ½ � ¼X1n¼0

dðt � nTÞ z�n ¼ z�n; t� 0 ð4:11Þ

The Z transform of unit step (1.41) is (Fig. 4.5)

Z 1 n½ �gf ¼X1n¼0

1 n½ �z�n ¼ 1z0

þ 1z1

þ 1z2

þ � � � ¼ 11� 1

z

¼ zz� 1

for1z

��������\1

ð4:12Þ

4.1 Properties of Z Transform

1. Linearity

Z ax1ðtÞ þ bx2ðtÞ½ � ¼ aX1ðsÞ þ bX2ðsÞ ð4:13Þ

2. Shift in time domain

Z xðt � sÞ½ � ¼ XðzÞ z�s ð4:14Þ

Fig. 4.4 Z transform of Dirac delta d½n�

Fig. 4.5 Z transform of unit step 1ðnÞ

4 Z Transform 85

Page 95: Signal Transforms in Dynamic Measurements

3. Change of frequency scale

Z e jxtxðtÞ� � ¼ Xðe�jxzÞ ð4:15Þ

4. Convolution

Z x1ðtÞ � x2ðtÞ½ � ¼ X1ðzÞ � X2ðzÞ ð4:16Þ

5. Time reversal

Z xð�tÞ½ � ¼ Xðz�1Þ ð4:17Þ

6. Derivative

Z t xðtÞ½ � ¼ �zdXðzÞdz

ð4:18Þ

7. Transform of sum

ZXm�1

n¼0

x nT½ � ¼ zz� 1

FðzÞ ð4:19Þ

8. Transform of difference

Z x k þ 1½ �T � x kT½ �gf ¼ z� 1ð ÞXðzÞ � zxð0Þ ð4:20Þ

9. Initial value

limt!0

xðtÞ ¼ limz!1XðzÞ ð4:21Þ

10. Finale value

limt!1 xðtÞ ¼ lim

z!11� z�1XðzÞ� � ð4:22Þ

4.2 Determination of Z Transform

For single poles of X(s) the transform X[z] is

X½z� ¼Xmk

resXðskÞ 11� eskTz�1

¼Xmk

resXðskÞ zz� eskT

; k ¼ 1; 2; . . .;m ð4:23Þ

86 4 Z Transform

Page 96: Signal Transforms in Dynamic Measurements

where sk is the kth pole of the transform X(s), m is the number of single poles, T isthe sampling interval.

For multiple poles, the transform X[z] of X(s) is

X½z� ¼ Prk¼1

resXðsÞ � ð�1Þk�1

ðk�1Þ!dk�1

dsðk�1Þz

z�esT

� ����s¼sw

; k ¼ 1; 2; . . .; r ð4:24Þ

where r is the order of the multiple pole sw, and the residuum of X(s) is given byEq. (2.43).

In the case where single and multiple poles appear simultaneously, the Ztransform is given by the sum of (4.23) and (4.24).

Example 4.1 Determine X[z] of the signal x(t)

xðtÞ ¼ e�at � e�bt

b� að4:25Þ

The Laplace transform of x(t) is

XðsÞ ¼ 1ðsþ aÞðsþ bÞ ð4:26Þ

which at the pole s ¼ �a has the

res1

ðsþ aÞðsþ bÞ����s¼�a

¼ 1b� a

ð4:27Þ

and at the pole, s ¼ �b has the residuum

res1

ðsþ aÞðsþ bÞ����s¼�b

¼ 1a� b

ð4:28Þ

Using the notation of Eq. (4.23) gives

X½z� ¼ 1b� a

zz� e�aT

� zz� e�bT

ð4:29Þ

Example 4.2 Determine X½z� of the XðsÞ transform

XðsÞ ¼ 1

s3ðsþ aÞ2 ð4:30Þ

4.2 Determination of Z Transform 87

Page 97: Signal Transforms in Dynamic Measurements

The XðsÞ transform has one triple pole at zero

s1 ¼ 0

s2 ¼ 0

s3 ¼ 0

9>=>; k ¼ 1; 2; 3; r ¼ 3 ð4:31Þ

and one double pole at �a

s4 ¼ �a

s5 ¼ �a

)k ¼ 1; 2; 3; r ¼ 2 ð4:32Þ

Residua corresponding to those poles Eq. (2.48) equal

resXðsÞjs1¼0¼12!

d2

ds2ðs� 0Þ3 1

s3ðsþ aÞ2" #

s¼0

¼ 12

6

ðsþ aÞ4�����s¼0

¼ 3a4

for k ¼ 1

ð4:33Þ

resXðsÞjs2¼0¼11!

dds

ðs� 0Þ3 1

s3ðsþ aÞ2" #

s¼0

¼ � 2

ðsþ aÞ3�����s¼0

¼ � 2a3

for k ¼ 2

ð4:34Þ

resXðsÞjs3¼0¼10!

ðs� 0Þ3 1

s3ðsþ aÞ2" #

s¼0

¼ 1

ðsþ aÞ2�����s¼0

¼ 1a2

for k ¼ 3

ð4:35Þ

resXðsÞjs4¼�a¼11!

dds

ðsþ aÞ2 1

s3ðsþ aÞ2" #

s¼�a

¼ � 3s4

����s¼�a

¼ � 3a4

for k ¼ 1

ð4:36Þ

resXðsÞjs5¼�a¼10!

ðsþ aÞ2 1

s3ðsþ aÞ2" #

s¼�a

¼ 1s3

����s¼�a

¼ � 1a3

for k ¼ 2

ð4:37Þ

The components of the transform X[z] corresponding to these residua are

X½z�js1¼0¼3a4

ð�1Þ01ð1� 1Þ!

zz� esT

� �����s¼s1

¼ 3a4

zz� 1

; k ¼ 1 ð4:38Þ

88 4 Z Transform

Page 98: Signal Transforms in Dynamic Measurements

X½z�j s2¼0 ¼ � 2a3

ð�1Þ11ð2� 1Þ!

dds

zz� esT

� �����s¼s2

¼ � 2a3

TzeTs

ðz� eTsÞ2�����s¼0

¼ 12a2

T2zeTs

ðz� eTsÞ2 þ2T2ze2Ts

ðz� eTsÞ3 !

s¼0

¼ � 2a3

Tz

ðz� 1Þ2 ; k ¼ 2

ð4:39Þ

X½z�j s3¼0 ¼1a2

ð�1Þ2ð3� 1Þ!

d2

ds2z

z� esT

� �����s¼s3

¼ 1a2

T2z

ðz� 1Þ2 þ2T2z

ðz� 1Þ3 !

¼ 12a2

T2zðzþ 1Þðz� 1Þ3 ; k ¼ 3

ð4:40Þ

X½z�js4¼�a¼ � 3a4

ð�1Þ01ð1� 1Þ!

zz� esT

� �����s¼s4

¼ � 3a4

zðz� e�aTÞ ; k ¼ 1 ð4:41Þ

X½z�j s5¼�a ¼ � 1a3

ð�1Þ11ð2� 1Þ!

dds

zz� esT

� �����s¼s5

¼ � 1a3

TzeTs

ðz� eTsÞ2�����s¼�a

� 1a3

Tze�Ta

ðz� e�TaÞ2 ; k ¼ 2

ð4:42Þ

The transform X[z] is the sum of the components

X½z� ¼ 3a4

zz� 1

� 2a3

Tz

ðz� 1Þ2 þ12a2

T2zðzþ 1Þðz� 1Þ3

� 3a4

zðz� e�aTÞ �

1a3

Tze�Ta

ðz� e�TaÞ2 ð4:43Þ

4.3 Changing Sampling Interval

Let us consider a change of sampling interval from T to T1: Let us rewriteEq. (4.23) in the following form

X½z� ¼Xmk

resXðskÞ 11� akðTÞz�1 ; k ¼ 1; 2; . . .;m ð4:44Þ

4.2 Determination of Z Transform 89

Page 99: Signal Transforms in Dynamic Measurements

where

akðTÞ ¼ eskT ð4:45Þ

Changing T into T1 in Eq. (4.45), we have

akðT1Þ ¼ eskT1 ð4:46Þ

Logs of both sides of Eq. (4.45) gives

sk ¼ 1Tln akðTÞ ð4:47Þ

Substitution (4.47) into (4.46) gives

akðT1Þ ¼ eT1T ln akðTÞ ð4:48Þ

The new X½z� is thus given by

X½z� ¼Xmk

resXðskÞ 11� akðT1Þz�1 ; k ¼ 1; 2; . . .;m ð4:49Þ

Example 4.3 For X ½z� ,

X½z� ¼ 101� 0:012z�1 ð4:50Þ

sampled every 1 s determine X½z� sampled every 0.5 s.From Eq. (4.48), we have

að0:5Þ ¼ e0:51 ln 0:012 ¼ 0:11 ð4:51Þ

Thus, the new model has the form

X½z� ¼ 101� 0:11z�1 ð4:52Þ

4.4 Inverse Z Transform

The transform x½n� inverse to X½z� is

x½n� ¼Xmk¼1

resfzn�1X½zk�g�����z¼zk

; k ¼ 1; 2; . . .;m ð4:53Þ

90 4 Z Transform

Page 100: Signal Transforms in Dynamic Measurements

where for single poles,

resX½zk� ¼ ðz� zkÞX½z�jz¼zk ð4:54Þ

and for multiple poles,

resX½zk� ¼ 1ðr � 1Þ!

dðr�1Þ

dzðr�1Þ fðz� zwÞrX½z]g�����z¼zk

ð4:55Þ

where r is the order of the multiple pole zw:

Example 4.4 Determine the inverse transform x½n� for

X½z� ¼ zðz� 1Þðz� 2Þðz� 3Þ ð4:56Þ

The transform X[z] has three single poles

z1 ¼ 1; z2 ¼ 2; z3 ¼ 3 ð4:57Þ

Components of x½n� corresponding to those poles are

x½nz1� ¼ res fzn�1X½z�g��z1¼1¼ ðz� 1Þ zn

ðz� 1Þðz� 2Þðz� 3Þ

z¼1¼ 1

2ð4:58Þ

x½nz2� ¼ res fzn�1X½z�g��z2¼2¼ ðz� 2Þ zn

ðz� 1Þðz� 2Þðz� 3Þ

z¼2¼ �2n ð4:59Þ

x½nz3� ¼ res fzn�1X½z�g��z2¼3¼ ðz� 3Þ zn

ðz� 1Þðz� 2Þðz� 3Þ

z¼3¼ 3n

2ð4:60Þ

The transform x½n� has the final form

x½n� ¼ 12� 2n þ 3

2

n

ð4:61Þ

A method often used to determine the transform x½n� is decomposition of X½z�into partial fractions. If X½z� is given in the form of the quotient of two polynomials,we can decompose it into partial fractions

X½z� ¼ LðzÞMðzÞ ¼

Xnk¼1

resX½zk�z� zk

ð4:62Þ

4.4 Inverse Z Transform 91

Page 101: Signal Transforms in Dynamic Measurements

and then, the transform X½z� is

X½z� ¼ z�mXnk¼1

resX½zk�1� zkz�1 ð4:63Þ

where resX½z� is given by Eq. (4.54).The poles of zk may be located inside or outside of the convergence area. For the

poles zk located in the convergence area, the component of sum (4.63) is

resX ½zk�1� zkz�1 $ resX½zk�ðzkÞn1 ½n� ð4:64Þ

whereas in case of poles zk located outside this area,

resX½zk�1� zkz�1 $ �resX½zk�ðzkÞn1 ½�n� 1� ð4:65Þ

The presentation of X½z� as a sum of fractions (4.63) requires exclusion of theultimate powers of z from polynomials in the numerator LðzÞ and the denominatorMðzÞ and, in consequence, introduction of the common multiplicands zm. Thiscauses shifting of the sum (4.63) forward or back, depending on the sign of m.

Example 4.5 Solve example (4.4) by the method of decomposition X½z� into partialfractions

X½z� ¼ zðz� 1Þðz� 2Þðz� 3Þ ¼

12

1z� 1

� 21

z� 2þ 32

1z� 3

ð4:66Þ

The transform X½z� has three poles 1; 2; 3 and corresponding residua:12 ; �2; 3

2 : Excluding z from denominators of (4.66) gives

X½z� ¼ 1z

12

11� 1z�1 � 2

11� 2z�1 þ

32

11� 3z�1

ð4:67Þ

Taking into account Eq. (4.64), we have

X½n� ¼ 1z

121n � 2� 2n þ 3

2� 3n

ð4:68Þ

If X½z� is multiplied by zk in solving the equations, we make use shift of argu-ment. They are as follows: for shifting the argument to the left

zfx½n� k�g ¼ z�kX½z� ð4:69Þ

92 4 Z Transform

Page 102: Signal Transforms in Dynamic Measurements

and shifting the argument to the right

zfx½n� k�g ¼ zkX½z� �Xk�1

r¼0

xðrÞzk�r ð4:70Þ

where it is assumed that x½�n� ¼ 0For small values of k, the last formula is reduced to the form

z x½nþ 1� ¼ z X½z� � z x½0� for k ¼ 1 ð4:71Þ

z x½nþ 2� ¼ z2X½z� � z2x½0� � zx½1� for k ¼ 2 ð4:72Þ

z x½nþ 3� ¼ z3X½z� � z3x½0� � z2x½1� � zx½2� for k ¼ 3 ð4:73Þ

Utilizing Eq. (4.69), we evaluate Eq. (4.68) to get

x½n� ¼ 121n�1 � 2� 2n�1 þ 3

2� 3n�1 ¼ 1

2� 2n þ 3n

2ð4:74Þ

Example 4.6 Solve the equation

x½nþ 2� þ 5x½nþ 1� þ 6x½n� ¼ 0 ð4:75Þ

for the initial conditions: x½0� ¼ 2; x½1� ¼ �5Applying Eqs. (4.71) and (4.72), we get

z2X½z� � z2x½0� � z x½1� þ 5ðz X½z� � z x½0�Þ þ 6X½z� ¼ 0 ð4:76Þ

Inserting the initial conditions gives

X½z�ðz2 þ 5zþ 6Þ ¼ z½2z� 5� ð4:77Þ

and

X½z� ¼ z2z� 5

z2 þ 5zþ 6¼ z

2z� 5ðzþ 2Þðzþ 3Þ ð4:78Þ

Hence, the inverse transform of X½z� is

x½n� ¼ zðn�1Þ zð2z� 5Þzþ 3

����z¼�2

þ zðn�1Þ zð2z� 5Þzþ 2

����z¼�3

¼ �9ð�2Þn þ 11ð�3Þn

ð4:79Þ

4.4 Inverse Z Transform 93

Page 103: Signal Transforms in Dynamic Measurements

4.5 Digital Filters

The idea of digital filters design depends on the calculation of the transfer functionfor an analog filter that meets the assumed requirements and then determining adigital filter, corresponding to the analog one. A popular method of transforminganalog filters designed in the Laplace space into digital filters is to approximate theoperator s to the operator z by means of a bilinear transformation

s ¼ 2Tð1� z�1Þð1þ z�1Þ ð4:80Þ

Hence, we have

KðzÞ ¼ KðsÞjs¼2

Tð1�z�1Þð1þz�1Þ

ð4:81Þ

where T is the sampling interval.The transformation (4.81) represents a nonlinear relationship between the analog

frequency xa and the digital frequency xc. Substituting z ¼ ejxc T into Eq. (4.80)gives

s ¼ jx ¼ 2T1� e�jxcT

1þ e�jxcT¼ 2

Te jxcT=2ðe jxcT=2 � e�jxcT=2Þe jxcT=2ðe jxcT=2 þ e�jxcT=2Þ

¼ 2T

ðe jxcT=2 � e�jxcT=2Þ�j2ðe jxcT=2 þ e�jxcT=2Þ=2 ¼ j2

TsinðxcT=2ÞcosðxcT=2Þ ¼

j2TtanðxcT=2Þ ð4:82Þ

It can be easily confirmed that the last relation is almost linear for small xc\0:5.The frequency characteristic of the filter is

KðejxcÞ ¼ KðzÞjz¼ejxc T ð4:83Þ

where xc ¼ X Tp is the normalized frequency in relation to sampling rate.

Example 4.7 Design the transfer function for a digital filter with a 1-kHz samplingfrequency on the basis of Butterworth low-pass filter

KðsÞ ¼ 1

s2 þ ffiffiffiffi2

psþ 1

ð4:84Þ

94 4 Z Transform

Page 104: Signal Transforms in Dynamic Measurements

Applying the transform (4.80), we have

KðzÞ ¼ KðsÞ js¼ 2

10�3ð1�z�1Þð1þz�1Þ

¼ 1

210�3

ð1�z�1Þð1þz�1Þ

� �2þ ffiffiffi

2p

210�3

ð1�z�1Þð1þz�1Þ þ 1

¼ 10�6 z2 þ 2zþ 14:003z2 � 7:999zþ 3:997

ð4:85Þ

Substituting z ¼ ejx�10�3

into Eq. (4.85), we get

KðejxcÞ ¼ 106 sinðxc�103Þ2 þ sinðxc

�2� 103Þ2 � 1

1013½0:4 sinðxc=103Þ2 � 1:6 sinðxc=2� 103Þ2 � 1�

þ j

ffiffiffi2

p103½2 sinðxc

�103Þ þ sinð2xc

�103�

1013½0:4 sinðxc=103Þ2 � 1:6 sinðxc=2� 103Þ2 � 1� ð4:86Þ

4.6 Example in MathCad

x :¼ ð1 2 3ÞT

Zðx; zÞ :¼XrowsðxÞ�1

n¼0

xnz�nð Þ

Zvðx; zÞ ! 2zþ 3z2

þ 1

2zþ 3z2

þ 1� �

invztrans ! dðn; 0Þ þ 2� dðn� 1; 0Þ þ 3� dðn� 2; 0Þ

n :¼ 0. . .2

dðn; 0Þ þ 2� dðn� 1; 0Þ þ 3� dðn� 2; 0Þ:

1

3

2

4.5 Digital Filters 95

Page 105: Signal Transforms in Dynamic Measurements

Chapter 5Wavelet Transform

In Chap. 3, we discussed the Fourier transform, which converts the stationary signalx(t) from the time domain to the frequency domain XðxÞ and thus allows us toperform a frequency analysis. Thanks to this transform, we can determine theamplitudes and frequencies of the sine and cosine making up the signal x(t), but wecannot determine at what time the corresponding amplitude occurs. The STFtransform used in the analysis of non-stationary signals allows us to obtain thedistribution of frequency components in time, but we are faced with the problem ofselecting the appropriate window width. Selection of the wrong width blurs thetime–frequency data obtained as a result of applying the transform. In the wavelettransform, the problem of time–frequency resolution is solved by replacing the timewindow with a wavelet function.

5.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined as

Wf ða; sÞ ¼Z10

xðtÞWa;sðtÞdt ð5:1Þ

in which

Wa;sðtÞ ¼ 1ffiffiffia

p wt � sa

� �ð5:2Þ

where w is the mother wavelet, s is the shift factor, and a is the scaling factor.When a < 1, the wavelet is narrowed, whereas when a[ 1, the wavelet is

stretched. The 1=ffiffiffia

pfactor normalizes the wavelet. For low values of a, the wavelet

has a maximum instantaneous value and the wavelet decreases as a increases. Themother wavelet W, depending on the form of xðtÞ and the requirements for itsanalysis, fulfills the following conditions:

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_5

97

Page 106: Signal Transforms in Dynamic Measurements

• The mean value of the wavelet equals zero

Z10

wðtÞdt ¼ 0 ð5:3Þ

• The norm of the wavelet equals one

wðtÞk k ¼ 1 ð5:4Þ

and the integral must be finite

Zþ1

�1

jW xð Þ2jx

dx ¼ finite\1 ð5:5Þ

where W xð Þ is the Fourier transform of wðtÞ:Figure 5.1 presents an example of a wavelet translation along the signal xðtÞ:During the CWT, the wavelet is translated along the signal, and for each of its

translations, the value ofWf ða; sÞ is calculated. After reaching the end of signal, thewavelet is rescaled and shifted back to the beginning of the signal and the procedureis repeated. The data matrix thus obtained is the representation of the signal in thewavelet domain.

The inverse wavelet transform is

xðtÞ ¼ 1Cw

Zþ1

0

Zþ1

0

Wf ða; sÞ 1ffiffiffia

p wt � sa

� �ds

daa2

: ð5:6Þ

5.2 Wavelet Functions

The Morlet wavelet

wðt; rÞ ¼ e�t22 e�itr ð5:7Þ

is used for the estimation of the amplitude–frequency signal components. Parameterr is the acceptability condition.

The Marr wavelet (“Mexican hat”) is used to estimate the extremes of the signaldistribution

98 5 Wavelet Transform

Page 107: Signal Transforms in Dynamic Measurements

wðtÞ ¼ ð1� t2Þe�t22 ð5:8Þ

The Meyer wavelet is defined only in the frequency domain.

WðxÞ ¼1 for jxj � 2

3 pcos p

2 t34p jxj � 1� �� �

for 23 p� jxj � 4

3 p0 for jxj � 4

3 p

8<: ð5:9Þ

where

tðtÞ ¼ 0 for t� 01 for t� 1

:

ð5:10Þ

Fig. 5.1 CWT procedure, k is a successive wavelet translation

5.2 Wavelet Functions 99

Page 108: Signal Transforms in Dynamic Measurements

5.3 Discrete Wavelet Transform

The discrete wavelet transform DWT of the signal xn is determined by simultaneousfiltration using a FIR digital filter bank. Outputs of the low-pass filter and the high-pass filter have the following forms

yhn ¼XL�1

l¼0

xlhn�l ð5:11Þ

and

ygn ¼XL�1

l¼0

xlgn�l; n ¼ 0; 1; . . .; L� 1 ð5:12Þ

where L is the number of coefficients of impulse responses hn and gn:Equations (5.11) and (5.12) present the digital convolution. They decompose the

input signal in such a way that the low-pass filter transmits the constant componentand attenuates the component that has the period of p rad. The high-pass filterattenuates the constant component and transmits the component that has a fre-quency of p rad. To meet the above conditions, we have

gn ¼ �ð�1ÞnhL�n�1 ð5:13Þ

and

PL�1

n¼0hn ¼

ffiffiffi2

p

PL�1

n¼0hnhnþ2m ¼ dm; m ¼ 0; 1; . . .; L2 � 1

8>><>>: ð5:14Þ

where

dm ¼ 0 for m 6¼ 01 for m ¼ 0

ð5:15Þ

presents Kronecker delta.The values of the signal samples yhn and ygn denote the coefficients of discrete

wavelet transform. Their sum contains twice the number of samples, and as a result,their coding would require twice the number of memory cells compared to a singlecoding. The reduction to half the number of samples is realized by removing everysecond sample from the output filters.

100 5 Wavelet Transform

Page 109: Signal Transforms in Dynamic Measurements

Removing the samples is performed using decimators according to

an ¼XL�1

l¼0

xnhn�l

( )#2

ð5:16Þ

dn ¼XL�1

l¼0

xngn�l

( )#2

ð5:17Þ

In Eqs. (5.16) and (5.17), the notation #2 presents convolution of every secondsample. After substituting Eqs. (5.11) and (5.17) into Eqs. (5.11) and (5.12), wehave

an ¼ x2n ¼XL�1

l¼0

xn h2n�l ð5:18Þ

and

dn ¼ x2n ¼XL�1

l¼0

xn g2n�l ð5:19Þ

Equations (5.18) and (5.19) present the two-point decimation, which realize theMallat algorithm (Fig. 5.2).

The signal an at the output of low-pass filter is referred to as the approximation(trend), whereas the signal dn at the output of high-pass filter is referred to as thedetail (fluctuation).

Figure 5.3 presents the diagram of the multistage wavelet transform, for whichthe Eqs. (5.18) and (5.19) are

Fig. 5.2 DWT with decimators

5.3 Discrete Wavelet Transform 101

Page 110: Signal Transforms in Dynamic Measurements

amn ¼XL�1

l¼0

amþ1lh2n�l ð5:20Þ

dmn ¼XL�1

l¼0

amþ1lg2n�l ð5:21Þ

whereM is the number of decomposition stages, and m ¼ 1; 2; . . .;M. This way, thesignal xn is presented as a sum of the approximations of the last level of a1n anddetails d1n; . . .dmn; dmþ1n from all stages of decomposition.

Reconstruction of the coefficient amþ1n is realized by means of an inverse dis-crete wavelet transform (IDWT). It is

amþ1n ¼XL�1

l¼0

faml~hn�2l þ dml~gn�2lg ð5:22Þ

where ~h and ~g represent the impulse responses of the filters.In order to provide ideal reconstruction of the signal, equating ~xn with xn, the

Z transforms of filters hn; gn; ~hn; ~gn must meet the following conditions

HðzÞ~HðzÞ þ GðzÞ~GðzÞ ¼ 2 ð5:23Þ

Hð�zÞ~HðzÞ þ Gð�zÞ~GðzÞ ¼ 0 ð5:24Þ

Figure 5.4 presents signal reconstruction by means of a filters bank withexpanders. These insert a zero value between every second sample.

Fig. 5.3 Diagram of multistage wavelet transform

102 5 Wavelet Transform

Page 111: Signal Transforms in Dynamic Measurements

5.4 Discrete Wavelets

In the DWT analysis, the wavelets used are generated indirectly by determinationof coefficients of the filters gn and hn—Eqs. (5.13) and (5.14). In practical appli-cations, the most popular discrete wavelets are the Harr and the Daubechieswavelets.

For Haar wavelets of length L ¼ 2; we have

h0 þ h1 ¼ffiffiffi2

ph20 þ h21 ¼ 1

ð5:25Þ

hence,

h0 ¼ffiffiffi2

p

2; h1 ¼

ffiffiffi2

p

2ð5:26Þ

Substituting Eq. (5.26) into Eq. (5.13) gives

g0 ¼ffiffiffi2

p

2; g1 ¼ � ffiffiffi

2p

2ð5:27Þ

For Daubechies wavelets of order higher than 2, we have

PL�1

n¼0hn ¼

ffiffiffi2

p

PL�1

n¼2mhnhnþ2m ¼ dm for m ¼ 0; 1; 2; . . .; L2 � 1

PL�1

q¼0qkð�1ÞqhL�1�q ¼ 0 for k ¼ 1; 2; . . .; L2 � 1

8>>>>>>><>>>>>>>:

ð5:28Þ

Fig. 5.4 IDWT with expanders

5.4 Discrete Wavelets 103

Page 112: Signal Transforms in Dynamic Measurements

A typical set of equations for a filter of the length L = 4 is a system of followingequations

h0 þ h1 þ h2 þ h3 ¼ffiffiffi2

ph20 þ h21 þ h22 þ h23 ¼ 1h0h2 þ h2h3 ¼ 00h3 � 1h2 þ 2h1 � 3h0 ¼ 0

8>><>>: ð5:29Þ

The solution of Eq. (5.29) gives

h0 ¼ 1þ ffiffiffi3

p

4ffiffiffi2

p ; h1 ¼ 3þ ffiffiffi3

p

4ffiffiffi2

p

h2 ¼ 3� ffiffiffi3

p

4ffiffiffi2

p ; h3 ¼ 1� ffiffiffi3

p

4ffiffiffi2

pð5:30Þ

Hence, by Eqs. (5.13) and (5.30), we have high-pass filter parameters

g0 ¼ h3; g1 ¼ �h2; g2 ¼ h1; g3 ¼ �h0 ð5:31Þ

The modifications of the Daubechies wavelets are Coiflet and Symplet wavelets.The values of the filter coefficients gn and hn; for these wavelets, are characterizedby a symmetry which is close to the ideal.

104 5 Wavelet Transform

Page 113: Signal Transforms in Dynamic Measurements

5.5 Example of Three-Stage Wavelet Transformin LabVIEW

5.5 Example of Three Stage Wavelet Transform in LabVIEW 105

Page 114: Signal Transforms in Dynamic Measurements

Chapter 6Hilbert Transform

The Hilbert transform H[x(t)] presents the integral convolution of the signalsx(t) and g(t)

H xðtÞ½ � ¼ ~xðtÞ ¼Z1�1

xðsÞgðt � sÞds ð6:1Þ

in which

gðtÞ ¼ 1p t

ð6:2Þ

The Hilbert transform thus has the form

~xðtÞ ¼ 1p

Z1�1

xðsÞt � s

ds ð6:3Þ

while for t ¼ s, the integralR1

�1xðsÞt�sds should be considered in the sense of the

Cauchy principal value, so

Z1�1

xðsÞt � s

ds ¼ lime!0

Zt�e

�1

xðsÞt � s

dsþZ1tþe

xðsÞt � s

ds

24

35 ð6:4Þ

The Inverse Hilbert transform is

H�1 xðtÞ½ � ¼ � 1p

Z1�1

~xðtÞt � s

ds ð6:5Þ

Let the Hilbert transform be given as

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_6

107

Page 115: Signal Transforms in Dynamic Measurements

H xðtÞ½ � ¼ 1pt

� xðtÞ ð6:6Þ

or in the frequency domain as a product of spectra

HðxÞ ¼ KðxÞXðxÞ ¼ �j sgnðxÞXðxÞ ð6:7Þ

where �j sgnðxÞ is the spectrum of 1pt :

The spectrum KðxÞ in Eq. (6.7) has the form

KðxÞ ¼ �j sgnðxÞ ¼�j for x[ 0j for x\ 00 for x ¼ 0

8<: ð6:8Þ

or

KðxÞ ¼e�jðp=2Þ for x[ 0ejðp=2Þ for x\ 00 for x ¼ 0

8<: ð6:9Þ

Substituting Eq. (6.8) into Eq. (6.7), we have

HðxÞ ¼�jXðxÞ for x[ 0jXðxÞ for x\ 00 for x ¼ 0

8<: ð6:10Þ

From Eq. (6.10), we can see that the spectrum of the Hilbert transform HðxÞdiffers from the spectrum XðxÞ only in that the two halves of the spectrum XðxÞ aremultiplied, depending on the sign of x, by either j or �j, that is their phases areshifted by 90�. From Eq. (6.8), it is easy to see that KðxÞj j ¼ 1 for all values of xand that the argument equals

argKðxÞ ¼ �p=2 for x[ 0p=2 for x\ 0

�ð6:11Þ

For this reason, the Hilbert transform is often referred to as the phase shifter.Figure 6.1 presents the Hilbert transform characteristics KðxÞj j and argKðxÞ:The Hilbert transform is used to determine complex analytic signals xaðtÞ: The

real part of xaðtÞ is the original signal xðtÞ, and the imaginary part is its Hilberttransform ~xðtÞ

xaðtÞ ¼ xðtÞ þ j~xðtÞ ð6:12Þ

108 6 Hilbert Transform

Page 116: Signal Transforms in Dynamic Measurements

Let us consider the analytic signal xa of two variables, real r and imaginary u

xa ¼ rðv; yÞ þ juðv; yÞ ð6:13Þ

The derivatives of the signal xa are calculated from the following relations

_xa ¼ drdv

þ jdudy

ð6:14Þ

or

_xa ¼ dudy

� jdrdv

ð6:15Þ

The analytic signal meets the conditions

drdv

¼ dudy

anddrdy

¼ � dudv

ð6:16Þ

For example

xa ¼ evþjy ¼ ev cos yþ jev sin y ¼ rðv; yÞ þ juðv; yÞ ð6:17Þ

is analytic, because the conditions (6.16) are satisfied

drdv

¼ ev cos y;dudy

¼ ev cos y ð6:18Þ

and

drdy

¼ �ev sin y; � dudv

¼ �ev sin y ð6:19Þ

Fig. 6.1 The Hilbert transform characteristics

6 Hilbert Transform 109

Page 117: Signal Transforms in Dynamic Measurements

The signal described in Eq. (6.13) may be presented in the exponential form

xaðtÞ ¼ EðtÞejuðtÞ ¼ EðtÞ cosuðtÞ þ j sinuðtÞ½ � ð6:20Þ

where EðtÞ is the envelope of the signal

EðtÞ ¼ � xaðtÞj j ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2ðtÞ þ ~x2ðtÞ

pð6:21Þ

and uðtÞ is its phase

uðtÞ ¼ arctg~xðtÞxðtÞ ð6:22Þ

The derivative of uðtÞ presents the phase frequency

xðtÞ ¼ duðtÞdt

¼ x2ðtÞE2ðtÞ ð6:23Þ

Figure 6.2 presents signal xðtÞ ¼ A cosðxtÞ, its transform ~xðtÞ ¼ A sinðxtÞ, andenvelopes �EðtÞ.

6.1 Examples of Hilbert Transform

H sinðtÞ ¼ � cosðtÞ ð6:24Þ

H cosðtÞ ¼ sinðtÞ ð6:25Þ

Fig. 6.2 Signals xðtÞ;~xðtÞ and their envelopes �EðtÞ

110 6 Hilbert Transform

Page 118: Signal Transforms in Dynamic Measurements

HsinðtÞt

¼ 1� cosðtÞt

ð6:26Þ

HdðtÞ ¼ 1pt

ð6:27Þ

H _dðtÞ ¼ � 1pt2

ð6:28Þ

H€dðtÞ ¼ 2pt3

ð6:29Þ

Hejt ¼ �jejt ð6:30Þ

He�jt ¼ je�jt ð6:31Þ

Hejbt ¼ j sgnðbÞejbt ð6:32Þ

x1ðtÞ; x2ðtÞh i ¼ ~x1ðtÞ;~x2ðtÞh i ð6:33Þ

xðtÞ; xðtÞh i ¼ ~xðtÞ;~xðtÞh i ð6:34Þ

xðtÞ;~xðtÞh i ¼ 0 ð6:35Þ

Hx1ðtÞ; x2ðtÞh i ¼ x1ðtÞ � Hx2ðtÞh i ð6:36Þ

H½x1ðtÞ � x2ðtÞ� ! ~x1ðtÞ � x2ðtÞ ¼ x1ðtÞ � ~x2ðtÞ ¼ �~x1ðtÞ � ~x2ðtÞ ð6:37Þ

H c1x1ðtÞ þ c2x2ðtÞ½ � ¼ c1~x1ðtÞ þ c2~x2ðtÞ ð6:38Þ

H xðtÞxðtÞ½ � ¼ xðtÞ~xðtÞ ð6:39Þ

H½c� ¼ 0 ð6:40Þ

H xðtÞ þ c½ � ¼ H xðtÞ½ � þ HðcÞ ¼ ~xðtÞ ð6:41Þ

H xðatÞ½ � ¼ sgn a~xðatÞ ð6:42Þ

H�1xðtÞ ¼ �HxðtÞ ð6:43Þ

H2 xðtÞ½ � ¼ �xðtÞ ð6:44Þ

H4 xðtÞ½ � ¼ xðtÞ ð6:45Þ

HdxðtÞdt

� �¼ d

dtH xðtÞ½ � ð6:46Þ

6.1 Examples of Hilbert Transform 111

Page 119: Signal Transforms in Dynamic Measurements

HdkxðtÞdtk

� �¼ dk

dtkH xðtÞ½ � ð6:47Þ

Figures 6.3 and 6.4 show examples of analytic signals in the complex coordinatesystem. Figure 6.3 presents xðtÞ ¼ cosðxtÞ, ~xðtÞ ¼ sinðxtÞ, and xaðtÞ ¼ cosðxtÞþj sinðxtÞ. Figure 6.4 presents xðtÞ ¼ e�at cosðxtÞ, ~xðtÞ ¼ e�at sinðxtÞ, andxaðtÞ ¼ e�at cosðxtÞ þ j sinðxtÞ½ �.

Fig. 6.4 The signal xðtÞ (harmonic horizontal function), its transform ~xðtÞ (harmonic verticalfunction), and analytic signal xaðtÞ (conic helix)

Fig. 6.3 The signal xðtÞ (harmonic horizontal function), its transform ~xðtÞ (harmonic verticalfunction), and analytic signal xaðtÞ (circular helix)

112 6 Hilbert Transform

Page 120: Signal Transforms in Dynamic Measurements

6.2 Examples in MathCad

Example referring to Fig. 6.2

i :¼ 0; . . .; 1000 A :¼ 2 x0 :¼ 0:025

xi :¼ A � cos x0 � ið Þx1 :¼ hilbertðxÞ

Ei :¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxiÞ2 þ ðx1iÞ2

q

0 200 400 600 800 1 103×

−1

−0.5

0

0.5

1

xi

i

0 200 400 600 800 1 103×

−2

−1

0

1

2

x1i

Ei

Ei−

i

6.2 Examples in MathCad 113

Page 121: Signal Transforms in Dynamic Measurements

Example referring to Fig. 6.3

t :¼ �10;�9:999; . . .; 10

x :¼ 1

X1ðtÞ :¼cosðx � tÞsinðx � tÞ

t

0@

1A X2ðtÞ :¼

0sinðx � tÞ

t

0@

1A X3ðtÞ :¼

cosðx � tÞ0t

0@

1A

t1 :¼ �10 t2 :¼ 10 grid :¼ 500

A1 :¼ CreateSpaceðF1; t1; t2; gridÞ

A2 :¼ CreateSpaceðF2; t1; t2; gridÞ

A3 :¼ CreateSpaceðF3; t1; t2; gridÞ

114 6 Hilbert Transform

Page 122: Signal Transforms in Dynamic Measurements

Example referring to Fig. 6.4

t :¼ �2;�1:999; . . .; 2

a :¼ 0:6 x :¼ 10

x1ðtÞ :¼ e�a�t � cosðx � tÞ x2ðtÞ :¼ e�a�t � sinðx � tÞ

X2ðtÞ :¼0

x1ðtÞt

0@

1A X1ðtÞ :¼

x1ðtÞx2ðtÞt

0@

1A X3ðtÞ :¼

x2ðtÞ0t

0@

1A

t1 :¼ �2 t2 :¼ 2 grid :¼ 500

A1 :¼ CreateSpaceðX1; t1; t2; gridÞ

A2 :¼ CreateSpaceðX2; t1; t2; gridÞ

A3 :¼ CreateSpaceðX3; t1; t2; gridÞ

6.2 Examples in MathCad 115

Page 123: Signal Transforms in Dynamic Measurements

116 6 Hilbert Transform

Page 124: Signal Transforms in Dynamic Measurements

Chapter 7Orthogonal Signals

Orthogonal signals are commonly used in various practical and theoretical appli-cations, in particular in metrology, automatic control engineering, medicine, com-munication, approximation theory, theory of polynomials, and many other fields.For that reason they play an important role in the theory of signals.

The set of signals {x(t)} is named orthogonal over the interval [a, b] with respectto the weight function w(t), if

Zb

a

wðtÞxjðtÞ xkðtÞ dt ¼ 0 for j 6¼ kak [ 0 for j ¼ k

�ð7:1Þ

If additionally ak ¼ 1 for each k = 0, 1, …, n, and the energy of the signalsequals one

Ex ¼Zb

a

xkðtÞj j2 dt ¼ 1 ð7:2Þ

then these signals are orthonormal. It is easy to see that sets of signals

fxðtÞg ¼ x0ðtÞ; x1ðtÞ; . . .; xnðtÞf g; k ¼ 1; 2; . . .; n ð7:3Þ

in which

xkðtÞ ¼ Ak sinð2p kf0 tÞ T0 ¼ 1=f0 ð7:4Þ

and

fyðtÞg ¼ y0ðtÞ; y1ðtÞ; . . .; nnðtÞf g; k ¼ 1; 2; . . .; n ð7:5Þ

in which

ykðtÞ ¼ Bk cosð2p kf0 tÞ T0 ¼ 1=f0 ð7:6Þ

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_7

117

Page 125: Signal Transforms in Dynamic Measurements

are orthogonal over [0, T0], because

ZT00

Ak sinð2pkf0tÞAm sinð2pmf0 tÞdt

¼ZT00

Ak cosð2pkf0tÞAm cosð2pmf0 tÞdt ¼ 0; k 6¼ m

ð7:7Þ

ZT00

Ak sinð2pkf0 tÞAm sinð2pmf0tÞdt ¼ �AkAm ½sinð4pkÞ � 4pk�8p f k

¼ ak [ 0; k ¼ m

ð7:8Þ

ZT00

Ak cosð2pkf0 tÞAm cosð2pmf0 tÞdt ¼ AkAm ½sinð4pkÞ þ 4pk�8pfk

¼ ak [ 0; k ¼ m

ð7:9Þ

Let the amplitude Ak and Bk be

Ak ¼ Bk ¼ffiffiffiffiffiffiffiffiffiffi2=T0

p; k ¼ 1; 2; . . .; n ð7:10Þ

then the signals of the sets {x(t)} and {y(t)} over [0, T0] are orthonormal, because

ZT00

2T0

sinð2pkf0 tÞ2dt ¼ZT00

2T0

cosð2pkf0 tÞ2dt ¼ 1; k ¼ 1; 2; . . .; n ð7:11Þ

The signals of sets {xk(t)} and {yk(t)}, k = 1, 2, …, n are also mutually ortho-normal, because

ZT00

2T0

sinð2pkf0tÞ cosð2pmf0tÞ dt

¼ZT00

1T0fsin½ðk � mÞ2pf0t� þ sin½ðk þ mÞ2pf0t�g dt

¼ ðk þ mÞ sin½pðk � mÞ�2 þ ðk � mÞ sin½pðk þ mÞ�2pðk2 � m2Þ ¼ 0; k 6¼ m

ð7:12Þ

118 7 Orthogonal Signals

Page 126: Signal Transforms in Dynamic Measurements

If the signals in the sets {xk(t)} and {yk(t)} have different phase shifts, they arealso orthonormal, because for {xk(t)}, k = 1, 2, …, n, we have

ZT00

xkðtÞ xmðtÞdt ¼ZT00

ffiffiffiffiffi2T0

rsinð2p kf0 t þ ukÞ

ffiffiffiffiffi2T0

rsinð2pmf0 t þ umÞdt

¼ sin½ðk � mÞ2pþ ðuk � umÞ�ðk � mÞ 2p � sin½ðk þ mÞ2p þ ðuk þ umÞ�

ðk þ mÞ2p� �

� sinðuk � umÞðk � mÞ 2p �

sinðuk þ umÞðk þ mÞ2p

� �¼ 0; k 6¼ m ð7:13Þ

and

ZT00

xkðtÞj j2 dt ¼ 2T0

ZT00

sinð2p kf0 t þ ukÞ2dt

¼ � sinð4p k þ 2ukÞ þ sinð2ukÞ þ 4p k4p k

¼ 1 ð7:14Þ

Similarly we can check orthonormality for signals of the set {yk(t)},k = 1, 2, …, n for which we have

ZT00

ykðtÞ ymðtÞdt ¼ZT00

ffiffiffiffiffi2T0

rcosð2p kf0 t þ ukÞ

ffiffiffiffiffi2T0

rcosð2pmf0 t þ umÞdt

¼ sin½ðk � mÞ2pþ ðuk � umÞðk � mÞ2p þ sin½ðk þ mÞ2pþ ðuk þ umÞ

ðk þ mÞ2p� �

� sinðuk � umÞðk � mÞ2p þ

sinðuk þ umÞðk þ mÞ2p

� �¼ 0; k 6¼ m ð7:15Þ

and

ZT00

ykðtÞj j2 dt ¼ 2T0

ZT00

cosð2p kf0 t þ ukÞ2dt

¼ sinð4p k þ 2ukÞ � sinð2ukÞ þ 4p k4p k

¼ 1

ð7:16Þ

The common relation for signals from sets {xk(t)} and {yk(t)}, k = 1, 2, … ,n results in

7 Orthogonal Signals 119

Page 127: Signal Transforms in Dynamic Measurements

ZT00

xkðtÞ ymðtÞdt ¼ZT00

ffiffiffiffiffi2T0

rsinð2p kf0 t þ ukÞ

ffiffiffiffiffi2T0

rcosð2pmf0 t þ umÞdt

¼ cosðuk � umÞ � cos½ðuk � umÞ þ 2p ðk � mÞ�ðk � mÞ2p

þ cosðuk þ umÞ � cos½ðuk þ umÞ þ 2p ðk þ mÞ�ðk þ mÞ2p ¼ 0; k 6¼ m

ð7:17Þ

For the case where the scalar product of the two signals xk(t) and yk(t) over theinterval [a, b] is significantly smaller than the energy of each of them that is

Zb

a

xkðtÞykðtÞdt� Ex � Ey ð7:18Þ

and additionally those energies are close to one

Ex � Ey � 1 ð7:19Þ

then such signals are referred to as quasi-orthogonal. Examples of quasi-orthogonalsignals may include signals xk(t) and yk(t), for which the relationship betweenfrequency f0 and period T0 is a real number, and not a natural number.

Let us assume that f0 = x/T0 where x is a real number. We then have

2T0

ZT00

sinð2pkf0tÞ cosð2pkf0tÞ dt ¼ 1T0

ZT00

sinð4pkf0tÞ dt

¼ 1T0� cosð4pkf0tÞ

4pkf0

� �T0

0

¼ 1� cosð4p xÞ4p x

� 0

ð7:20Þ

Ex ¼ 2T0

ZT00

sin2ð2pkf0tÞdt ¼ 1T0

ZT00

½1� cosð4pkf0tÞ�dt

¼ 1T0

t þ sinð4pkf0tÞ4pkf0

� �T0

0

¼ 1þ sinð4pxÞ4px

� 1

ð7:21Þ

120 7 Orthogonal Signals

Page 128: Signal Transforms in Dynamic Measurements

and

Ey ¼ 2T0

ZT00

cos2ð2pkf0tÞ dt ¼ 1T0

ZT00

½1þ cosð4pkf0tÞ�dt

¼ 1T0

t � sinð4pkf0tÞ4pkf0

� �T0

0¼ 1� sinð4pxÞ

4px� 1

ð7:22Þ

and signals x(t) and y(t) are therefore quasi-orthogonal.

7.1 Orthonormal Polynomials

Sets of orthogonal signals are often used in approximation theory. Let us assumethat {xn(t)} is a set of orthogonal signals over the interval [a, b] with weightfunction w(t) and P(t) is the polynomial

PðtÞ ¼Xnk¼ 0

ak xkðtÞ ð7:23Þ

approximating signal y(t) with a minimum integral square error. Coefficients ak inEq. (7.23) minimizing the error

Eða0; a1; . . .; anÞ ¼Zb

a

wðtÞ yðtÞ �Xnk¼0

akxkðtÞ" #2

dt ð7:24Þ

result from zeroing of derivatives

ddaj

Eða0; a1; . . .; anÞ

¼ 2Zb

a

wðtÞ yðtÞ �Xnk¼0

akxkðtÞ" #

xjðtÞdt ¼ 0; j ¼ 0; 1; . . .; nð7:25Þ

that is

Zb

a

wðtÞyðtÞxjðtÞdt ¼Xnk¼0

ak

Zb

a

wðtÞxkðtÞxjðtÞdt; j ¼ 0; 1; . . .; n ð7:26Þ

7 Orthogonal Signals 121

Page 129: Signal Transforms in Dynamic Measurements

Substituting j = k into Eq. (7.26), we have

Zb

a

wðtÞyðtÞxkðtÞdt ¼ ak

Zb

a

wðtÞ½xkðtÞ�2dt ð7:27Þ

from which we finally get

ak ¼R ba wðtÞyðtÞxkðtÞdtR ba wðtÞ½xkðtÞ�2dt

ð7:28Þ

For a set of orthonormal signals, for which w(t) = 1 andR ba ½xðtÞ�2 ¼ 1, Eq. (7.28)

is reduced to the form

ak ¼Zb

a

xkðtÞyðtÞdt ð7:29Þ

If the set of signals {x(t)} is orthogonal, then it may be orthonormalized bydividing each signal xk(t) by ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZb

a

½xkðtÞ�2vuuut k ¼ 1; 2; . . .; n ð7:30Þ

Equation (7.31) presents example of the set of orthogonal Tchebyshev poly-nomials {xn(t)} over [−1, 1]

x0ðtÞ ¼ 1

x1ðtÞ ¼ t

x2ðtÞ ¼ t2 � 13

x3ðtÞ ¼ t3 � 35t

x4ðtÞ ¼ t4 � 67t2 þ 3

35

x5ðtÞ ¼ t5 � 109t3 þ 5

21t

ð7:31Þ

122 7 Orthogonal Signals

Page 130: Signal Transforms in Dynamic Measurements

The orthonormal set corresponding to (7.31) is

x0ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiR 1�1 dt

q ¼ffiffiffi2p

2

x1ðtÞ ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1�1 t

2 dtq ¼

ffiffiffi6p

2t

x2ðtÞ ¼t2 � 1

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1�1 ðt2 � 1

3Þ2 dtq ¼

ffiffiffiffiffi10p

4ð3t2 � 1Þ

x3ðtÞ ¼t3 � 3

5 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1�1 ðt3 � 3

5 tÞ2 dtq ¼

ffiffiffiffiffi14p

4ð5t3 � 3tÞ

x4ðtÞ ¼t4 � 6

7 t2 þ 3

35ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1�1 ðt4 � 6

7 t2 þ 3

35Þ2 dtq ¼ 3

ffiffiffi2p

16ð35 t4 � 30t2 þ 3Þ

x5ðtÞ ¼t5 � 10

9 t3 þ 5

21 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1�1 ðt5 � 10

9 t3 þ 5

21 tÞ2 dtq ¼

ffiffiffiffiffi22p

16ð63t5 � 70t3 þ 15tÞ

ð7:32Þ

Example 7.1 Reduce the seven-order polynomial

yðtÞ ¼ t3 þ t7 ð7:33Þ

to the third order (Fig. 7.1) using the orthonormal set (7.32).Using Eq. (7.29), we get

a0 ¼Z1

�1

ffiffiffi2p

2ðt3 þ t7Þdt ¼ 0

a1 ¼Z1

�1

ffiffiffi6p

2tðt3 þ t7Þdt ¼ 0:762

a2 ¼Z1

�1

ffiffiffiffiffi10p

4ð3t2 � 1Þðt3 þ t7Þdt ¼ 0

a3 ¼Z1

�1

ffiffiffiffiffi14p

4ð5t3 � 3tÞðt3 þ t7Þdt ¼ 0:441

ð7:34Þ

7.1 Orthonormal Polynomials 123

Page 131: Signal Transforms in Dynamic Measurements

hence the approximating polynomial, with minimal integral square error is

PðtÞ ¼ 0:762

ffiffiffi6p

2t þ 0:441

ffiffiffiffiffi14p

4ð5t3 � 3tÞ ¼ 2:063t3 þ 0:304t ð7:35Þ

7.2 Digital Measurement of Electrical Quantities

Let us consider the signal

xðtÞ ¼ Xm cosðx tÞ ð7:36Þ

and the signal shifted by 2s

xðt � 2sÞ ¼ Xm cosðx t � 2sÞ ð7:37Þ

Taking into account the sum and difference of the signals (7.36) and (7.37), weget

xðtÞ þ xðt � 2sÞ ¼ 2Xm cosðx t � sÞ cosðsÞ ð7:38Þ

and

xðtÞ � xðt � 2sÞ ¼ �2Xm sinðx t � sÞ sinðsÞ ð7:39Þ

thus, the two signals are shifted relative to each other by p2 : The xaðtÞ signal

resulting from the sum (7.38)

xaðtÞ ¼ Xm cosðx t � sÞ ¼ 12xðtÞ þ xðt � 2sÞ

cosðxsÞ ð7:40Þ

Fig. 7.1 Polynomials y(t) and P(t)

124 7 Orthogonal Signals

Page 132: Signal Transforms in Dynamic Measurements

and the signal xb(t) resulting from the difference (7.39)

xbðtÞ ¼ Xm sinðx t � sÞ ¼ � 12xðtÞ � xðt � 2sÞ

sinðxsÞ ð7:41Þ

are orthogonal signals. They can be used in the measurement of power, current,voltage, and frequency, using numerical methods. Let us denote the orthogonalcomponents of voltage by

uaðtÞ ¼ Um cosðx t � sÞ ¼ 12uðtÞ þ uðt � 2sÞ

cosðsÞ ð7:42Þ

and

ubðtÞ ¼ Um sinðx t � sÞ ¼ � 12uðtÞ � uðt � 2sÞ

sinðsÞ ð7:43Þ

and the orthogonal components of current shifted by u as

iaðtÞ ¼ Im cosðx t � sþ uÞ ¼ 12iðtÞ þ iðt � 2sÞ

cosðsÞ ð7:44Þ

and

ibðtÞ ¼ Im sinðx t � sþ uÞ ¼ � 12iðtÞ � iðt � 2sÞ

sinðsÞ ð7:45Þ

For sinusoid signals, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxa þ jxbÞðxa � jxbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffix2a þ x2b

ffiffiffiffiffiffiX2m

q¼ Xm ð7:46Þ

and

xrms ¼ Xmffiffiffi2p ¼ 1ffiffiffi

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffix2a þ x2b

qð7:47Þ

Substituting Eqs. (7.42)–(7.43) and (7.44)–(7.45) into Eq. (7.47) gives for thevoltage

urms ¼ 1ffiffiffi2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12uðtÞ þ uðt � 2sÞ

cosðxsÞ� �2

þ 12uðtÞ � uðt � 2sÞ

sinðxsÞ� �2

sð7:48Þ

7.2 Digital Measurement of Electrical Quantities 125

Page 133: Signal Transforms in Dynamic Measurements

and for the current

irms ¼ 1ffiffiffi2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12iðtÞ þ iðt � 2sÞ

cosðxsÞ� �2

þ 12iðtÞ � iðt � 2sÞ

sinðxsÞ� �2

sð7:49Þ

7.2.1 Measurement of Active Power

Active power is

P ¼ urmsirms cosu ¼ 12UmIm cosu ¼ 1

2UmIm cosð�uÞ ð7:50Þ

Adding and subtracting xðt � sÞ for u into (7.50), we obtain

P ¼ 12UmIm cos xðt � sÞ � xðt � sÞ � u½ �

¼ 12UmIm cos ðxt � sÞ � ðxt � sþ uÞ½ �

ð7:51Þ

After simple transformation, we get

P ¼ 12UmIm cosðxt � sÞ cosðxt � sþ uÞ½

þ sinðxt � sÞ sinðxt � sþ uÞ�ð7:52Þ

and

P ¼ 12½Um cosðx t � sÞ Im cosðx t � sþ uÞþ Um sinðx t � sÞIm sinðx t � sþ uÞ�

ð7:53Þ

Taking into account Eq. (7.53) in the Eqs. (7.42)–(7.45), we have

P ¼ 12uaðtÞiaðtÞ þ ubðtÞibðtÞ½ � ð7:54Þ

that is

P ¼ 12½uðtÞ þ uðt � 2sÞ� ½iðtÞ þ iðt � 2sÞ�

4 cos2ðxsÞ�

þ ½uðtÞ � uðt � 2sÞ� ½iðtÞ � iðt � 2sÞ�4 sin2ðxsÞ

� ð7:55Þ

126 7 Orthogonal Signals

Page 134: Signal Transforms in Dynamic Measurements

7.2.2 Measurement of Reactive Power

Reactive power is

Q ¼ urms irms sinu ¼ � 12Um Im sinð�uÞ ð7:56Þ

Transforming Eq. (7.56) in a similar way to that for the case of active power, weget

Q ¼ � 12Um sin½x ðt � sÞ� Im cos½x ðt � sÞ þ u�

� 12Um cos½x ðt � sÞ� Im sin½x ðt � sÞ þ u�

ð7:57Þ

that is

Q ¼ � 12uaðtÞibðtÞ þ ubðtÞiaðtÞ½ � ð7:58Þ

and

Q ¼ iðtÞuðt � 2sÞ � uðtÞiðt � 2sÞ4 sinðxsÞ cosðxsÞ ð7:59Þ

7.2.3 Digital Form of Current, Voltage, and Power

Setting t = n and s ¼ k into Eqs. (7.48)–(7.49) and (7.55)–(7.59) we can write.

• for current

irms ¼ 1ffiffiffi2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12i ½n� þ i ½n� 2 k�

cosðx kÞ� �2

þ 12i ½n� � i ½n� 2 k�

sinðx kÞ� �2

sð7:60Þ

• for voltage

urms ¼ 1ffiffiffi2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12u ½n� þ u ½n� 2 k�

cosðx kÞ� �2

þ 12u ½n� � u ½n� 2 k�

sinðx kÞ� �2

sð7:61Þ

7.2 Digital Measurement of Electrical Quantities 127

Page 135: Signal Transforms in Dynamic Measurements

• for active power

P ¼ 12fu½n� þ u½n� 2k�g fi½n� þ i½n� 2k�g

4 cos2ðx kÞ þ fu½n� � u½n� 2k�g fi½n� � i½n� 2k�g4 sin2ðx kÞ

� �ð7:62Þ

• and for reactive power

Q ¼ i ½n� u½n� 2k� � u ½n�i ½n� 2k�4 sinðx kÞ cosðx kÞ ð7:63Þ

where n is the number of sample, and k is the shift of samples.

7.3 Measurement of Frequency

Let us present the signals x(t) and xðt � sÞ as a sum of two orthogonal signalsxa(t) and xb(t) shifted relative to each other by s ¼ p=2

xðtÞ ¼ xaðtÞ þ jxbðtÞ ¼ Xm exp jxðt � sÞ½ � ð7:64Þ

xðt � sÞ ¼ xaðt � sÞ þ jxbðt � sÞ ¼ Xm exp jx ðt � 2sÞ½ � ð7:65Þ

Let us write the product of signals xðtÞ with xðt � sÞ

xðtÞxðt � sÞ ¼ Xm exp½jxðt � sÞ�Xm exp½�jxðt � 2sÞ� ¼ X2m expðjxsÞ ð7:66Þ

where xðtÞ is conjugate with x(t) and shifted by x(t).Substituting Eqs. (7.64)–(7.65) into Eq. (7.66) and comparing the real and

imaginary parts, we get

xaðtÞxaðt � sÞ þ xbðtÞxbðt � sÞ ¼ X2m cosðxsÞ ð7:67Þ

and

xbðtÞxaðt � sÞ � xaðtÞxbðt � sÞ ¼ X2m sinðxsÞ ð7:68Þ

The last equation, for the shift of 2s has the form

xbðtÞxaðt � 2sÞ � xaðtÞxbðt � 2sÞ ¼ X2m sinð2xsÞ ð7:69Þ

128 7 Orthogonal Signals

Page 136: Signal Transforms in Dynamic Measurements

The quotient of Eqs. (7.69) and (7.68) gives

xbðtÞxaðt � 2sÞ � xaðtÞxbðt � 2sÞxbðtÞxaðt � sÞ � xaðtÞxbðt � sÞ ¼ 2 cosðxsÞ ð7:70Þ

hence

f ¼ 12ps

arc cosxbðtÞxaðt� 2sÞ � xaðtÞxbðt� 2sÞxbðtÞxaðt� sÞ � xaðtÞxbðt� sÞ ð7:71Þ

where the constant s occurring in Eq. (7.71) causes orthogonality of the signalsx(t) and xðt � 2sÞ:

The Eq. (7.71) in discrete form is

f ¼ 12ps

arc cosxb½n�xa½n� 2 k� � xa½n�xb½n� 2 k�xb½n�xa½n� k� � xa½n�xb½n� k� ð7:72Þ

where k determines the number of samples and causes orthogonality of the signalsx[n] and x½n� 2 k�:

7.4 Examples in MathCad

Determination of the root mean square of current, voltage, active and reactivepower.

1. Continuous signal.

T : ¼ 5 D :¼ 0:01

t : ¼ 0;D; . . .T x :¼ 5 u :¼ p12

Um : ¼ 10 Im :¼ 4

uðtÞ : ¼ Um � sinðx � tÞ iðtÞ :¼ Im � sinðx � t � uÞIrms : ¼ Imffiffiffi

2p Urms :¼ Umffiffiffi

2p s :¼ 1

7.3 Measurement of Frequency 129

Page 137: Signal Transforms in Dynamic Measurements

Irms :¼ Imffiffiffi2p Urms :¼ Umffiffiffi

2p s :¼ 1

P :¼ Umffiffiffi2p � Imffiffiffi

2p � cosðuÞ Q :¼ Umffiffiffi

2p � Imffiffiffi

2p � sinðuÞ

Irms ¼ 2:828 Urms ¼ 7:071 P ¼ 19:319 Q ¼ 5:176

I1:rmsðtÞ :¼ 1ffiffiffi2p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12� iðtÞ þ iðt � 2Þ � s

cosðx � sÞ� �2

þ 12� iðtÞ � iðt � 2Þ � s

sinðx � sÞ� �2

s

U1:rmsðtÞ :¼ 1ffiffiffi2p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12� uðtÞ þ uðt � 2Þ � s

cosðx � sÞ� �2

þ 12� uðtÞ � uðt � 2Þ � s

sinðx � sÞ� �s

I1:rmsðTÞ ¼ 2:828 U1:rmsðTÞ ¼ 7:071

uaðtÞ :¼ 12� uðtÞ þ uðt � 2Þ � s

cosðx � sÞ ubðtÞ :¼ �12 �uðtÞ � uðt � 2Þ � s

sinðx � sÞiaðtÞ :¼ 1

2� iðtÞ þ iðt � 2Þ � s

cosðx � sÞ ibðtÞ :¼ �12 �iðtÞ � iðt � 2Þ � s

sinðx � sÞ

0 1 2 3 4 5−10

−5

0

5

10

)( tu

)( ti

t

0 1 2 3 4 5−10

−5

0

5

10

ua )(t

t0 1 2 3 4 5

−10

−5

0

5

10

ub )(t

t

0 1 2 3 4 5−4

−2

0

2

4

ia )(t

t0 1 2 3 4 5

−4

−2

0

2

4

ib )(t

t

130 7 Orthogonal Signals

Page 138: Signal Transforms in Dynamic Measurements

P1ðtÞ :¼ 12� ðuaðtÞ � ibðtÞ þ ubðtÞ � iaðtÞ

Q1ðtÞ :¼ �12 � ðuaðtÞ � ibðtÞ � ubðtÞ � iaðtÞP1ðTÞ ¼ 19:319 Q1ðTÞ ¼ 5:176

P2ðtÞ :¼ 12:

uðtÞ � uðt � 2 � sÞð Þ � iðtÞ � iðt � 2 � sÞð Þ4: cosðx � sÞ2

" #

þ uðtÞ � uðt � 2 � sÞð Þ � iðtÞ � iðt � 2 � sÞð Þ4 � sinðx � sÞ2

" #

Q2ðtÞ :¼ iðtÞ � uðt � 2 � sÞ � uðtÞ � iðt � 2 � sÞ4 � sinðx � sÞ � cosðx � sÞ

P2ðTÞ ¼ 19:319 Q2ðTÞ ¼ 5:176

2. Discrete signal.

T :¼ 5 D :¼ 0:01

t :¼ 0; D::T x :¼ 5 u :¼ p12

Um :¼ 10 Im :¼ 4

uðtÞ :¼ Um � sinðx � tÞ

uðtÞ :¼ Um � sinðx � tÞ iðtÞ :¼ Im � sinðx � t � uÞ

id :¼form 2 0. . . TD

idm iðmÞid

��������ud :¼

form 2 0. . . TD

udm uðmÞud

��������n :¼ 2. . . TD k :¼ 1

IdrmsðnÞ : ¼ 1ffiffiffi2p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12� idn þ idn�2�kcosðx � kÞ

� �2

þ 12� idn � idn�2�ksinðx � kÞ

� �2s

UdrmsðnÞ : ¼ 1ffiffiffi2p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi12� udn þ idn�2�kcosðx � kÞ

� �2

þ 12� udn � udn�2�ksinðx � kÞ

� �2s

7.4 Examples in MathCad 131

Page 139: Signal Transforms in Dynamic Measurements

Idrms TD

¼ 2:828 Udrms TD

¼ 7:071

PdðnÞ : ¼ 12:

uðnÞ þ uðn� 2 � kÞð Þ � iðnÞ þ iðn� 2 � kÞð Þ4: cosðx � kÞ2

" #

þ uðnÞ � uðn� 2 � kÞð Þ � iðnÞ � iðn� 2 � kÞð Þ4 � sinðx � kÞ2

" #

QdðnÞ :¼iðnÞ � uðn� 2 � kÞ � uðnÞ � iðn� 2 � kÞ

4 � sinðx � kÞ � cosðx � sÞ

PdTD

¼ 19:319 QdTD

¼ 5:176

Determination of frequency.

1. Continuous signal.

T :¼ 0:5 D :¼ 0:00001

t :¼ 0;D; . . .; T x :¼ 5 f 0 :¼ 3 Xm :¼ 1

xðtÞ :¼ Xm � sinð2 � p � f 0 � tÞ

0 0.1 0.2 0.3 0.4 0.5−1

−0.5

0

0.5

1

)(tx

t

132 7 Orthogonal Signals

Page 140: Signal Transforms in Dynamic Measurements

Shift of signal

id :¼

j 0for i 2 D;Dþ D; . . .; T � Dif xði� DÞ\xðiÞ[ xðiþ DÞj 1break

����j

�����������s ¼ 0:083

f 0e :¼ 14�s

f 0e ¼ 3

xcðtÞ :¼ 12� xðtÞ þ xðt � 2 � sÞcosð2 � p � f 0e � sÞ

xsðtÞ :¼ �12 �xðtÞ þ xðt � 2 � sÞsinð2 � p � f 0e � sÞ

f ðtÞ :¼ 12 � p � s � a cos 0:5 � xsðtÞ � xcðt � 2 � sÞ � xcðtÞ � xSðt � 2 � sÞ

xsðtÞ � xcðt � sÞ � xcðtÞ � xsðt � sÞ� �

f ðTÞ ¼ 3

2. Discrete signals.

T :¼ 0:5 D :¼ 0:00001

t :¼ 0;D; . . .; T f 0 :¼ 3 Xm :¼ 1

x tð Þ :¼ Xm � sinð2 � p � f 0 � tÞ

7.4 Examples in MathCad 133

Page 141: Signal Transforms in Dynamic Measurements

Discretization of signal and time

xd :¼form 2 0. . . TDxdm iðm � DÞ

xd

������ Td :¼form 2 0. . . TD

Tdm mTd

������

04 4

2×10 4×10−1

−0.5

0

0.5

1

xd

Td

k :¼

j 0for i 2 1; 2. . . TD� 1if xdi�1\xdi [ xdiþ1j ibreak

����j

�����������k ¼ 8:333� 103

f 0e :¼1

4 � k

f 0e ¼ 3� 10�5

xcdðnÞ :¼ 12� xðnÞ þ xðn� 2 � kÞcosð2 � p � f 0de � kÞ

xsdðnÞ :¼ �12 �xðnÞ þ xðn� 2 � kÞsinð2 � p � f 0de � kÞ

f dðnÞ :¼1

2 � p � k � D � a cos 0:5 � xsðnÞ � þ xcðn� 2 � kÞ � xcðnÞ � xSðn� 2 � kÞxsðnÞ � þxcðn� kÞ � xcðnÞ � xsðn� kÞ

� �

f dTD� 1

� �¼ 3

134 7 Orthogonal Signals

Page 142: Signal Transforms in Dynamic Measurements

7.5 Examples in LabVIEW

Measurement of current

Block diagram

Front panel

7.5 Examples in LabVIEW 135

Page 143: Signal Transforms in Dynamic Measurements

Measurement of voltage

Block diagram

Front panel

136 7 Orthogonal Signals

Page 144: Signal Transforms in Dynamic Measurements

Measurement of active power

Block diagram

Front panel

7.5 Examples in LabVIEW 137

Page 145: Signal Transforms in Dynamic Measurements

Measurement of reactive power

Block diagram

Front panel

138 7 Orthogonal Signals

Page 146: Signal Transforms in Dynamic Measurements

Measurement of frequency

Block diagram

Front panel

7.5 Examples in LabVIEW 139

Page 147: Signal Transforms in Dynamic Measurements

Chapter 8Modulations

Modulation realizes the transmission of low-frequency signal by means of a high-frequency carrier signal. The modulating signal contains information, while thecarrier signal carries it in a high-frequency range to the receiver. Modulation allowsthe selection of a modulated signal frequency such that:

• the signal is reliably handled by the receiver,• it will not cause interference with other low-frequency signals which are being

transmitted simultaneously and which have been assigned different carrierfrequencies.

The device performing the modulation is referred to as the modulator, whereasthe device performing demodulation is referred to as the demodulator. In the case ofbilateral communication, there is often a single device, which simultaneouslymodulates the transmitted signals and demodulates the received ones. Such a deviceis referred to as a modem, which is an abbreviation of modulator–demodulator.Currently, there are numerous different types of modulation in use. In the mostgeneral terms, they can be divided into three groups: analog, impulse, and digital.Analog modulations of amplitude (AM), phase modulation (PM), and frequencymodulation (FM) are the earliest to have been developed. Pulse code modulations,converting analog signals to digital prior to transmission, as well as digital mod-ulations used in the wireless transmission of global positioning system (GPS) data,have been developed much later, to meet the needs of digital transmissions. We willbe discussing the basic principles governing the modulation of signals, their mainproperties, and their applications.

On the transmitter side of the information system, the signal is modulated using acoder and a modulator. On the receiver side, the signal undergoes a demodulationprocess where the signal is reprocessed to its original form—Fig. 8.1.

The coder codes the information signal, e.g., coding its analog form into a binarysequence, while the modulator transforms that sequence to a form enabling itstransfer in the transmission channel. Figure 8.2 presents the modulation types andtheir main division.

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_8

141

Page 148: Signal Transforms in Dynamic Measurements

8.1 Analog Modulations (AM)

In analog amplitude modulation (AM), the most commonly used type of carriersignal is the harmonic signal, whose amplitude changes in proportion to themodulating signal, containing the information. In this group of modulations, thereare several solutions. The main differences between these are the occurrence or non-occurrence of sidebands, and whether the carrier signal is suppressed or not sup-pressed. The modulating signal is crucial in determining the type of modulation.Below we will present the main properties for those types of modulation.

8.1.1 Double-Sideband Large Carrier Modulation (DSBLC)

For DSBLC, the modulating function mðtÞ is

mðtÞ ¼ 1þ xmðtÞ ð8:1Þ

Fig. 8.1 Process of signal modulation

Fig. 8.2 Classification of modulations

142 8 Modulations

Page 149: Signal Transforms in Dynamic Measurements

while the low-frequency modulating signal carrying information is given by

xmðtÞ ¼ Am cosðxtÞ ð8:2Þ

The high-frequency carrier signal is

xcðtÞ ¼ Ac cosðXtÞ ð8:3Þ

Let xcaðtÞ denote the analytic form of carrier signal resulting from the Hilberttransform (6.12).

xcaðtÞ ¼ Ac cosðXtÞ þ j sinðXtÞ½ � ð8:4Þ

The analytic form of modulated signal is

xaðtÞ ¼ mðtÞxcaðtÞ ð8:5Þ

Substituting Eqs. (8.1) and (8.4) into Eq. (8.5), we have

xaðtÞ ¼ Ac½1þ xmðtÞ�½cosðXtÞ þ j sinðXtÞ� ð8:6Þ

The modulated signal xðtÞ represents the real part of xaðtÞ

xðtÞ ¼ Ac 1þ xmðtÞ½ � cosðXtÞ ð8:7Þ

Expanding Eq. (8.7), we have

xðtÞ ¼ Ac½cosðX tÞ þ Am cosðx tÞ cosðXtÞ� ð8:8Þ

Let us present Eq. (8.8) in the form of a sum

xðtÞ ¼ Ac cos Xt þ uð Þ þ Am cosðxtÞ cosðXtÞ¼ Ac cos Xt þ uð Þ þ Am

2cos ðX� xÞt½ � þ Am

2cos ðXþ xÞt½ � ð8:9Þ

From Eq. (8.9) results that the signal xðtÞ has three components: a carrier com-ponent with the amplitude of Ac rotating with the frequency of X, a positivecomponent, with an amplitude of Am=2 and frequency of ðXþ xÞt, and a negativecomponent, with an amplitude of Am=2 and a frequency of ðX� xÞt—Fig. 8.3.

The envelope EðtÞ of the signal xðtÞ is

EðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixðtÞ2 þ exðtÞ2q

¼ �Ac 1þ d cos xtð Þ½ � ð8:10Þ

where d ¼ Am=Ac is depth of modulation.In the case of DSBLC transmission, the transmitter must emit high energy, as it

transmits the carrier signal, as well as both sidebands, which occupy a wide

8.1 Analog Modulations (AM) 143

Page 150: Signal Transforms in Dynamic Measurements

frequency range X� x=2;Xþ x=2ð Þ. This has the benefit of making signaldetection very simple and achievable using comparatively low-cost receivers(Fig. 8.4).

In DSBLC, the following three cases are possible:

• depth of modulation d\1—Fig. 8.5• depth of modulation for d[ 1—Fig. 8.6. In this case, the carrier signal is

overmodulated and the envelope EðtÞ of the signal reaches negative values• depth of modulation d ¼ 1, then

xðtÞ ¼ Ac 1þ cos xtð Þ½ � cos Xtð Þ ð8:11Þ

and envelopes (Fig. 8.7)

EðtÞ ¼ �Ac½1þ cosðxtÞ� ð8:12Þ

Fig. 8.3 Three component of the amplitude-modulated signal

Fig. 8.4 Spectra in DSBLC modulation

144 8 Modulations

Page 151: Signal Transforms in Dynamic Measurements

Fig. 8.6 Amplitude-modulated signal for d[ 1

Fig. 8.5 Amplitude-modulated signal for d\1

8.1 Analog Modulations (AM) 145

Page 152: Signal Transforms in Dynamic Measurements

8.1.2 Double Sideband with Suppressed CarrierModulation (DSBSC)

For DSBSC, the modulating function mðtÞ is

mðtÞ ¼ xmðtÞ ¼ Am cos xtð Þ ð8:13Þ

Hence, the analytic modulated signal Eq. (8.5) equals

xaðtÞ ¼ AcAm cos xtð Þ þ j sinðXtÞ½ � cosðXtÞ ð8:14Þ

The modulated real signal resulting from Eq. (8.5) is

xðtÞ ¼ AcAm cos Xtð Þ cos xtð Þ ð8:15Þ

Extending Eq. (8.15), we have

xðtÞ ¼ AcAm

2cos ðXþ xÞt½ � þ cos ðX� xÞt½ �f g ð8:16Þ

The envelopes EðtÞ of signal xðtÞ are

EðtÞ ¼ � AcAm cos xtð Þ½ � ð8:17Þ

From Eq. (8.16), it results that in DSBSC, the signal is composed of two sidebands:the upper and lower, while the carrier signal is nonexistent. The frequency band ofthe transmitted signal remains unchanged, while the power required for its trans-mission is definitely lower than in the case of DSBLC. Due to the absence of thecarrier signal in DSBSC, in order to reproduce the modulated signal, it is necessarythat each receiver generates its own modulated signal, with a high level of finetuning precision. For that reason, the cost of receivers of signals modulated inDSBSC is significantly greater than in DSBLC (Fig. 8.8).

Fig. 8.7 Amplitude-modulated signal for d ¼ 1

146 8 Modulations

Page 153: Signal Transforms in Dynamic Measurements

8.1.3 Single-Sideband (SSB)

For the SSB, we have

mðtÞ ¼ 1þ xmðtÞ � j~xmðtÞ ð8:18Þ

where ~xmðtÞ is the Hilbert transform of xmðtÞ Eq. (8.2).The analytic modulated signal is (Fig. 8.9)

Fig. 8.8 Spectra in DSBSC modulation

Fig. 8.9 Spectra in SSB modulation

8.1 Analog Modulations (AM) 147

Page 154: Signal Transforms in Dynamic Measurements

xaðtÞ ¼ Ac cosðXtÞ þ xmðtÞ cosðXtÞ � ~xmðtÞ sinðXtÞ½ �þ jAc sinðXtÞ þ xmðtÞ sinðXtÞ � ~xmðtÞ cosðXtÞ½ � ð8:19Þ

From Eq. (8.19), we obtain the modulated signal

xðtÞ ¼ Ac cosðXtÞ½ þ Am cos ðX� xÞt� ð8:20Þ

which, depending on the sign of x, contains the carrier signal and upper or lowersideband. Due to the minimum bandwidth necessary for the transmission of asignal, the SSB method provides an optimal form of modulation, requiring muchless power than DSBLC. However, it necessitates a composite and thereforeexpensive receiver. A substantial advantage of this type of modulation is the highlevel of energy savings in the transmitter and, even more importantly, the possibleincrease in the number of transmitters in the available frequency range.

8.1.4 Single Sideband with Suppressed Carrier (SSBSC)Modulation

In the case of SSBSC, we have

xðtÞ ¼ xmðtÞ � j~xmðtÞ ð8:21Þ

The analytic signal is given by

xaðtÞ ¼ Ac xmðtÞ cosðXtÞ � ~xmðtÞ sinðXtÞ½ �þ jAc xmðtÞ sinðXtÞ � ~xmðtÞ cosðXtÞ½ � ð8:22Þ

From Eq. (8.22), we obtain the modulated signal

xðtÞ ¼ AcAm cos ðX� xÞt½ � ð8:23Þ

which, depending on the sign of x, contains only the upper or lower sideband(Fig. 8.10).

8.1.5 Vestigial Sideband (VSB) Modulation

For VSB modulation, we have

xðtÞ ¼ xmðtÞ þ j ~xmðtÞkðtÞ½ � ð8:24Þ

148 8 Modulations

Page 155: Signal Transforms in Dynamic Measurements

where kðtÞ is the impulse response of the filter attenuating the lower sideband.The analytic modulated signal is

xaðtÞ ¼ AcxmðtÞ cosðXtÞ � kðtÞ sinðXtÞ½ �þ jAcxmðtÞ½sinðXtÞ þ kðtÞ cosðXtÞ� ð8:25Þ

and thus,

xðtÞ ¼ AcAm cosðXtÞ cosðxtÞ � kðtÞ sinðXtÞ cosðxtÞ½ � ð8:26Þ

In VSB, the upper sideband is transmitted almost completely, whereas in the case ofthe lower sideband, only a trace amount is transmitted. In VSB systems, the DSBSCsignal is generated first and is then filtered through a filter attenuating the lowersideband. In VSB, due to the necessity of transmitting a partly attenuated sideband,a slightly wider transmission band is required than in DSBLC modulation.

Figure 8.11 presents the spectra of modulating the signal XðxÞ and modulatedsignal VSB where XV � X is the frequency of the partly attenuated sideband.

8.2 Angle Modulations

In the case of angle modulation, the amplitude of modulated signal is constant withtime. The angle of the modulated signal changes depending on the instantaneousvalue of the modulating signal. Relating to the angle changes, PM and FM areapplied in practice.

Fig. 8.10 Spectra of SSBSC with upper sideband

8.1 Analog Modulations (AM) 149

Page 156: Signal Transforms in Dynamic Measurements

8.2.1 Phase Modulation (PM)

In PM, the modulated signal has the form

xðtÞ ¼ Ac cos Xt þ Am sinðxtÞ½ � ð8:27Þ

After extending Eq. (8.27), we get

xðtÞ ¼ Ac cosðXtÞ cos Am sinðxtÞ½ � � sinðXtÞ sin½Am sinðxtÞ�f g ð8:28Þ

The analytic form of the Eq. (8.28) is

xðtÞ ¼ Ac cosðXtÞ cos Am sinðxtÞ½ � � sinðXtÞ sin½Am sinðxtÞ�f gþ jAc cosðXtÞ sin Am sinðxtÞ½ � þ sinðXtÞ cos½Am sinðxtÞ�f g ð8:29Þ

which may be represented in the exponential form

xðtÞ ¼ AcejðX tþAm sinxtÞ ð8:30Þ

The instantaneous phase /ðtÞ of the modulated signal is

/ðtÞ ¼ Xt þ Am sinðxtÞ ð8:31Þ

This means that /ðtÞ with respect to carrier frequency X changes proportionately tothe modulated signal.

Fig. 8.11 Spectra of VSB modulation

150 8 Modulations

Page 157: Signal Transforms in Dynamic Measurements

8.2.2 Frequency Modulation (FM)

A signal in FM has the form

xðtÞ ¼ Ac cos Xt þ Am

Z t

0

sin xtð Þdt24

35 ð8:32Þ

The analytic FM signal in exponential form

xðtÞ ¼ Acej½X tþAm

Rt0

sinðxtÞdt�ð8:33Þ

indicates that the instantaneous amplitude of the signal is constant, whereas theinstantaneous phase changes proportionally to the integral

R t0 sinðxtÞdt of the

modulating signal (Fig. 8.12).

8.3 Impulse Modulations

In impulse modulation, the carried signal is a sequence of impulses, while themodulating signal is a harmonic one (Fig. 8.13).

8.3.1 Pulse Width Modulation (PWM)

In PWM, the width of the impulse signal changes, while its frequency andamplitude remain constant (Fig. 8.14).

Fig. 8.12 Signals in PM modulation

8.2 Angle Modulations 151

Page 158: Signal Transforms in Dynamic Measurements

PWM is most frequently used for changing the mean value of the signal, e.g., incontrolling brightness of lighting, in the control of DC systems, etc. In practicalapplications, the disadvantage of PWM is that signal switching generatesinterference.

8.3.2 Pulse Amplitude Modulation (PAM)

In PAM, depending on the value of the modulating signal, the amplitude of thecarrier impulse changes. The generation of the PAM signal is similar to sampling,where the modulated signal presents a sequence of samples of the modulatingsignal.

The modulated signal is generated by the product of signal xmðtÞ and xcðtÞ

xðtÞ ¼ xmðtÞ xcðtÞ ð8:36Þ

The sequence of samples for the modulated signal may be created by means of threetypes of sampling: ideal, real, and instantaneous.

Fig. 8.13 Signals in FM modulation

Fig. 8.14 PWM modulation

152 8 Modulations

Page 159: Signal Transforms in Dynamic Measurements

8.3.3 PAM with Ideal Sampling

In PAM with ideal sampling, the sampled signal xcðtÞ has the form of impulses—Eq. (4.2), in which the sampling frequency results from Shannon’s theorem(Fig. 8.15).

From Eq. (4.3), we have the ideal sampling in the form

xiðtÞ ¼X1n¼0

xm nTp� �

d t � nTp� � ¼ xm tð Þ

X1n¼0

d t � nTp� � ð8:37Þ

8.3.4 PAM with Real Sampling

In PAM with real sampling, the carrier signal is a sequence of rectangular impulses—Fig. 8.16.

A single impulse and carrier signal are given by

Fig. 8.15 PAM with ideal sampling

8.3 Impulse Modulations 153

Page 160: Signal Transforms in Dynamic Measurements

PsðtÞ ¼ 1 for 0\t\s0 elsewhere

�ð8:38Þ

and

xcrðtÞ ¼X1n¼0

PsðtÞnTp ð8:39Þ

Let us represent the signal (8.39) in the form of exponential Fourier series

xcrðtÞ ¼ sTp

X1n¼0

Sa npsTp

� �ejnxpt ð8:40Þ

Eq. (8.40) gives the modulated signal as

xrðtÞ ¼ sTp

xmðtÞX1n¼0

Sa npsTp

� �ejnxpt ð8:41Þ

Fig. 8.16 PAM with real sampling

154 8 Modulations

Page 161: Signal Transforms in Dynamic Measurements

8.3.5 PAM with Instantaneous Sampling

In PAM, the carrier signal has the form of rectangular impulses, whose amplitudevalue at sampling moments depends on the instantaneous value of the modulatingsignal xmðtÞ—Fig. 8.17.

In PAM, the signal xcðtÞ is

xcðtÞ ¼X1n¼0

xm nTp� �

Ps t � nTp� � ¼X1

n¼0xm nTp

� �PsðtÞ � d t � nTp

� ��

¼ PsðtÞX1n¼0

xm nTp� �

d t � nTp� �" #

ð8:42Þ

Fig. 8.17 PAM with instantaneous sampling

8.3 Impulse Modulations 155

Page 162: Signal Transforms in Dynamic Measurements

8.3.6 Pulse Duration Modulation (PDM)

In PDM, the width of the carrier signal impulses changes depending on theamplitude of the current sample of the modulating signal xmðtÞ:

The widths s nTsð Þ of successive impulses are

s nTsð Þ ¼ a0 þ a1xm nTsð Þ ð8:43Þ

where the constants a0 and a1 are selected to satisfy the inequality 0\s nTsð Þ\Ts.It is easy to see that the PDM is equivalent to analog the PM (Fig. 8.18).

8.3.7 Pulse Position Modulation (PPM)

In the PPM, depending on the current samples of the modulating signal xmðtÞ; theimpulse position changes, in relation to the nominal position n Tsð Þ—Fig. 8.19. ThePPM is achieved in a similar manner to analog FM.

8.3.8 Pulse Code Modulation (PCM)

PCM is the simplest way of converting an analog signal into a discrete one. Thesignal is sampled at regular time intervals and converted into digital form using anA/D converter (Fig. 8.20).

Fig. 8.18 Signals in PDM

156 8 Modulations

Page 163: Signal Transforms in Dynamic Measurements

PCM is realized in two stages. In the first stage, the signal xmðtÞ is sampled bymeansof PAM, and in the second stage, it is quantized and coded in natural binary code.

Fig. 8.19 Signals in PPM

Fig. 8.20 Signals in PCM

8.3 Impulse Modulations 157

Page 164: Signal Transforms in Dynamic Measurements

8.3.9 Differential Pulse Code Modulation (DPCM)

DPCM is based on the method applied in PCM and coding the difference betweenthe current and expected sample.

8.4 Digital Modulations

8.4.1 Modulation with Amplitude Shift Keying (ASK)

In ASK, the amplitude of a harmonic carrier signal is varied depending on thedigital value of a binary sequence. It is the equivalent of analog DSBLC.

ASKðtÞ ¼ Ac cosð2pftÞxmðtÞ ð8:44Þ

Figure 8.21 presents an ASK modulation, for which the digital modulatingsignal is the sequence of the bits 0010111010.

8.4.2 Modulation with Frequency Shift Keying (FSK)

In FSK, two subcarriers with frequencies of f0 or f1 are generated

FSKðtÞ ¼ Ac cosð2pf0tÞ for bit 0Ac cosð2pf1tÞ for bit 1

�ð8:45Þ

Figure 8.22 presents an FSK modulation for f1 [ f0 and the bit sequence0010111010.

Fig. 8.21 Digital modulating xmðtÞ signal and the modulated signal ASK(t)

158 8 Modulations

Page 165: Signal Transforms in Dynamic Measurements

The frequency deviation in the FSK is

Df ¼ f1 � f0 ¼ 12tb ð8:46Þ

where tb is duration of the bit.If the phase of the signal is constrained to be continuous, we have a special case

of FSK named continuous-phase FSK modulation—CPFSK.For the deviation

Df ¼ 14tb ð8:47Þ

we have minimum shift keying modulation—MSK.In the case where the rectangular signal is approximated by signal of Gaussian

shape, we have the Gaussian minimum shift keying (GMSK) modulation. Incomparison with the rectangular impulse, it has a smaller sidebands and narrowersideband.

8.4.3 Phase Shift Keying (PSK) Modulation

In PSK, the phase of the harmonic modulated signal changes, depending on thedigital value of the modulating signal

PSKðtÞ ¼ Ac cosð2pft þ /1Þ for bit 0Ac cosð2pft þ /2Þ for bit 1

�ð8:48Þ

Figure 8.23 represents PSK modulation where the digital modulating signal is thesequence of the bits 0010110011.

Fig. 8.22 Digital modulating signal xmðtÞ and modulated signal FSK(t)

8.4 Digital Modulations 159

Page 166: Signal Transforms in Dynamic Measurements

In the case of

BPSKðtÞ ¼ Ac cosð2pft � p=2Þ ¼ �Ac cosð2pftÞ for bit 0Ac cosð2pft þ p=2Þ ¼ Ac cosð2pftÞ for bit 1

�ð8:49Þ

we get the biphase shift keying modulation—BPSK (Fig. 8.24).In BPSK, the modulated signal consists of fragments of sine function, with a

period equal to the modulation impulse, and a frequency equal to the frequency ofthe carrier signal.

The BPSK may be represented in a so-called constellation diagram—Fig. 8.25.Similar to BPSK is differential phase shift keying differential PSK modulation

(DPSK), in which the phase changes by p if the binary value is 1, and remains thesame if the binary value is 0.

An extension of BPSK is the quadrature phase shift keying modulation (QPSK),consisting of two-bit coding on 4 orthogonal phase shifts, e.g., p=4; 3p=4; 5p=4,

Fig. 8.23 Digital modulating signal xmðtÞ and modulated signal PSK(t)

Fig. 8.24 Digital modulating signal xmðtÞ and modulated signal BPSK(t)

160 8 Modulations

Page 167: Signal Transforms in Dynamic Measurements

and 7p=4: In one period of the carrier signal, two bits are coded, so that for a givencarrier frequency, QPSK allows data transmission at twice the speed of BPSK.

If the modulated signal is

QPSKðtÞ ¼ Ac cos½2pft þ ð2p� 1Þp=4� ð8:50Þ

we have for p ¼ 1; 2; 3; 4

QPSKðtÞ ¼ Ac cos½2pft þ p=4� for p ¼ 1

QPSKðtÞ ¼ Ac cos½2pft þ 3p=4� for p ¼ 2

QPSKðtÞ ¼ Ac cos½2pft þ 5p=4� for p ¼ 3

QPSKðtÞ ¼ Ac cos½2pft þ 7p=4� for p ¼ 4

ð8:51Þ

Let Eq. (8.50) be

QPSKðtÞ ¼ Ac cosð2pftÞ cosð2p� 1Þp=4� Ac sinð2pftÞ sinð2p� 1Þp=4 ð8:52Þ

Denoting

/1ðtÞ ¼ Ac cosð2pftÞ and /2ðtÞ ¼ Ac sinð2pftÞ ð8:53Þ

we finally get

QPSKðtÞ ¼ p=4½cos 2p� 1ð Þ/1ðtÞ � sin 2p� 1ð Þ/2ðtÞ� ð8:54Þ

The diagram of the constellation QPSK—Fig. 8.26 contains four points corre-sponding to the four possible two bits transmitted within one period of the carriersignal. The points are located symmetrically on the circle, the radius of whichequals the signal amplitude.

In BPSK, the distances between adjacent points on the constellation diagram areshorter, which gives a doubling of transmission speed, for a given carrier frequency.

Fig. 8.25 Constellation diagram for BPSK

8.4 Digital Modulations 161

Page 168: Signal Transforms in Dynamic Measurements

8.4.4 Quadrature Amplitude Modulation (QAM)

QAM presents a group of modulations, in which changes to the modulating signalresult in changes to both the amplitude and phase of the modulated signal. Thus, itis a combination of ASK and PSK modulations. In QAM, the modulated signal isdivided into two parts, and the second part is shifted in relation to the first one bythe angle of p=2. Both parts of signal are individually modulated, before beingadded and transmitted.

The code data are formed according to the constellations diagram in a sequenceof binary data, which correspond to both amplitude and phase (Fig. 8.27).

Fig. 8.26 Diagram of constellation for QPSK signal

Fig. 8.27 Constellation diagram for 16-QAM modulation

162 8 Modulations

Page 169: Signal Transforms in Dynamic Measurements

8.5 Examples in MathCad

1. DSBLC Modulation for m\1t :¼ 0; 0:01. . .10 x :¼ 2 X :¼ 10

Am :¼ 1 Ac :¼ 2

d :¼ Am

Ac

d ¼ 0:5

xcðtÞ :¼ Ac � cosðX � tÞxmðtÞ :¼ Am � cosðx � tÞxðtÞ :¼ Ac � ð1þ d � cosðx � tÞÞ � cosðX � tÞEðtÞ :¼ Ac þ Am � cosðx � tÞð Þ

0 2 4 6 8 102−

1−

0

1

2

xc )(t

t

8.5 Examples in MathCad 163

Page 170: Signal Transforms in Dynamic Measurements

2. DSBLC Modulation, for m[ 1t :¼ 0; 0:01. . .10 x :¼ 2 X :¼ 10

Am :¼ 15 Ac :¼ 10

d :¼ Am

Ac

d ¼ 1:5

xðtÞ :¼ Ac � 1þ d � cosðx � tÞð Þ � cosðX � tÞEðtÞ :¼ Ac þ Am � cosðx � tÞð Þ

0 2 4 6 8 10− 1

− 0.5

0

0.5

1

xm )(t

t

0 2 4 6 8 10− 4

− 2

0

2

4

)(tx

)(tE

)(tE−

t

0 2 4 6 8 10−30

−20

−10

0

10

20

30

x(t)

Ε )(t

Ε )(t−

t

164 8 Modulations

Page 171: Signal Transforms in Dynamic Measurements

3. DSBLC Modulation, for d ¼ 1t :¼ 0; 0:01. . .10 x :¼ 2 X :¼ 10

Am :¼ 1 Ac :¼ 1

xðtÞ :¼ Ac � 1þ cosðx � tÞð Þ � cosðX � tÞEðtÞ :¼ Ac � 1þ cosðx � tÞð Þ

4. Phase Modulationt :¼ 0; 0:01. . .10 x :¼ 1 X :¼ 4

Am :¼ 2 Ac :¼ 4

xmðtÞ :¼ Am � cosðx � tÞ xcðtÞ :¼ Ac � cosðX � tÞxðtÞ :¼ Ac � cos X � t þ Am � sinðx � tÞð Þ

0 2 4 6 8 10−2

−1

0

1

2

)( tx

)(tE

)(tE−

t

0 2 4 6 8 10−4

−2

0

2

4

)(tx

xm )(t

xc )(t

t

8.5 Examples in MathCad 165

Page 172: Signal Transforms in Dynamic Measurements

5. Frequency Modulationt :¼ 0; 0:01. . .10 x :¼ 1 X :¼ 4

Am :¼ 2 Ac :¼ 4

xmðtÞ :¼ Am � cosðx � tÞ xc :¼ Ac � cosðX � tÞ

xðtÞ :¼ Ac � cos X � t þ Am �Z t

0

sinðx � tÞdt0@

1A

6. ASK Modulationt :¼ 0; 0:01. . .10 f :¼ 2

xmðtÞ :¼

0 if 0� t� 2

1 if 2\t� 3

0 if 3\t� 4

1 if 4\t� 7

0 if 7\t� 8

1 if 8\t� 9

0 if 9\t� 10

xcðtÞ :¼ cosð2 � p � f � tÞ

0 2 4 6 8 10−4

−2

0

2

4

)(tx

xm )(t

xc )(t

t

166 8 Modulations

Page 173: Signal Transforms in Dynamic Measurements

7. FSK Modulationt :¼ 0; 0:01. . .10 f0 :¼ 1 f1 :¼ 2

xc1ðtÞ :¼ cosð2 � p � f0 � tÞxc2ðtÞ :¼ cosð2 � p � f1 � tÞ

xmðtÞ :¼

0 if 0� t� 2

1 if 2\t� 3

0 if 3\t� 4

1 if 4\t� 7

0 if 7\t� 8

1 if 8\t� 9

0 if 9\t� 10

FSK(tÞ :¼ FSK xc1ðtÞ if xmðtÞ ¼ 0

FSK xc2ðtÞ if xmðtÞ ¼ 1

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

xm )(t

t

0 2 4 6 8 10−1

−0.5

0

0.5

1

m(t)

)(tKSA

t

8.5 Examples in MathCad 167

Page 174: Signal Transforms in Dynamic Measurements

8. PSK Modulation

t :¼ 0; 0:01. . .10 f :¼ 1 /1 :¼p2

/2 :¼ p

xmðtÞ :¼

0 if 0� t� 2

1 if 2\t� 3

0 if 3\t� 4

1 if 4\t� 6

0 if 6\t� 8

1 if 8\t� 10

xc1ðtÞ :¼ cosð2 � p � f � t þ /1Þxc2ðtÞ :¼ cosð2 � p � f � t þ /2Þ

PSK(tÞ :¼ PSK xc1ðtÞ if xmðtÞ ¼ 0

PSK xc2ðtÞ if xmðtÞ ¼ 1

0 2 4 6 8 10−1

−0.5

0

0.5

1

xm )(t

)(tKSP

t

0 2 4 6 8 10−1

−0.5

0

0.5

1

xm )(t

)(tKSF

t

168 8 Modulations

Page 175: Signal Transforms in Dynamic Measurements

Chapter 9Convolution and Deconvolution

Convolution is one of the more important mathematical operations performed onboth analog and digital signals. The convolution joins together three signals: inputand output, as well as the signal characterizing the system which is the subject ofour studies.

A reverse transformation which allows us to determine an unknown input signalis referred to a deconvolution. In the domain of an automatic control, where theinput and output are usually known, deconvolution is used to identify the investi-gated system.

In this chapter, we will present the principle of convolution, its basic properties,as well as methods of convolving and deconvolving signals with data in digitalform. These transformations are performed by a digital signal processing(DSP)system, after the analog signals have been transformed to a digital form. Such asituation always takes place in computerized measurement systems provided withdata acquisition cards.

9.1 Analog and Digital Convolution

The bilateral convolution of the signals k(t) * x(t) is

yðtÞ ¼ kðtÞ � xðtÞ ¼Z1�1

kðt � sÞxðsÞds ð9:1Þ

for which it is assumed that k(t) and x(t) are absolutely integrable over the intervalð�1;1Þ:

A one-sided convolution of the signals kðtÞ � xðtÞ is

yðtÞ ¼ kðtÞ � xðtÞ ¼Z t

0

kðt � sÞxðsÞds ð9:2Þ

for which k(t) and x(t) are absolutely integrable in any interval of 0 � t1 \t2\1:

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_9

169

Page 176: Signal Transforms in Dynamic Measurements

If k(t) or x(t) is a periodic signal kT(t) or xT(t), with the period of T, then itsconvolution with another signal is also periodic and is referred to as a circular orcyclic convolution

yðtÞ ¼ kðtÞ � xTðtÞ ¼Z1�1

kðsÞxTðt � sÞds ð9:3Þ

The convolution (9.3) in finite time interval is

yðtÞ ¼ kðtÞ � xTðtÞ ¼Zt0þtt0

kðt � sÞxTðsÞds ð9:4Þ

where t0 is the initial time.

9.2 Properties of Convolution

1. Commutativity

kðtÞ � xðtÞ ¼ xðtÞ � kðtÞ ð9:5Þ

2. Associativity

½kðtÞ � xðtÞ� � zðtÞ ¼ kðtÞ � ½xðtÞ � zðtÞ� ð9:6Þ

3. Distributivity over addition

kðtÞ � ½xðtÞ þ zðtÞ� ¼ kðtÞ � xðtÞ þ kðtÞ � zðtÞ ð9:7Þ

4. Associativity for multiplication

c½kðtÞ � xðtÞ� ¼ ½ckðtÞ� � xðtÞ ¼ kðtÞ � ½cxðtÞ� ð9:8Þ

where c is a constant.

If k(t) and x(t) have Laplace transforms, then the relation between them and theirconvolution is expressed by the Borel theorem

L½kðtÞ � xðtÞ� ¼L½kðtÞ�L½xðtÞ� ð9:9Þ

170 9 Convolution and Deconvolution

Page 177: Signal Transforms in Dynamic Measurements

A similar relation occurs for Fourier transforms

F½kðtÞ � xðtÞ� ¼ F½kðtÞ� F½xðtÞ� ð9:10Þ

Because of the commutativity, the convolution integrals (9.1) and (9.2) may beexpressed in an equivalent form

yðtÞ ¼ kðtÞ � xðtÞ ¼Z1�1

kðsÞxðt � sÞds ð9:11Þ

and

yðtÞ ¼ kðtÞ � xðtÞ ¼Z t

0

kðsÞxðt � sÞds ð9:12Þ

If in the convolution integrals k(t) is the kernel, that is the response of system toDirac delta dðtÞ, and x(t) is the input, then y(t) represents the impulse response.Such a response is commonly used in the analysis of the properties of variousdynamic systems, and we will therefore review the basic relations related to thatimpulse.

The example of the Dirac delta is shown in Fig. 9.1, while the basic relations aregiven by the formulae [9.13–9.23].

xðtÞ dðtÞ ¼ xð0Þ dðtÞ ð9:13Þ

xðtÞ dðt � t0Þ ¼ xð0Þ dðt � t0Þ ð9:14Þ

A � et dðtÞ ¼ A dðtÞ ð9:15Þ

et cos t dðtÞ ¼ dðtÞ ð9:16Þ

A � sin t dðtÞ ¼ 0 ð9:17Þ

Fig. 9.1 Example of dðtÞ

9.2 Properties of Convolution 171

Page 178: Signal Transforms in Dynamic Measurements

dð�tÞ ¼ dðtÞ ð9:18ÞZ1�1

adðtÞdt ¼ aZ1�1

dðtÞdt ¼ a a 2 < ð9:19Þ

Zþ1�1

f ðtÞ dðtÞdt ¼ f ð0Þ ð9:20Þ

Zþ1�1

f ðtÞ dðt � t0Þdt ¼ f ðt0Þ ð9:21Þ

Z t

0

f ðsÞdðt � sÞds ¼Z t

0

f ðt � sÞdðsÞds ¼ f ðtÞ ð9:22Þ

ddt1ðtÞ ¼ dðtÞ ð9:23Þ

where 1ðtÞ is a unit step signal.For signals k(t) and x(t) given in analytic form, there is no special problem in

calculating the convolution integral (9.2). Below, we will discuss the method forthe calculation in digital of the convolution for signals k(t) and x(t) presented inFig. 9.2.

In order to calculate the integral (9.2), we will shift signal kð�sÞ to the right,starting from zero, by a step equal to D, that is by D; 2D; 3D . . . to T. Then, for eachshift, we will multiply the signal spectral lines kðD� sÞ, kð2D� sÞ; kð3D� sÞ . . .by the corresponding values of the spectral lines xðsÞ: Multiplying the total sum of

Fig. 9.2 Signals xðtÞ; kðsÞ; kð�sÞ

172 9 Convolution and Deconvolution

Page 179: Signal Transforms in Dynamic Measurements

the products by D, we arrive at the convolution integral in digital form. The zerospectral line y0 of the convolution equals (Fig. 9.3)

y0 ¼ k0 x0D ð9:24Þ

The first spectral line of the convolution for kð�sÞ shifted to the right by D fromt = 0 equals (Fig. 9.4)

y1 ¼ ðk1 x0 þ k0 x1ÞD ð9:25Þ

The product (9.25) can be easily illustrated by a figure, representing the multi-plication of respective spectral lines (Fig. 9.5).

The second spectral line of the convolution for kð�sÞ shifted to the right by 2Dfrom t = 0 equals (Figs. 9.6 and 9.7)

y2 ¼ ðk2 x0 þ k1 x1 þ k0 x2ÞD ð9:26Þ

Fig. 9.3 Zero spectral line of the convolution

Fig. 9.4 First spectral line of the convolution

Fig. 9.5 Multiplication of spectral lines k0, k1 by spectral lines x0, x1 for the first spectral line ofconvolution y1

9.2 Properties of Convolution 173

Page 180: Signal Transforms in Dynamic Measurements

Third spectral line of convolution for kð�sÞ shifted to the right by 3D from t = 0equals (Figs. 9.8 and 9.9)

y3 ¼ ðk3 x0 þ k2 x1 þ k1 x2 þ k0 x3ÞD ð9:27Þ

Fig. 9.7 Multiplication of spectral lines k0 − k2 by spectral lines x0 − x2 for the second spectralline of convolution y2

Fig. 9.8 Third spectral line of convolution. Signals kðt � 3DÞ and x(t)

Fig. 9.9 Multiplication of spectral lines k0 − k3 by spectral lines x0 − x3 for the third spectral lineof convolution y3

Fig. 9.6 Second spectral line of convolution. Signals kðt � 2DÞ and x(t)

174 9 Convolution and Deconvolution

Page 181: Signal Transforms in Dynamic Measurements

For the nth spectral line of convolution for kð�sÞ shifted to the right byðn� 1ÞD, we get the digital form of the convolution in the form

yn ¼ DXni¼0

ki xn�i n ¼ 0; 1; 2; . . .; N � 1 ð9:28Þ

where n ¼ T=D.The last equation may be represented in matrix form. We then have

y0y1y2...

yN�1

2666664

3777775 ¼

k0 0 0 . . . 0k1 k0 0 . . . 0k2 k1 k0 . . . 0... ..

. ...

. . . ...

kN�1 kN�2 kN�3 . . . k0

2666664

3777775

x0x1x2...

xN�1

2666664

3777775D ð9:29Þ

The convolution (9.2) can also be easily realized using DFT

yn ¼ 1nþ 1

Xnm¼0

Xni¼0

xie�j2pnþ1mi

Xni¼0

kie�j2pnþ1mi

" #ej

2pnþ1mn D ð9:30Þ

The two-sided convolution for digital data is

yn ¼XN�1

i¼ðn�Nþ1ÞxikN�iþmD for n ¼ N; N þ 1; . . .; 2N � 2; m ¼ n� N ð9:31Þ

which, in the matrix form for vectors of length N, takes the form

y0y1y2...

yN�1...

y2N�3y2N�2

26666666666664

37777777777775¼

k0 0 0 . . . 0 0k1 k0 0 . . . 0 0k2 k1 k0 . . . 0 0... ..

. ...

. . . ... ..

.

kN�1 kN�2 kN�3 . . . k1 k0... ..

. ...

. . . ... ..

.

0 0 0 . . . kN�1 kN�20 0 0 . . . 0 kN�1

26666666666664

37777777777775

x0x1x2...

xN�2xN�1

266666664

377777775D ð9:32Þ

The convolution Eq. (9.31) with the use of DFT is realized by the formula

YðejxÞ ¼ XðejxÞKðejxÞ ð9:33Þ

9.2 Properties of Convolution 175

Page 182: Signal Transforms in Dynamic Measurements

for which

YðejxÞ ¼ FðynÞ; XðejxÞ ¼ FðxnÞ; KðejxÞ ¼ FðknÞ ð9:34Þ

and

ReYðejxÞ ¼ ReXðejxÞReKðejxÞ � ImXðejxÞImKðejxÞImYðejxÞ ¼ ImXðejxÞReKðejxÞ þ ReXðejxÞImKðejxÞ ð9:35Þ

where F is the Continuous Fourier transform.Resulting from Eq. (9.35), the output signal yn is

yn ¼ IF ½ReYðejxÞ þ jImYðejxÞ�D ð9:36Þ

where IF is the inverse Fourier transform.It is also possible to determined yn as

yn ¼ 12N � 1

X2N�2i¼0

xiX2N�2v¼0

kvX2N�2m¼0

ej2p

2N�1mðn�v�iÞ" #

D ð9:37Þ

9.3 Continuous and Digital Deconvolution

Deconvolution is used in order to determine the input signal ~xðtÞ if k(t) and y(t) areknown or to determine the signal ~kðtÞ and if we know the input x(t) and output y(t).The first case deals with measurements, in which ~xðtÞ is the unknown measuredsignal, k(t) is the impulse response of the measurement system, and y(t) is the signalbeing measured. In the second case, we are determining the unknown ~kðtÞ on thebasis of the known input x(t) and the known output y(t) of the system beinginvestigated. We will now present the method for determining the signal ~xðtÞ.

For the digital values of ~kn and ~yn, successive spectral lines of deconvolutionresult directly from the Eqs. (9.24)–(9.28). Thus, we have the zero spectral line ofdeconvolution

~x0 ¼ y0k0D

; k0 6¼ 0 ð9:38Þ

• first spectral line

~x1 ¼ y1k0D� k1k0D

~x0; k0 6¼ 0 ð9:39Þ

176 9 Convolution and Deconvolution

Page 183: Signal Transforms in Dynamic Measurements

• second spectral line

~x2 ¼ y2k0D� k2k0D

~x0 � k1k0D

~x1 ¼ y2k0D� k2~x0 þ k1~x1

k0D; k0 6¼ 0 ð9:40Þ

• third spectral line of deconvolution

~x3 ¼ y3k0D� k3k0D

~x0 � k2k0D

~x1 � k1k0D

~x2 ¼ y3k0D� k3~x0 þ k2~x1 þ k1~x2

k0D; k0 6¼ 0

ð9:41Þ

and nth spectral line

~xn ¼ y0k0D

for n ¼ 0; k0 6¼ 0

~xn ¼ ynk0D�Pn�1

i¼1 ki~xn�ik0D

; n ¼ 1; 2; 3; . . .;N � 1; k0 6¼ 0ð9:42Þ

It is easy to see that the deconvolution in matrix form, for n = N − 1 is

~x0~x1~x2...

~xN�1

2666664

3777775 ¼

1k0D

y0y1y2...

yN�1

2666664

3777775�

0 0 0 . . . 0k1 0 0 . . . 0k2 k1 0 . . . 0... ..

. ...

. . . ...

kN�1 kN�2 kN�3 . . . 0

2666664

3777775

~x0~x1~x2...

0

2666664

3777775

0BBBBB@

1CCCCCA ð9:43Þ

Applying Continuous Fourier transform, we can determine the deconvolutionbased on Eq. (9.44)

Re~XðejxÞ ¼ ReYðejxÞReKðejxÞ þ ImYðejxÞImKðejxÞ½ReKðejxÞ�2 þ ½ImKðejxÞ�2 ð9:44Þ

and

Im~XðejxÞ ¼ ImYðejxÞReKðejxÞ � ReYðejxÞImKðejxÞ½ReKðejxÞ�2 þ ½ImKðejxÞ�2 ð9:45Þ

hence, the input signal ~xn is

~xn ¼ IF½Re~XðejxÞ þ jIm~XðejxÞ�D

ð9:46Þ

9.3 Continuous and Digital Deconvolution 177

Page 184: Signal Transforms in Dynamic Measurements

Signal ~xn may also be obtained using the state equation (2.102). For systems oforder higher than one, we have

~xn ¼ 1w1

ynþ1 � u1;1yn � u1;2y2n � � � � � u1;mymn� � ð9:47Þ

where

y2nþ1 ¼ w2~xn þ u2;1yn þ u2;2y2n þ � � � þ u2;mymn

..

.

ymnþ1 ¼ wm~xn þ um;1yn þ um;2y2n þ � � � þ um;mymn

ð9:48Þ

In Eq. (9.47), ~xn is determined on the basis of yn at instants n and n + 1, whileauxiliary variables y2n; . . .; ymn at instant n − 1.

Calculation of Eqs. (9.47) and (9.48) requires a knowledge of the initial valuesof the variables y2n : This value is assumed to be equal to zero.

For systems of the first order, it is not possible to calculate the deconvolution in arecurrent way. In this case, the deconvolution algorithm has the form

~xn ¼ A1ynþ1 þ A2yn; n ¼ 0; . . .;TD� 2 ð9:49Þ

and

A1 ¼ 1

1� e�DT0

; A2 ¼ �e�DT01� e

�DT0

ð9:50Þ

where T0 is time constant of the system.

9.4 Deconvolution for Low-Pass System

Determination of the signal ~xn on the basis of the kernel kn and output yn of thesystem Eq. (9.47) may be applied without any restrictions for low-pass and high-pass systems. Eqs. (9.38)–(9.46) may be used only for high-pass systems for whichk0 ≠ 0. In order to use this equation for low-pass system, for which k0 = 0, we canshift the elements of kn vector by a constant value ν multiplying them by 1ðt þ mÞ:To simplify the calculations, it is convenient to apply the step response charac-teristics, as these have a lower overshoot than the impulse response and do notassume negative values. For these characteristics, the following formulae are used

178 9 Convolution and Deconvolution

Page 185: Signal Transforms in Dynamic Measurements

~xn ¼ y0h0

for n ¼ 0; h0 6¼ 0

~xn ¼ ~xn�1 þ yn � ~x0hnh0

�Xni¼2

~xnþ1�i � ~xn�i½ �hih0

for n ¼ 1; 2; . . .;N � 1; h0 6¼ 0

ð9:51Þ

9.5 Conjugate Operator and Maximum Integral SquareCriterion

Let us present the integral square criterion by means of a scalar product

I2ðxÞ ¼ Kx;Kxh i ¼ y; yh i ð9:52Þ

or

I2ðxÞ ¼ K�Kx; xh i ð9:53Þ

where Kx represents the convolution integral and K*is the conjugate for K.Criterion I2(x) can be given in the equivalent form

I2ðxÞ ¼ y;Kxh i ¼ x;K�yh i ð9:54Þ

Let us present Eq. (9.54) as follows

ZT0

yðtÞZ t

0

k t � sð Þ xðsÞ ds dt ¼ZT0

xðtÞ½K�y�dt ð9:55Þ

Changing the limits of integration of the internal integral on the left-hand side ofthe Eq. (9.55) to [0, T] and, at the same time, multiplying it by 1ðt � sÞ, we get

ZT0

yðtÞZT0

kðt � sÞ 1ðt � sÞ x ðsÞ ds dt ¼ZT0

xðtÞ½K�y�dt ð9:56Þ

which, after changing the order of integration and replacing t by s, gives

ZT0

xðtÞZT0

kðs� tÞ 1ðs� tÞ yðsÞ ds dt ¼ZT0

xðtÞ½K�y�dt ð9:57Þ

9.4 Deconvolution for Low-Pass System 179

Page 186: Signal Transforms in Dynamic Measurements

Taking into account that the integral in (9.57) has the value of zero for s\t, wecan present it in the form

ZT0

xðtÞZTt

kðs� tÞ yðsÞ ds dt ¼ZT0

xðtÞ½K�y�dt ð9:58Þ

From Eq. (9.58), it follows that the conjugate operator K*y is

K�y ¼ZTt

kðs� tÞ yðsÞ ds ð9:59Þ

Thus,

K�Kx ¼ZTt

kðs� tÞZs

0

kðs� vÞxðvÞdv24

35 ds ð9:60Þ

Equation (9.60) allows us to determine the input signal xðtÞ ¼ x0ðtÞ, maximizingcriterion I2(x)

I2ðx0Þ ¼ supfI2ðxÞ : x 2 Xg ð9:61Þ

where X is a set of signals constrained in amplitude

xðtÞ� 1 ð9:62Þ

From the condition of optimality, we have

@I2ðxÞ@x x0 ; x� x0j

� �� 0 ð9:63Þ

After simple transformation Eq. (9.63) yields

K�Kx0; xh i � K�Kx0; x0h i ð9:64Þ

in which the right-hand side represents the maximum. The left-hand side ofEq. (9.64) reaches a maximum making both sides equal if a signal has the form

xðtÞ ¼ x0ðtÞ ¼ sgn ½K�Kx0ðtÞ� ð9:65Þ

and has the maximum permissible amplitude

xðtÞj j ¼ 1 ð9:66Þ

180 9 Convolution and Deconvolution

Page 187: Signal Transforms in Dynamic Measurements

Substituting Eq. (9.60) into Eq. (9.65), we have

x0ðtÞ ¼ sgnZTt

kðs� tÞZs

0

kðs� mÞ x0ðmÞ dm0@

1A ds

24

35 ð9:67Þ

Equation (9.67) enables the determination of switching moments for the signalx0(t) after solving the system of integral equations resulting from its extension inconsecutive time intervals. Let us assume that the consecutive intervals t1, t2, …, tnin [0, T] correspond to the zeroing of the function under a sgn in Eq. (9.67) and thatthe first switching occurs between +1 and −1. It can be easily checked that theswitching moments resulting from (9.67) represent the system of equations

Xnl¼i

Ztlþ1tl

kðs� tiÞXl

m¼0ð�1mÞ

Ztmþ1tm

kðs� mÞdm0@

1A ds ¼ 0; i ¼ 1; 2; . . .; n ð9:68Þ

where t0 = 0, tn+1 = T, tmþ1 ¼ s for m = l, and n—number of switches.The upper value of the index n is not given at advance, but it is being con-

secutively increased until the criterion I2(x0) reaches a maximum.Examples of the equations for three switching instants in t1, t2, and t3, resulting

from Eq. (9.68), are as follows:

Rt2t1

kðs� t1ÞRt10kðs� vÞdv� Rs

t1

kðs� vÞdv" #

ds

þ Rt3t2

kðs� t1ÞRt10kðs� vÞdv� Rt2

t1

kðs� vÞdvþ Rst2

kðs� vÞdv" #

ds

þ RTt3

kðs� t1ÞRt10kðs� vÞdv� Rt2

t1

kðs� vÞdvþ Rt3t2

kðs� vÞdv� Rst3

kðs� vÞdv" #

ds ¼ 0

ð9:69Þ

Rt3t2

kðs� t2ÞRt10kðs� vÞdv� Rt2

t1

kðs� vÞdvþ Rst2

kðs� vÞdv" #

ds

þ RTt3

kðs� t2ÞRt10kðs� vÞdv� Rt2

t1

kðs� vÞdvþ Rt3t2

kðs� vÞdv� Rst3

kðs� vÞdv" #

ds ¼ 0

ð9:70Þ

9.5 Conjugate Operator and Maximum … 181

Page 188: Signal Transforms in Dynamic Measurements

ZTt3

kðs� t3ÞZt10

kðs� vÞdv�Zt2t1

kðs� vÞdvþZt3t2

kðs� vÞdv24

�Zs

t3

kðs� vÞdv35ds ¼ 0

ð9:71Þ

9.6 Examples in MathCad

Analog and digital convolution for low-pass second-order system

T :¼ 5 D :¼ 0:01

t :¼ 0;D; . . .T

a :¼ 2 b :¼ 0:1 x0 :¼ 4 f :¼ 0:3

KðsÞ :¼ �a � s2s2 þ 2 � b � x0 � sþ x2

0

kðtÞ :¼ �a � e�b�x0�t

b2 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2

0 � b2 � x20

q� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�x2

0 � b2 � 1� � � tq

0 1 2 3 4 5−10

−5

0

5

10

k(t)

t

xðtÞ :¼ sinð3 � p � f � tÞ þ sinð5 � p � f � tÞ þ cosð7 � p � f � tÞ

182 9 Convolution and Deconvolution

Page 189: Signal Transforms in Dynamic Measurements

0 1 2 3 4 5−2

−1

0

1

2

3

x(t)

tAnalog convolution

yðtÞ :¼Z t

0kðt� v) � x(v)dv

0 1 2 3 4 5−10

−5

0

5

10

y(t)

t

Discretization of signals k(t), x(t), and time T

KD :¼for i 2 0. . . TD� 1

KDi kði � DÞKD

��������XD :¼

for i 2 0. . . TD� 1

XDi xði � DÞXD

��������TD :¼

for i 2 0. . . TD� 1

TDi i � DTD

��������

Digital convolution

YD :¼

for i 2 0. . . TD� 1Yi;0 0for j 2 0. . .iYi;0 Yi;0 þ XDj;0 � KDi�j;0

������Y Y � DY

������������

9.6 Examples in MathCad 183

Page 190: Signal Transforms in Dynamic Measurements

0 1 2 3 4 5−10

−5

0

5

10

TΔDigital response of second-order system

T :¼ 5 D :¼ 0:01

t :¼ 0;D; . . .T

a :¼ 2 b :¼ 0:1 x0 :¼ 4 f :¼ 0:3

KðsÞ :¼ a � x20

s2 þ 2 � b � x0 � s + x20

xðtÞ :¼ sinð3 � p � f � tÞ þ sinð5 � p � f � tÞ þ cosð7 � p � f � tÞ

yðtÞ :¼Z t

0

kðt � vÞ � uðvÞdv

Discretization of signals k(t), x(t), T, and y(t)

KD :¼for i 2 0. . . TD� 1

KDi kði � DÞKD

��������XD :¼

for i 2 0. . . TD� 1

XDi xði � DÞXD

��������TD :¼

for i 2 0. . . TD� 1

TDi i � DTD

��������

184 9 Convolution and Deconvolution

Page 191: Signal Transforms in Dynamic Measurements

YD :¼

for i 2 0. . . TDYi;0 0

for j 2 0. . .i

Yi;0 Yi;0 þ XDj;0 � KDi�j;0

�������Y Y � DY

��������������

k1 :¼

for i 2 0. . . TD� 1

K10;0 YD0;0XD0;0

if i ¼ 0

if i[ 0K1i;0 0

for j 2 0. . .i� 1

K1i;0 K1i;0 þK1j;0 �XDi�j;0

XD0;0

K1i;0 YDi;0XD0;0� K1i;0

�����������

�����������������K1 K1

D

K

�������������������������

0 1 2 3 4 5−10

−5

0

5

10

K1

TΔState equation in deconvolution

T :¼ 5 D :¼ 0:01

t :¼ 0;D; . . .T

a :¼ 2 b :¼ 0:1 x0 :¼ 4 f :¼ 0:3

kðtÞ :¼ �a � e�b�x0�t

b2 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2

0 � b2 � x20

q� sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�x2

0 � b2 � 1� � � tq

xðtÞ :¼ sinð3 � p � f � tÞ þ sinð5 � p � f � tÞ þ cosð7 � p � f � tÞ

9.6 Examples in MathCad 185

Page 192: Signal Transforms in Dynamic Measurements

yðtÞ :¼Z t

0

kðt � vÞ � xðvÞdv

A :¼ 0 1�x2

0 �2 � b � x0

� �B :¼ 0

a � x20

� �

Dicretization of signals k(t), y(t) and T

KD: =

for i 2 0. . . TD� 1

KDi kði � DÞ

KD

���������YD: =

for i 2 0. . . TD� 1

YDi yði � DÞ

YD

���������

TD: =

for i 2 0. . . TD� 1

TDi i � D

TD

���������

e

0 1�x2

0 �2 � b � x0

� ��D! 0:99920223539382994143 0:0099574506405935111096

�0:1593192102494617775 0:99123627488135513254

� �

U ¼ 0:99920223539382994143 0:0099574506405935111096�0:1593192102494617775 0:99123627488135513254

� �

ZD0

e

0 1�x2

0 �2 � b � x0

� ��kdk � 0

a � x20

� �! 0:001595529212340117141

0:31863842049899235551

� �

w :¼ 0:0015955292123401171410:31863842049899235551

� �

186 9 Convolution and Deconvolution

Page 193: Signal Transforms in Dynamic Measurements

Determination of input signal

X1 :¼

Y20;0 0

for k 2 0. . . TD� 2

X1k;0 1W0;0

YDðkþ1Þ;0 � U0;0 � YDk;0 � U0;1Y2k;0h i

Y2kþ1;0 U1;0 � YDk;0 þ U1;1Y2k;0 þW1;0 � X1k;0

������X1

���������������

0 1 2 3 4 5−2

−1

0

1

2

3

X1

x(t)

TΔ t,

Conjugate operator

KðsÞ :¼ 12 � � � sþ 1

kðtÞ :¼ 3 � e� t2 D :¼ 0:01 T :¼ 20

t :¼ 0;D; . . .T

0 5 10 15 200

1

2

3

k(t)

t

9.6 Examples in MathCad 187

Page 194: Signal Transforms in Dynamic Measurements

XðsÞ :¼ 1sþ 2

XðtÞ :¼ e�2�t

KðsÞ � XðsÞ invlaplace ! �2 � e� t2 � e�

3�t2 � 1

� ZT0

ZTt

kðs� tÞ �Z s

0kðs� tÞ � xðvÞdv

� �ds � xðtÞdt ¼ 1:8

ZT0

�2 � e� t2 � e�

3�t2 � 1

� h i2dt ¼ 1:8

188 9 Convolution and Deconvolution

Page 195: Signal Transforms in Dynamic Measurements

Chapter 10Reduction of Signal Disturbance

In the previous chapters, where we covered signal analysis, we often used trans-forms made up of specific mathematical operations, containing variables and theirderivatives and integrals. We assumed then that signals we were analyzing had anideal, non-disturbed form. Such situations, however, do not exist in practice, assignals always are more or less disturbed. The error produced by disturbance can beso significant, in comparison with the measurement signal, that in practice,achieving a meaningful measurement is impossible. When a signal is differentiated,the disturbance is also differentiated. All disturbances are then amplified, and as aresult, the signal that is generated is even more disturbed. In such cases, situationsmay occur in which the disturbance will be greater than the signal itself. In order toreduce the disturbance, various methods are used, among which two are worthnoting: filtration by means of time windows and adoption of the Kalman filtermethod. In both cases, additivity of the disturbance is assumed. The method uti-lizing time windows refers to an analog procedures, in which reduction of distur-bance is executed thanks to application of special windows, to which the derivativeof disturbed signal is transmitted, whereas in the Kalman filter method, a recurrentalgorithm, based on a minimum variance estimator, is used. In the latter case, themeasurement system is represented by means of discrete equations, and the dis-turbed signal is assumed to have the properties of white noise. We will deal firstwith the method of disturbance reduction by means of time windows and then withthe Kalman filter method.

10.1 Time Windows in Reduction of Disturbance

The method deals with the reduction of disturbance for the m-th order system,described by linear differential equation with constant coefficients

Xmk¼0

akyðkÞðtÞ ¼ xðtÞ ð10:1Þ

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9_10

189

Page 196: Signal Transforms in Dynamic Measurements

where x(t) is the input, y(k)(t) is the k-th derivative of the output signal, and ak is thek-th constant coefficient. Let us consider the integral

~yðtÞ ¼Ztþd

t�d

yzðsÞgðs� tÞds ð10:2Þ

where disturbed signal is the sum

yzðtÞ ¼ yðtÞ þ zðtÞ ð10:3Þ

and g(t) is the time window (Fig 10.1).For successful reduction of the disturbed signal, the window g(t) must fulfill the

following conditions:

• At the ends of intervals (t − δ) and (t + δ), the window and its derivatives mustreach zero.

gðkÞðt � sÞ ¼ gðkÞðt þ sÞ ¼ 0; k ¼ 0; 1; 2; . . . ð10:4Þ

• In the middle of the range, the window should have a maximum value.• The window must meet the condition

Zþd

�d

gðtÞdt ¼ 1 ð10:5Þ

These requirements are met, for example, by Nuttall windows

gðs� tÞ ¼ npd

cospp2d

s� tð Þh i

; p ¼ 1; 2; 3; . . . ð10:6Þ

Fig. 10.1 Reduction of disturbance by means of a time window

190 10 Reduction of Signal Disturbance

Page 197: Signal Transforms in Dynamic Measurements

where

np ¼ p4

Zp2

0

cospðuÞdu

8><>:

9>=>;

�1

ð10:7Þ

or triangular windows

gðs� tÞ ¼ 1� s� td

��� ���h ip; p ¼ 1; 2; 3; . . . ð10:8Þ

It is easy to check that the k-th derivative of ~yðtÞ in Eq. (10.2) gives

~yðkÞz ðtÞ ¼ ð�1ÞkZtþd

t�d

yðsÞgðkÞðs� tÞdsþ ð�1ÞkZtþd

t�d

zðsÞgðkÞðs� tÞds ð10:9Þ

from which it appears that differentiation of the disturbance carries over to windowg(t).

Let us estimate the right part of sum in Eq. (10.9). Then, we have

Ztþd

t�d

zðsÞgðkÞðs� tÞds � supt�d� s� tþd

gðkÞðs� tÞh i Ztþd

t�d

zðsÞds ð10:10Þ

Assuming that z(t) is the randomsignal, changing quickly its value and the signwith respect to gðkÞðtÞ; we get

Ztþd

t�d

zðsÞds � 0 ð10:11Þ

so we have

~yðkÞn � ð�1ÞkZtþd

t�d

yðsÞgðkÞðs� tÞds ð10:12Þ

The last equation describes the effect of the reduction of the k-th time differ-entiated signal.

10.1 Time Windows in Reduction of Disturbance 191

Page 198: Signal Transforms in Dynamic Measurements

10.2 Signal Reconstruction

In many practical applications, it is necessary to reconstruct the input signal in asituation, in which the output signal is disturbed. Using the time window, it is easyto realize this. In order to prove the above, let us put x(t) in the place y(t) inEq. (10.2). Thus, we have

~xðtÞ ¼Ztþd

t�d

xðsÞgðs� tÞds ð10:13Þ

Substituting the left hand side of Eq. (10.1) in the place of x(t) in Eq. (10.13) andthen changing y(t) to yz(t), we get the reconstructed input signal

~xðtÞ ¼Ztþd

t�d

yzðsÞXmk¼0

�1ð ÞkakgðkÞðs� tÞ" #

ds ð10:14Þ

10.3 Kalman Filter

This filter uses an algorithm that performs the recurrent determination of theminimum variance estimate of the state vector of a linear discretediscrete dynamicsystem, on the basis of measurements of its output. The Kalman filter algorithm is

x½k þ 1� ¼ AðkÞx½k� þ BðkÞu½k� þ w½k�y½k� ¼ CðkÞx½k� þ DðkÞu½k� þ v½k�; k ¼ 0; 1; 2; . . . ð10:15Þ

where u½k� is the vector of input signals with m coordinates; x½k� and x½k þ 1� arestate vectors with n coordinates for moments k and k + 1; yðkÞ is the vector ofoutput signals with p coordinates; w½k� is the vector of system noise with n coor-dinates; v½k� is the vector of measurement noise with p coordinates; AðkÞ—state-transition matrix with dimensions n � n; BðkÞ is the control matrix with dimen-sions n � m; CðkÞ is the output matrix with dimensions p � n; and DðkÞ is thetransition matrix with dimensions p � m.

Figure 10.2 shows the block diagram of the system represented by Eq. (10.15).For the Kalman filter, it is assumed that both the measurement and processing

within the system is disturbed by noise, with a Gaussian distribution.In the Kalman filter synthesis, the following assumptions are made:

1. The deterministic component of input u(k) is equal to zero.2. Due to lack of control, the state variable is close to zero.

192 10 Reduction of Signal Disturbance

Page 199: Signal Transforms in Dynamic Measurements

E x½k�f g ¼ 0 ð10:16Þ

3. Disturbances w½k� and v½k� have the properties of discrete white noise, i.e., theyare not correlated and have a zero expected value and constant covariance.

E w½k�wT ½k�� � ¼ R½k�; i ¼ k0; i 6¼ k

�ð10:17Þ

Efv½k�vT ½k�g ¼ Q½k�; i ¼ k0; i 6¼ k

�ð10:18Þ

where R½k� and Q½k� are matrices of disturbance covariance.4. State and measurement errors are not correlated.

E v½k�wT ½k�� � ¼ 0 ð10:19Þ

5. Estimation errors do not depend on measurements

E x½k� � x̂½k�ð ÞvT ½k�� � ¼ 0 ð10:20Þ

which requires that the vector x̂½k� depends, in a random way on observation,until the step k − 1.

6. Matrix DðkÞ ¼ 0:

The above assumptions allow us to modify the state equation (10.15) to thefollowing form:

x½k þ 1� ¼ AðkÞx½k� þ BðkÞu½k�y½k� ¼ CðkÞx½k� þ v½k� ð10:21Þ

Figure 10.3 presents the block diagram corresponding to Eq. (10.21).

Fig. 10.2 Block diagram of a discrete dynamic system

10.3 Kalman Filter 193

Page 200: Signal Transforms in Dynamic Measurements

Kalman filtration is based on the assumption that at k − 1 discrete moment, thestate estimator x̂ k � 1; k � 1½ � and covariance P k � 1; k � 1ð Þ are obtained, whilefor k moment, the value of the estimator x̂ k; k � 1½ � is predicted, as well as the valueof the covariance P k; k � 1ð Þ; relating to it. If the obtained results differ from thosepredicted in the previous step, then a correction is introduced to the prediction forthe moment k + 1 executed in step k.

The Kalman filter equations, resulting from the above assumptions, are dividedinto two categories:

1. Time update equations, which predict the system state at the discrete moment k,on the basis of an estimate at the moment k − 1. They follow the algorithmpresented below:

(a) Project the state ahead

x̂½k; k � 1� ¼ AðkÞx̂½k � 1; k � 1� þ BðkÞu½k � 1� ð10:22Þ

where x̂ k � 1; k � 1½ � and x̂ k; k � 1½ � are, respectively, the a priori estimate(before measurement) and a posteriori estimate (after measurement) of thestate vector.

(b) Project the error covariance ahead

P k; k � 1ð Þ ¼ AðkÞP k � 1; k � 1ð ÞATðkÞ þ R½k� ð10:23Þ

where

P k � 1; k � 1ð Þ ¼ E e½k � 1; k � 1�eT ½k � 1; k � 1�� � ð10:24Þis the matrix of a priori covariance of the error vector

e k � 1; k � 1½ � ¼ x k � 1½ � � x̂ k � 1; k � 1½ � ð10:25Þ

whereas

P k; k � 1ð Þ ¼ E e½k; k � 1�eT ½k; k � 1�� � ð10:26Þ

Fig. 10.3 Schematic diagram of Kalman filtration

194 10 Reduction of Signal Disturbance

Page 201: Signal Transforms in Dynamic Measurements

and

e k; k � 1½ � ¼ x½k� � x̂ k; k � 1½ � ð10:27Þ

are the matrix of a posteriori covariance of the error vector (10.25).The vectors in Eqs. (10.25) and (10.27) show the difference between theactual value of the state vector and its estimate and constitute the measureof assessment error for the state vector.

2. Equations of measurement updates which, on the basis of the current observa-tion data, introduce a correction to the prediction

(a) Compute the Kalman gain

KðkÞ ¼ P k; k � 1ð ÞCTðkÞ QðkÞ þ CðkÞPðk; k � 1ÞCTðkÞ� ��1 ð10:28Þ

(b) Update the estimate with measurement y[k]

x̂½k� ¼ x̂ k; k � 1½ � þK k; kð Þ y½k� � CðkÞx̂½k; k � 1�f g ð10:29Þ

(c) Update the error covariance

PðkÞ ¼ I�Kðk; kÞCðkÞ½ �P k; k � 1ð Þ ð10:30Þ

Figure 10.4 presents the algorithm according to which the Kalman filter resultingfrom Eqs. (10.22)–(10.30) is executed.

In the Kalman filter, the equations updating time and measurements are realizedin a cycle, for subsequent moments k, which allows us to estimate the process statex̂½k� due to minimum error of Eq. (10.27).

Fig. 10.4 Algorithm of function for Kalman filter

10.3 Kalman Filter 195

Page 202: Signal Transforms in Dynamic Measurements

In numerical calculations to determine initial parameters, where a priori infor-mation about the process is missing, it is necessary to assume zero initial values ofthe state vector which estimates the covariance matrix P k � 1; k � 1ð Þ:

10.4 Examples in MathCad

Application of Nuttall window to the filtration of a signal with disturbance

T :¼ 5 D :¼ 0:01

t :¼ 0; D; . . .;T

xðtÞ :¼ e�t � sinð2 � tÞ þ e�2t � sinð3 � tÞ

0 1 2 3 4 5−0.5

0

0.5

1

)(tx

tDisturbance

zðtÞ :¼ 0:3 � sinð50 � tÞ þ 0:5 � sinð90 � tÞ � e�0:5t

0 1 2 3 4 5−1

−0.5

0

0.5

1

)(tz

t

196 10 Reduction of Signal Disturbance

Page 203: Signal Transforms in Dynamic Measurements

xzðtÞ :¼ xðtÞ þ zðtÞ

0 1 2 3 4 5−1

0

1

2

xz )(t

tNuttall window

p :¼ 5 d :¼ 0:01

np :¼ p4�

Zp2

0

cosðuÞpdu

264

375�1

gðtÞ :¼ npd� p � t2 � dh ip

0 1 2 3 4 50

5

10

15

)(tg

t

10.4 Examples in MathCad 197

Page 204: Signal Transforms in Dynamic Measurements

Zd

�d

gðsÞds ¼ 1

Filtration of signal with disturbance

x1ðtÞ :¼Ztþd

t�d

xzðsÞ � gðs�tÞds

0 1 2 3 4 5−0.5

0

0.5

1

x1 )(t

)(tx

tReproduction of input signal x(t)

T :¼ 5 D :¼ 0:01

t :¼ 0; D; . . .; T

xðtÞ :¼ sinð5 � tÞ þ sinð7 � tÞ

0 1 2 3 4 5−2

−1

0

1

21.933

−1.933

x(t)

50 t

198 10 Reduction of Signal Disturbance

Page 205: Signal Transforms in Dynamic Measurements

Impulse response of second-order system

a :¼ 1 x0 :¼ 5 b :¼ 0:2

kðtÞ :¼ a � x0ffiffiffiffiffiffiffiffiffiffiffiffiffi1� b2

p � e�b�x0�t � sin x0 �ffiffiffiffiffiffiffiffiffiffiffiffiffi1� b2

q� t

0 1 2 3 4 5−2

0

2

4

k(t)

t

yðtÞ :¼Z t

0

xðsÞ � kðt � sÞds

0 1 2 3 4 5−4

−2

0

2

4

y(t)

tDisturbance

zðtÞ :¼ 0:3 � sinð50 � tÞ þ 0:5 � sinð90 � tÞ � e�0:5t

10.4 Examples in MathCad 199

Page 206: Signal Transforms in Dynamic Measurements

0 1 2 3 4 5−1

−0.5

0

0.5

1

)(tz

t

yðtÞ :¼ yðtÞ þ zðtÞ

0 1 2 3 4 5−4

−2

0

2

4

yz t( )

tNuttall window

r :¼ 4 d :¼ 0:294

np :¼ p4�

Zp2

0

cosðuÞpdu

0B@

1CA

�1

gðtÞ :¼ npd� p � t2 � dh ip

200 10 Reduction of Signal Disturbance

Page 207: Signal Transforms in Dynamic Measurements

0 1 2 3 4 50

1

2

3

4

5

)(tg

t

g1ðtÞ :¼ddtgðtÞ

g2ðtÞ :¼d2

dt2gðtÞ

x1ðtÞ :¼Ztþd

t�d

yzðsÞ � gðs� tÞ � 2 � bx0

� g1ðs� tÞ þ 1x2

0� g2ðs� tÞ

� �ds

0 1 2 3 4 5−2

−1

0

1

2

x1 )(t

)(tx

t

10.4 Examples in MathCad 201

Page 208: Signal Transforms in Dynamic Measurements

10.5 Kalman Filter in LabVIEW

202 10 Reduction of Signal Disturbance

Page 209: Signal Transforms in Dynamic Measurements

Bibliography

Akhiezer, N.I., Glazman I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications,Mineola (2003)

Allen, R.L., Mills, D.W.: Signal Analysis. Wiley-IEEE Press, New York (2004)Ambardar, A.: Analog and Digital Signal Processing. PWS Publishing, Boston (1995)Anaya, J.A.: Method for real-time deconvolution. IEEE Trans. Instrum. Measur. 41, 413–419

(1981)Anderson, J.B., Aulin, T., Sundberg, C.E.: Digital Phase Modulation. Plenum Press, New York

(1986)Bateman, A., Yates, W.: Digital Signal Processing Design. Computer Science Press, New York

(1991)Białasiewicz, J.T.: Falki i Aproksymacje. WNT, Warszawa (2000)Brigham, E.O.: The Fast Fourier Transform. Prentice Hall, Englewood Cliffs (1988)Burden, R.L., Faires, J.D.: Numerical Analysis. PWS-KENT Publishing Company, Boston (1985)Burrus, C.S., Parks, T.W.: DFT/FFT and Convolution Algorithms. Wiley, New York (1985)Candy, J.V.: Signal Processing. The Model Approach. Mc Graw-Hill, New York (1988)Carlson, A.B.: Communication Systems. McGraw-Hill, New York (1975)Chui, C.K.: An Introduction to Wavelets. Academic Press, New York (1992)Cohen, L.: Time-Frequency Analysis. Prentice-Hall, New Jersey (1995)Daubechies, I.: The Lectures on Wavelets. SIAM, Philadelphia (1992)Dzwonkowski, A., Roskosz, R., Wepa, R.: Wykorzystanie Skladowych Ortogonalnych w

Wirtualnych Cyfrowych Przetwornikach Mocy. Politechnika Gdańska (2006)Elliott, D.F.: Handbook of Digital Signal Processing. Academic Press, New York (1987)Feldman, M.: Hilbert Transform Application in Mechanical Vibration. Wiley, New York (2011)Flandrin, P.: Time-Frequency/Time-Scale Analysis. Academic Press, New York (1999)Fromm, W., Halinka A. Winkler W.: Accurate measurement of wide-range power system

frequency changes for generator protection. Developments in Power System Protection. IEEEConference Publication. No. 434, pp. 53–57 (1997)

Fuksa, S., Byrski W.: Problem Optymalizacji Pewnego Typu Funkcjonalow Kwadratowych naZbiorach Wypuklych, pp. 62–64. Szczecin (1980)

Goswami, J.C., Chan, A.K.: Fundamentals of Wavelets, Theory, Algorithms, and Applications.Dover Publications, Wiley (2011)

Ha, T.T.: Theory and Design of Digital Communication Systems. Cambridge University Press,Cambridge (2011)

Hahn, S.L.: Comments on a tabulation of hilbert transforms for electrical engineers. IEEE Trans.Commun. 44, 768 (1996)

Harris, F.J.: The discrete fourier transform applied to time domain signal processing. IEEECommun. Mag. 20, 13–22 (1982)

Haykin, S.: Systemy Telekomunikacyjne. WKiL, Warszawa (2004)Haykin, S., Van Veen B.: Signals and System. Wiley, New York (1999)

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9

203

Page 210: Signal Transforms in Dynamic Measurements

Hocking, W.K.: Performing fourier transforms on extremely long data streams. Comput. Phys. 3,59 (1989)

Holmes, D.G., Lipo, T.A.: Pulse Width Modulation for Power Converters. Principles and Practice.Wiley, Piscataway (2003)

Ifeachor, E.C., Jervis, B.W.: Digital Signal Processing: A Practical Approach. Addison-Wesley,Reading, MA (1993)

Jakubiec, J., Roj J.: Measuring Processing Sample&Hold. Publisher of Silesian University ofTechnology. Poznan (2000)

Jury, E.I.: Theory and Applications of the Z-Transform Method. Krieger, Malabar (1982)King, F.W., Smethells, G.J., Helleloid, G.T., Pelzl, P.J.: Numerical evaluation of hilbert transforms

for oscillatory functions: a convergence accelerator approach. Comput. Phys. Commun. 145,256–266 (2002)

Kordylewki, W., Wach, J.: Usrednone Rozniczkowanie Zakloconych Sygnalow Pomiarowych.PAK, no. 6, 123–124 (1988)

Kristhanamurthy, V., Seshadri, V.: Model reduction using the routh stability criterion. IEEE Trans.Autom. Control 23, 729–731 (1978)

Ku, Y.K.: Transient Circuit Analysis. D. Van Nostrad Company, Princeton (1961)Layer, E.: Mapping error of linear dynamic system caused by reduced order model. IEEE Trans.

Instr. Measur. 50, 792–800 (2001)Layer, E.: Modelling of Simplified Dynamical Systems. Springer, Berlin (2002)Layer, E., Tomczyk, K.: Measurements, Modelling and Simulation of Dynamic Systems. Springer,

Berlin (2010)Lim, J.S., Oppenheim, A.V. (eds.): Advanced Topics in Signal Processing. Prentice Hall,

Englewood Cliffs (1988)Liu, Y.W.: Hilbert Transform and Applications, pp. 291–300. Intech, Rijeka (2012)Magain, P., Courbin, F., Sohy, S.: Deconvolution with correct sampling. Astrophys. J. 494,

472–477 (1988)Mitra, S.K., Kaiser, J.F. (eds.): Handbook of Digital Signal Processing. Wiley, New York (1993)Nise, N.S.: Control Systems Engineering, 3rd edn. Wiley, New York (2000)Nuttall, A.H.: Some window with very good sidelobe behaviour. IEEE Trans. Acoust. Speech

Signal Process. 29(1), 84–91 (1981)Oberg, T.: Modulation, Detection and Coding. Wiley, Chichester (2001)Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals and Systems, 2nd edn. Prentice-Hall,

Upper Saddle River (1997)Oppenheim, A.V.: Applications of Digital Signal Processing. Prentice Hall, Englewood Cliffs

(1978)Oppenheim, A., Schafer. R.: Discrete-Time Signal Processing. Upper Saddle River, Prentice-Hall,

New York (1999)Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University

Press, Cambridge (2000)Proakis, J.G., Manolakis, D.G.: Introduction to Digital Signal Processing, 2nd edn. Macmillan,

New York (1988)Proakis, J.G.: Digital Communications. McGraw-Hill, New York (2001)Qian S.: Introduction to Time-Frequency and Wavelet Transforms. Prentice Hall, Englewood

Cliffs (2002)Rabiner, L.R., Rader, C.M. (eds.): Digital Signal Processing. IEEE Press, New York (1972)Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall,

Englewood Cliffs (1975)Shanmugam, K.S.: Digital & Analog Communication. Wiley, Replika Press Pvt. Ltd., New Delhi

(2000)Shin, K., Hammond J.K.: Fundamentals of Signal Processing for Sound and Vibration Engineers.

Willey, Chichester (2008)

204 Bibliography

Page 211: Signal Transforms in Dynamic Measurements

Sinha, N.K., De Bruin, G.T.: Near optimal control of high order system using low order models.Int. J. Control 17, 257–262 (1973)

Skarbek, W.: Multimedia. Algorytmy i Standardy Kompresji, Akademicka Oficyna Wydawnicza(1998)

Sklar, B.: Digital Communications—Fundamentals and Application. Prentice-Hall, EnglewoodCliffs (1988)

Stearns, S.D., Hush, D.R.: Digital Signal Analysis, 2nd edn. Prentice Hall, Englewood Cliffs(1990)

Strang, G., Nyugen, T.: Wavelets and Filter Banks. Wellesley Cambridge Press, Wellesley (1996)Suli, E., Mayers, D.: An Introduction to Numerical Analysis. Cambridge University Press,

Cambridge (2003)Szabatin, J.: Podstawy teorii sygnalow. WKiL, Warszawa (2000)Szafran, J., Rebizant, W.: Power system frequency estimation. IEEE Proc. Gener. Transm. Distrib.

145, 578–582 (1998)Szafran, J., Wiszniewski, A.: Algorytmy Pomiarowe i Decyzyjne Cyfrowej Automatyki

Elektroenergetycznej. WNT, Warszawa (2001)Tomczyk, K.: Special signals in the calibration of systems for measuring dynamic quantities.

Measurement 49, 148–152 (2014)Vaidyanathan, P.P.: multirate digital filters, filter banks, polyphase networks and applications:

a tutorial review. IEEE 41, 3463–3479 (1993)Walter, P.L.: Deconvolution as a technique to improve measurement-system data integrity.

Exp. Mech. Springer Boston 21(8), 309–314 (1981) Springer, BostonWeideman, J.A.: Computing the hilbert transform on the real line. Math. Comput. 64, 745–762

(1995)Young, R.K.: Wavelet Theory and its Applications. Kluwer Academic Publication, Boston (1993)Zieliński, T.P.: Od Teorii do Cyfrowego Przetwarzania Sygnalow. Wydawnictwo AGH, Krakow

(2002)Ziemer, R.E., Tranter, W.H.: Principles of Communications: Systems, Modulation, and Noise.

Houghton Mifflin Co., Boston (1976)Zuchowski, A.: Przyczynek do Metod Filtracji Sygnalow. PAK, no. 2, pp. 7–8 (2006)

Bibliography 205

Page 212: Signal Transforms in Dynamic Measurements

Index

AAmplitude, 1, 118, 143, 144, 149, 151, 155,

156, 161, 162, 180, 182Analysis

asynchronous, 72discrete, 70, 72spectral, 71–73synchronous, 70

Approximation, 101Associativity, 170Associativity for multiplication, 170Attenuation, 49Autocorrelation, 5

BBandwidth, 148Binary data, 162Bit duration, 159Borel theorem, 170

CCapacitor, 31Carrier

amplitude, 152frequency, 150, 161

Cauchy, 107Characteristic

frequency, 94Code

natural binary, 157Coder, 141Commutativity, 170Complex

conjugate, 83coordinate, 112number, 82

Componentfundamental, 4harmonic, 4negative, 143positive, 143

Conditionacceptability, 98initial, 33optimality, 180

Conjugate, 128, 179operator, 179, 180, 187

Constellationdiagram, 160, 161QPSK, 161

Covariance, 193–195Convergence

abscissa, 22area, 22

ConverterA/D, 81, 156

Convolution, 46, 86, 169, 170, 173–176analog, 169, 182, 183bilateral, 169circular, 170cyclic, 170digital, 100, 169, 182, 183integral, 171–173, 179one-sided, 169

Current, 30, 31, 125–127, 129digital, 127

DData acquisition card, 169Decimation, 101Decomposition, 91, 92, 102Deconvolution, 169, 176–178, 185

© Springer International Publishing Switzerland 2015E. Layer and K. Tomczyk, Signal Transforms in Dynamic Measurements,Studies in Systems, Decision and Control 16,DOI 10.1007/978-3-319-13209-9

207

Page 213: Signal Transforms in Dynamic Measurements

Deconvolution (cont.)algorithm, 178continuous, 176digital, 176

Demodulator, 141Denominator, 29, 34, 35, 92Derivative, 26, 86, 110, 121Detail, 102Digital

measurement, 176Dirac delta, 171Dirac impulse series, 47Dirichlet condition, 43, 44Distributivity over addition, 170Disturbance, 189–191, 193, 196, 199Domain

frequency, 97, 98, 108time, 25, 43, 85, 97

DSP, 169

EElectrical circuit, 31Energy

limited, 6, 13, 18Envelope, 110, 143, 144, 146Equation

differential, 26, 81linear, 81state, 30, 185

Errorcovariance, 195estimation, 193measurement, 193state, 193vector, 194, 195

Expander, 102

FFactor

distortion, 4filling, 4nonlinear distortion, 4peak, 4scaling, 97shape, 4shift, 97

Filteranalog, 94bank, 100, 102Butterworth, 94coefficient, 103digital, 81, 94, 100high-pass, 100, 104

ideal, 49Kalman, 189, 192, 194, 195, 202low-pass, 94, 100, 101

Fluctuation, 101Fourier series, 60, 63, 64, 154Frequency, 132, 143, 144

band, 146deviation, 159

Functiondensity, 5even, 77harmonic horizontal, 113harmonic verticall, 113odd, 78weight, 117, 121

HHelix

circular, 113conic, 115

IInitial condition, 30Input, 29, 30, 171Integral, 22, 23, 50, 98, 189

convolution, 107internal, 179maximum, 179square error, 121, 124, 179

Integration, 46, 62, 179limit, 179

KKalman gain, 195Kernel, 171, 178Kirchhoff’s law, 31, 32Kronecker delta, 100

LLabVIEW, 105, 135, 202Linearity, 25, 45, 85

MMagnitude, 48Mallat algorithm, 101MathCad, 18, 38, 66, 74, 112, 129, 163, 182,

196Matrix

control, 192feedthrough, 29form, 175, 177state-transmission, 192

208 Index

Page 214: Signal Transforms in Dynamic Measurements

Measurementactive power, 137current, 125, 135frequency, 125, 128, 139noise, 192output, 192power, 125reactive power, 138system, 176transition, 192voltage, 125, 136

Minimum variance, 192Modulation

AM, 141, 142analog, 141, 142angle, 142, 159ASK, 142, 158, 166BPSK, 142, 160, 161CPFSK, 142, 159depth, 143, 144digital, 141, 158DPCM, 142, 158DPSK, 142, 160DSBLC, 142–144, 146, 148, 158, 163–165DSBSC, 142, 146, 147FM, 141, 142, 151, 156, 166FSK, 142, 158, 159, 167GMSK, 142, 159impulse, 142, 151MSK, 142, 159PAM, 142, 152–155, 157PCM, 142, 156, 157PDM, 142, 156PM, 141, 142, 150, 151, 156, 165PPM, 142, 156PSK, 142, 159, 168Pulse code, 141PWM, 142, 151QAM, 142, 162QPSK, 142, 160SSB, 147SSBSC, 142, 148, 149VSB, 148, 150

Modulator, 141Mother wavelet, 97

unit, 30Multiplication, 25, 46, 62

NNumerator, 29, 34, 92Numerical

method, 125

OOrder, 21, 23, 27, 29, 34, 35, 91Ordinate, 84Orthogonal

component, 125Orthogonality, 129Orthonormal

mutually, 118polynomials, 121set, 123

Orthonormality, 119Output, 29, 30, 38, 101Overshoot, 178

PParseval equality, 46Period, 1Phase, 1, 110, 162

frequency, 110instantaneous, 150shift, 119

Pole, 27, 86, 91, 92Polynomial, 91, 121

approximating, 124Tchebyshev, 122

Poweractive, 126–129digital, 127limited, 10, 15reactive, 127–129

Probabilitydistribution, 3, 5

QQuantities

electrical, 124

RRadius, 84, 161Receiver, 141, 146Reconstruction, 102Residuum, 87, 88Resistor, 30Response

digital, 184impulse, 36, 100, 102, 149, 171, 176, 178,

199Ruth

method, 35table, 34, 35

Index 209

Page 215: Signal Transforms in Dynamic Measurements

SSample

initial, 3Sampling

frequency, 152ideal, 152, 153impulses, 81instantaneous, 152, 155interval, 87, 89, 94moment, 36, 155principle, 82process, 81, 82rate, 94real, 152, 153system, 81

Scale, 45Shannon’s theorem, 153Sideband, 142, 143, 146, 159

attenuated, 149lower, 146, 159, 149upper, 146, 148, 149

Signalalmost periodic, 2amplitude, 161analog, 6, 10, 16, 156analytic, 108, 112, 113, 146–149bipolar rectangular, 11carrier, 141–144, 146, 153, 155, 160, 161comb, 12continuous, 129, 132cosinusoidal, 7, 47deterministic, 1, 3digital, 169digital modulating, 158, 160Dirac delta, 12, 18, 24, 46, 85discrete, 3, 13, 15, 18, 131, 133, 156discretization, 183, 184distributive, 12disturbance, 189disturbed, 189, 190energy, 117envelope, 110ergodic, 3exponential, 14, 48exponentially decreasing, 7, 16exponentially increasing, 10Gaussian, 9, 17, 48harmonic, 10, 15, 47high frequency, 141input, 49, 100, 169, 176, 177, 180, 187,

190, 192, 198low-frequency, 141measured, 176

modulated, 143–150, 152, 154, 159, 160modulating, 142, 149, 151, 152, 155, 156,

158, 159monoharmonic, 1, 2non-ergodic, 2non-periodic, 2non-stationary, 3, 97orthogonal, 117, 121orthonormal, 117, 118, 122output, 159, 176, 190, 192over modulated, 144periodic, 1, 170polyharmonic, 1power, 4quasi-orthogonal, 120random, 1, 3, 5, 191real, 146reconstructed, 192reconstruction, 192rectangular, 6, 13, 48, 49, 70Sa, 8, 14, 17, 47sampled, 153shifted, 124, 133sign, 47sinusoidal, 8, 16, 47, 125stationary, 3, 97transient, 2transmitted, 146triangular, 7, 13unipolar rectangular, 11unit, 2, 7, 15, 19unit step, 9, 47, 49, 85, 172

Spectra, 108, 147Spectral

first, 173, 176line, 172–174, 176, 177n-th, 177second, 173, 174, 177third, 174, 177zero, 173, 176

Spectrum, 44, 48, 55, 108Standard deviation, 6State, 29

equation, 36, 193estimator, 194vector, 192

Symmetry, 45System

discrete, 192dynamic, 171global positioning, 141high-pass, 178linear, 81, 192

210 Index

Page 216: Signal Transforms in Dynamic Measurements

low-pass, 178, 182response, 171second order, 184, 199

TTime

constant, 178initial, 3, 170interval, 170, 181reversal, 86

Transfer function, 30, 35Transform

continuous Fourier, 43, 176, 177continuous Wavelet, 97discrete Fourier, 51discrete wavelet, 100, 102fast Fourier, 52Fourier, 43, 44, 46, 51, 97, 98, 171Hilbert, 107, 108, 110, 143inverse, 83, 90, 91inverse Fourier, 176inverse Laplace, 33inverse wavelet, 98Laplace, 21, 22, 24–26, 28–30, 43, 81, 82,

87, 170multistage wavelet, 101, 102short-time Fourier, 55, 74–76three stage wavelet, 105wavelet, 97Z, 81–85, 88–91, 105

Transformationbilinear, 94reverse, 169

Translation, 98Transmission

channel, 141Transmitter, 141, 143, 148

VValue

constant, 178expected, 3final, 86initial, 86mean, 3, 5, 98peak, 4RMS, 3

Variablecomplex, 21random, 5state, 30

Variance, 3, 6Voltage, 30, 125, 127, 129

digital, 127

WWavelet

Coiflet, 104Daubechies, 103Harr, 103Marr, 98Meyer, 99Morlet, 98norm, 98symplet, 104

Window, 51Barlett, 58Blackman, 59, 69discrete, 66exponential, 59flat top, 59, 69Gaussian, 59, 68Hamming, 59, 68Hanning, 57, 58, 67, 70–72Kaiser, 60Nuttall, 190, 196rectangular, 56, 58, 66, 70, 72, 74time, 55, 57, 189, 190, 192triangular, 58, 67, 191

Index 211