96
s SIMOREG DC-MASTER 6RA70 Series Application Center Winder Edition 06 Microprocessor-Based Converters from 6kW to 2500kW for Variable-Speed DC Drives

Siemens Winder App

Embed Size (px)

DESCRIPTION

Siemens Winder App

Citation preview

Page 1: Siemens Winder App

s

SIMOREG DC-MASTER 6RA70 Series

ApplicationCenter Winder

Edition 06

Microprocessor-Based Converters from 6kW to 2500kWfor Variable-Speed DC Drives

Page 2: Siemens Winder App

Edition 06 05.2007

6-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

1.4 Operating modes and functions The winder described can operate in several different modes using a variety of functions. Global settings such as ♦ control method ♦ direction of winding ♦ winder or unwinder ♦ gear box stage ♦ winding characteristic are selected via the top level control system. Depending on the selection, the requisite parameter settings are automatically made in the SIMOREG device. In the case of machines used to manufacture broad-web products and therefore requiring a variety of control methods, it is possible to choose between several different control modes simply by switching over control bits. There is no need to change any connector or binector links. All you need to do is select the required settings for characteristics, controllers, parameters or optimization runs. If a hardware control is implemented, the required changes can be made using OR function blocks (for details contact schematic 19). The following modes of operation are implemented: ♦ direct tension control with tensile force sensor ♦ indirect tension control without tensile force sensor using torque control ♦ dancer roll / compensating roll position control ♦ v-constant control The following functions are available in these modes: ♦ inching, maneuvering (to lead the web) ♦ stop tension ♦ slip core control ♦ setting of a variable web width ♦ setting a variable material density ♦ calculator for diameter with monotone or not monotone change of diameter ♦ 2 gear box stages ♦ speed controller adaptation ♦ tension controller adaptation ♦ web break recognition

Page 3: Siemens Winder App

05.2007 Edition 06

Siemens AG 7-55 SIMOREG DC-MASTER Application Center winder

2 Closed-loop control of a winder

2.1 Criteria for selecting the control method The following table lists selection criteria based on empirical values. The maximum possible web velocity is dependent to a large degree on its relation to the web-lead or maneuvering velocity (see also para. 1.2 Application guidelines).

Torque limiting control Speed compensation control Control method Indirect tension

control Direct tension

control Dancer control v-constant control

Diameter sensing Calculated from web velocity setpoint and

winder speed

Calculated from web velocity setpoint and

winder speed

Calculated from web velocity setpoint and

winder speed

Calculated from actual web velocity and winder speed

Diameter ratio

Dmax/Dcore

Up to approx. 10:1 Good compensation

of acceleration torque and friction

required

Up to approx.15:1 Good compensation

of acceleration torque and friction

required

Up to approx. 15:1 Good compensation

of acceleration torque and friction

required

Up to approx. 15:1

Actual tension sensing

No Yes No No

Tension ratio

Fmax/Fmin

Up to approx. 6:1 Good compensation

of acceleration torque and friction

required

Up to approx. 20:1 Good compensation

of acceleration torque and friction

required

Variable only with variable dancer

weight

Torque ratio

Mmax/Mmin

Up to approx. 30:1 Up to approx. 40:1 Dependent on

quality of actual tension signal

Web velocity Up to 300m/min with good

compensation

Up to 1000m/min with good

compensation

Up to 1000m/min with good

compensation

Up to 1000m/min

Clamping point Required Required Required Not required

Web tacho Not required Not required Not required Required Use preferably

for Sheet metal,

textiles, paper, cabling

Paper, thin foils

Rubber, cabling, wire,

foil, textiles (generally for

extensible materials)

Sorting roller

Page 4: Siemens Winder App

Edition 06 05.2007

8-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

2.2 Torque limiting control The basis for this operating principle is the addition (winder) or subtraction (unwinder) of a fixed value = override setpoint (5-10%) to/from the speed setpoint of the speed controller with active tension control and web inserted. Through its connection to the web, the winder reaches one of its torque limits (pos. limit with winder, negative limit with unwinder). The torque limit is obtained from a feedforward control value derived from the tension setpoint, taking into account diameter, friction, moment of inertia and acceleration. The ramp generator for the speed setpoint merely serves to produce the dv/dt signal (ramp-up and ramp-down time should be set to 0).

2.2.1 Indirect tension control

dv/dt

D i

+

+ +/-Di²

Xdv/dti

+

i

D

M

XD

+

Ramp-functiongenerator

setpoint limitingRamp-function

generator Torque limitationn-controller

Setpointprocessing

Inching setpoint

Maneuver

Velocity / speedcalculator

nrated

Web break

Unwinder/winder

Winding fromtop/bottom

Variablemomentof inertia

Constantmomentof inertia

Characteristicof firction

Web width

|nact|

Monotony yes/no

Diameter set valueCore diameter

Hold diameterSet diameter

Calculatorfor

diameter

|nact|

nact

Material density

I-controller

Converter

Winder

6RA70Indirect tension control

Tension setpointformation

Zsetp Main

Winding hardness

Zsetp Stop

Overridesetpoint

kp-Adaption

Main drive(injection of web velocity)

Web velocity setpoint

Page 5: Siemens Winder App

05.2007 Edition 06

Siemens AG 9-55 SIMOREG DC-MASTER Application Center winder

Description of mode of operation: Input of current diameter using "Set diameter". This can be done only when the drive is switched off. The maneuvering setpoint stretches the web between the winder and main drive (clamping point). Applying the "Tension control ON external" signal allows activation of the tension control (a minimum torque must also be reached) and the override setpoint is switched in. At the same time, the speed controller input is switched from maneuvering over to operating setpoint (winder), or to 0 (unwinder). The drive torque is adjusted to the torque limit specified by the tension control (derived from tension setpoint). A winding hardness characteristic (tension decreases in proportion to increase in diameter) can be activated as the tension setpoint for the winder. The machine can now be started. With every change in velocity, the product of moment of inertia x acceleration is added to the tension feedforward control. The current diameter is calculated continuously from the quotient of web velocity/winder speed. The tension feedforward control value is multiplied by the varying diameter, thus ensuring that the web tension remains constant. A reduced tension (=stop tension) can be injected at standstill. This is calculated as a percentage of the current operating setpoint tension. If the web breaks, the winder accelerates initially by its override setpoint, the unwinder decelerates to its override setpoint (this is negative so the unwinder rotates in the opposite direction). The web break is sensed, on the one hand, by the delayed evaluation of a minimum torque and, on the other, by a comparison of the torque setpoint and actual values. These are identical if the tension control is active because the drive is operating at its torque limit. When the web breaks, the actual torque decreases when the override speed is reached and this setpoint/actual value difference is evaluated after a delay (to allow for temporary deviations) by a limit monitor. The web velocity setpoint is canceled by the speed controller, both the winder and unwinder rotate at their override setpoint in the winding direction. OFF3 is applied after a parameterizable time period. The "Web break" signal can also be specified from an external source (e.g. via light barriers). To ensure that the specified torque produces a material tension as close as possible to the desired value, the acceleration and friction torques must be compensated accurately!

Page 6: Siemens Winder App

Edition 06 05.2007

10-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

2.2.2 Direct tension control

dv/dt

D i

+

+ +/-Di²

Xdv/dti

+

i

D

M

XD

+ +

Ramp-functiongenerator

setpoint limitingRamp-function

generator Torque limitationn-controller

Setpointprocessing

Inching setpoint

Maneuver

Velocity / speedcalculator

nrated

Web break

Unwinder/winder

Winding fromtop/bottom

Variablemomentof inertia

Constantmomentof inertia

Characteristicof firction

Web width

|nact|

Monotony yes/no

Diameter set valueCore diameter

Hold diameterSet diameter

Calculatorfor

diameter

|nact|

nact

Material density

I-controller

Converter

Winder

6RA70Direct tension control

Tension setpointformation

Zsetp Main

Winding hardness

Zsetp Stop

Tensioncontroller

Unwinder/winder

Overridesetpoint

Tension feedback value

kp-Adaption

Main drive(injection of web velocity)

Web velocity setpoint

Tensile force sensor

Page 7: Siemens Winder App

05.2007 Edition 06

Siemens AG 11-55 SIMOREG DC-MASTER Application Center winder

Description of mode of operation: Input of current diameter using "Set diameter". This can be done only when the drive is switched off. The maneuvering setpoint stretches the web between the winder and main drive (clamping point). If the tension exceeds a minimum value within a prespecified period, the tension control is automatically activated, the override setpoint switched in and the tension controller enabled along a ramp (if "Tension controller ON external" signal is applied). At the same time, the speed controller input is switched from maneuvering over to operating setpoint. The drive torque is adjusted to the torque limit specified by the tension control (derived from tension setpoint). A winding hardness characteristic (tension decreases in proportion to increase in diameter) can be activated as the tension setpoint for the winder. The tension controller compares the actual tension with the tension setpoint and adds a corresponding compensation signal to the tension feedforward control value. The machine can now be started. With every change in velocity, the product of moment of inertia x acceleration is added to the tension feedforward control value. The current diameter is calculated continuously from the quotient of web velocity/winder speed. The sum of tension feedforward control value + tension controller output is multiplied by the varying diameter, thus ensuring that the web tension remains constant. A reduced tension (=stop tension) can be injected at standstill. This is calculated as a percentage of the current operating setpoint tension. If the web breaks, the winder accelerates by its override setpoint, the unwinder decelerates to its override setpoint (this is negative so the unwinder rotates in the opposite direction). The web break is sensed, on the one hand, by the delayed evaluation of a minimum tension and, on the other, by a comparison of the torque setpoint and actual values. When the web breaks, the actual torque decreases when the override speed is reached and this setpoint/actual value difference is evaluated after a delay (to allow for temporary deviations) by a limit monitor. The web velocity setpoint is canceled by the speed controller, both the winder and unwinder rotate at their override setpoint in the winding direction. OFF3 is applied after a parameterizable time period. The "Web break" signal can also be specified from an external source (e.g. via light barriers).

Page 8: Siemens Winder App

Edition 06 05.2007

12-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

2.3 Speed compensation control

2.3.1 Dancer control

In this case, a compensation value (magnitude of override 2-10%) is added to the speed controller setpoint. The drive torque limits are always open. Every time the velocity changes, the product of moment of inertia x acceleration is added as a supplementary torque setpoint to the speed controller output. The ramp generator for the speed setpoint merely serves to produce the dv/dt signal (ramp-up and ramp-down time should be set to 0).

dv/dt

D i

+ +

+ +/-

D

Di²

Xdv/dti

+

i

D

UP

M

Dancer positioncontroller

Position setpoint

Actual position

to external tension controller(dancer weight control)

Dancer

6RA70Dancer control

Ramp-functiongenerator

setpoint limitingRamp-function

generator Torque limitationn-controller

Setpointprocessing

Inching setpoint

Maneuver

Velocity / speedcalculator

nrated

Web break

Unwinder/winder

Winding fromtop/bottom

Variablemomentof inertia

Constantmomentof inertia

Characteristicof firction

Web width

|nact|

Monotony yes/no

Diameter set valueCore diameter

Hold diameterSet diameter

Calculatorfor

diameter

|nact|

nact

Material density

I-controller

Converter

Winder

Tension setpointformation

Zsetp Main

Windinghardness

Zsetp Stop

kp-Adaption

Main drive(injection of web velocity)

Web velocity setpoint

Unwinder/winder

Page 9: Siemens Winder App

05.2007 Edition 06

Siemens AG 13-55 SIMOREG DC-MASTER Application Center winder

Description of mode of operation: Input of current diameter using "Set diameter". This can be done only when the drive is switched off. The maneuvering setpoint stretches the web between the winder and main drive (clamping point), thereby moving the dancer out of its end position. This activates the position control and enables the position controller along a ramp (if "Tension controller ON external" signal is applied); the position controller output forms the supplementary speed setpoint. The dancer moves to its center position (when position setpoint = 0). At the same time, the speed controller input is switched from the maneuvering over to the operating setpoint. The machine can now be started. The current diameter is calculated continuously from the quotient of web velocity/winder speed. The tension in the web is determined solely by the dancer weight. If a tension control function is required, the dancer must be provided with a control device (e.g. pressure cylinder). The tension setpoint is converted to a pressure setpoint in the 6RA70 and made available at an analog output. A winding hardness characteristic (tension decreases in proportion to increase in diameter) can be activated as the tension setpoint for the winder. A reduced tension (=stop tension) can be injected at standstill. This is calculated as a percentage of the current operating setpoint tension. If the web breaks, the dancer moves to its end positions. The dancer position control is disabled and the OFF3 process initiated. It is useful to delay OFF3 on the winder to allow any loose winding material to be reeled up.

NOTE It may be necessary to activate the D-action component in the actual-value channel for the position controller. This helps to dampen the dancer roller and prevents build-up of oscillation between the dancer and winder.

Page 10: Siemens Winder App

Edition 06 05.2007

14-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

2.3.2 v-constant control (winder)

The three control methods described above each require a clamping point on the machine, e.g. in the form of a pair of contacting rollers through which the web is fed and from which the winder receives the web velocity setpoint. If there is no clamping point on the machine, the winder must be regulated to a constant peripheral speed. This necessitates sensing the web velocity using a web tacho so that the diameter can be calculated from v/n. Since the winder is acting quasi as a "main drive" in this instance, the ramp generator must be used to ramp the speed setpoint.

dv/dt

D i

+

+ +/-

D

Di²

Xdv/dti

+

i

D

M

Web tachoWinder

(v-constant)

6RA70v-constant control

Unwinder

Dancer positioncontroller

Position setpoint

Ramp-functiongenerator

setpoint limitingRamp-function

generator Torque limitationn-controller

Setpointprocessing

Inching setpoint

Maneuver

Velocity / speedcalculator

nrated

Web break

Unwinder/winder

Winding fromtop/bottom

Variablemomentof inertia

Constantmomentof inertia

Characteristicof firction

Web width

|nact|

Monotony yes/no

Diameter set valueCore diameter

Hold diameterSet diameter

Calculatorfor

diameter

|nact|

nact

Material density

I-controller

ConverterTension setpoint

formation

Zsetp Main

Windinghardness

Zsetp Stop

kp-Adaption

Web velocity setpoint

Unwinder/winder

Web velocity

Page 11: Siemens Winder App

05.2007 Edition 06

Siemens AG 15-55 SIMOREG DC-MASTER Application Center winder

Description of mode of operation: Input of current diameter using "Set diameter". This can be done only when the drive is switched off. The machine can be started when the web is tensioned. Web-break sensing is not operative in v-constant control mode. If the web breaks, the web tacho signal switches to 0. The calculated diameter would then integrate in direction Dmin, resulting in a corresponding increase in the winder speed. To prevent this from happening, the "monotone" setting of the diameter calculator must be activated, i.e. the diameter can only increase for the winder and thus remains constant if the web breaks.

NOTE When the v-constant control method is used, the web velocity must be measured using a web tacho. This also necessitates use of supplementary board SBP pulse encoder evaluation (second actual tacho value).

2.4 Control function blocks

2.4.1 Stop tension control

The stop tension is injected as a function of the external control and the internal n=0 message. It can be parameterized as a percentage of the set operating tension. If a constant stop tension is required, parameter U151.01 must be connected to K0001.

2.4.2 Slip core control

The coil hardness influences, in conjunction with the diameter, the tension setpoint according to an adjustable characteristic. The setpoints can be taken either from an internal characteristic block or externally from the bus. Depending on the application, 5 additional characteristics are available. It is meaningful to work without the slip core control if an unwinder is used. Switching between different characteristics is implemented via external control.

2.4.3 Variable web width

The selection of different web widths is automatically taken into account for the calculation of the moment of inertia and therefore also for the resulting feedforward control torque. In this case, the maximum web width must always be assumed to be 100%. If a fixed web width is required, parameter U150.03 must be connected to K0001.

2.4.4 Variable material density

The selection of different material densities is automatically taken into account for the calculation of the moment of inertia and therefore also for the resulting feedforward control torque. In this case, the maximum material density must always be assumed to be 100%. If a variable material density input is not required, parameter U525.04 must be connected to K0001.

2.4.5 Calculator for the diameter

The diameter calculator calculates the current diameter from the web velocity setpoint (or actual web velocity with V-constant control method) and the winder speed. This calculation is only performed if there is a frictional connection to the continuous material, the tension controller is turned on and the system is in the run state. Since the diameter can only decrease on an unwinder, and increase on a winder, calculation in the opposite direction is disabled ("monotone" setting for diameter change). If the user wishes to alter this behavior, he can enable the diameter calculator to work in both directions by changing parameter P421 from 1 to 0.

2.4.6 Gearbox stage

The selection of gear stage 2 is automatically taken into account in the calculation of the moment of inertia and the resulting feedforward control torque. The lower gear ratio must always be assumed to be 100%.

Page 12: Siemens Winder App

Edition 06 05.2007

16-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

2.4.7 Speed controller adaptation

The proportional gain and reset time of the speed controller can be adapted as a function of moment of inertia. An optimization process is used to determine the values at minimum and maximum winding diameters and linear interpolation performed between them.

2.4.8 Tension controller adaptation

The proportional gain of the tension controller can be adapted as a function of moment of inertia.

2.4.9 Web break recognition

If the tension control is turned on, the web break recognition is enabled. Direct tension control: Triggering results if selectable torque variance is exceeded and torque drops

below minimum tension. Indirect tension control: Triggering results if selectable torque variance is exceeded and torque drops

below selectable minimum. Compensating roll: Triggering results if instantaneous value exceeds selectable position value. If web tear recognition is triggered, speed setpoint is set 0 and the calculation for the diameter is disabled. The unwinder turns backwards, the winder forward, both using their bias. If a compensating (dancer) roll control is used, the position controller reaches its limit due to the missing instantaneous value. The bias results from the set intervention. After a selectable time , "Off 3“ is triggered.

2.5 Acceleration compensation calculation In order to ensure a constant tension torque during acceleration and deceleration, the armature current should be pre controlled using the required torque. The moment of inertia is never a constant value due to the steady change of the diameter of the winder.

♦ Fixed inertia JF (adjustable using P407) ♦ Variable moment of inertia JV (is calculated using building block 116, and is influenced by web width

(K3008) and material density K3009) Chapter 4 contains instructions on how to calculate the two torques using available system data.

2.5.1 Determination of fixed value inertia

The fixed moment of inertia is the sum of the following moment of inertia

♦ moment of inertia of motors ♦ moment of inertia of gear corresponding to the shaft of the motor ♦ moment of inertia of winder core corresponding to the motor shaft ♦ additional moments of inertia such as couplers Formula:

2Core

GearMotorFi

JJJJ ++=

For motor or gear values please refer to the datasheet or type plate. The inertia of the winder core has to be calculated. (Contact formula for the calculation of moment of inertia for solid cylinder or hollow cylinder.). If the winder's core mass is relatively small, or the gear ratio rather large, the moment of inertia can be considered irrelevant as it is in this application. If the moment of inertia of the winder core is not negligible, the user can adapt the calculation accordingly (taking into account Jcore with i2).

Page 13: Siemens Winder App

05.2007 Edition 06

Siemens AG 17-55 SIMOREG DC-MASTER Application Center winder

Moment of inertia solid cylinder

32DbJ

4∗∗ρ∗Π= [kgm²]

Moment of inertia hollow cylinder

( )32

DDbJ Core44 −∗∗ρ∗Π= [kgm²]

Calculation of percentage accelerating torque MbF using the fixed moment of inertia JF and the acceleration time tb. The equation outputs a moment of inertia corresponding to the rated current in %. Precondition: D = Dcore, tb = th and Jcore is ignored

Determining the value for parameter P407

bNCore

NFbF

tv

PD865,2inJM ∆

∗∗∗

∗∗= [%]

Determining the value for parameter P407

%100542P

tM407P hbF∗

∗=

2.5.2 Determination of the variable moment of inertia

The following equation outputs a value for the maximum variable moment of inertia using the maximum diameter, density and maximum width.

( )2

4Core4maxmaxmaxmaxv

i32DDbJ

−∗∗ρ∗Π= [kgm²]

Calculation of percentage accelerating torque corresponding to the related current in % Requirements: D = Dmax, tb = th and JF = 0

( )bNmax

N4Core4maxmaxmaxbV

tv

PDi18,29nDDbM ∆

∗∗∗∗

∗−∗ρ∗= [%]

Determining the value for Parameter U529:

%100542P

tM529U hbV∗

∗=

2.5.3 Formulas and dimensions

b web width [m] D diameter [m] Dmax maximum diameter [m] DCore diameter of winder - core [m] i gear ratio JF constant moment of inertia ( motor, Gear, winder - core) corresponding to shaft of motor [kgm²] JV variable moment of inertia result of windup material corresponding to shaft of motor [kgm²] MbF maximum accelerating torque corresponding to JF [% of MN] MbV maximum accelerating torque corresponding to Jvmax [% of MN] MN rated motor torque [Nm] nN rated motor speed [rpm] PN rated motor power [kW] tb time of acceleration [s] th ramp up time of web velocity; range 0 – Vmax [s] ∆v speed difference [m/min] ρ specific weight (density) [kg/dm³]

Page 14: Siemens Winder App

Edition 06 05.2007

18-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

3 Interfaces

3.1 Received data from top level control Data are exchanged via the communication board 1 (CBP2), PPO type 5. The functionality implemented in this application can be guaranteed only if the interface settings are made exactly as described in the table below.

Word Connector Binector Label Note

1 K3001 Control word 1 Control Word 1 according to user manual

2 K3002 system speed setpoint

3 K3003 Tension setpoint

4 K3004 Control word 2 Control Word 2 according to user manual

5 K3005 Control word 3 Control word 3 for coilers / winders

B3500 Set diameter 1.....Set

B3501 Stop diameter 1.....Stop

B3502 Wind/Coil from top/bottom 0.....top / 1.....bottom

B3503 Winder/Unwinder 0.....Winder / 1.....Unwinder

B3504 v-constant control If 1, the state of B3506 is not relevant

B3505 Dancer roll control If 1, the state of B3506 is not relevant

B3506 Dir./Indir. Tension Control 0.....direct / 1.....indirect

B3507 Gear box stage 1/2 0.....Stage1 / 1.....Stage 2

B3508 Switch characteristic for coil hardness

B3509 Switch characteristic for coil hardness

B3510 Switch characteristic for coil hardness

The selected characteristic is the result of the combination of these three binectors

(see truth table of the multiplexer)

B3511 Stop tension control 1.....On

B3512 Tension control ON ext. 1.....On

B3513 web break ext. 1.....On

B3514 Reserved

B3515 Reserved

6 K3006 Diameter set value

7 K3007 Ext. characteristic coil hardness

8 K3008 Web width If different materials are produced

9 K3009 Density If different materials are produced

10 K3010 Reserved

NOTE It is not permissible to enable B3504 (v-constant control) and B3505 (dancer roll control) at the same time. If they are enabled simultaneously, OFF3 will be triggered immediately!

Page 15: Siemens Winder App

05.2007 Edition 06

Siemens AG 19-55 SIMOREG DC-MASTER Application Center winder

3.1.1 Transmit data to top level control

Data exchange is done via the communication board 1 (CBP2), PPO-Type 5. Word Parameter Bit Label Note

1 U734.01 status word 1 Status word 1 according to user manual.

2 U734.02 Actual speed value K0179

3 U734.03 Instantaneous tension value K9240

4 U734.04 status word 2 Status word 2 according to user manual.

5 U734.05 status word 3 Status word for winder/coiler status K9113

0 Tension control is ON 1.....ON

1 Tension control limit reached 1.....limit reached

2 Web break 1.....Web break

3 speed limit succeeded 1.....n>>

4 Operating mode ambiguous 1.....ambiguous

5 Reserved

6 Reserved

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

6 U734.06 Current diameter K9304

7 U734.07 Actual torque value (motor-related) K0149

8 U734.08 Actual current value (motor-related) K0107

9 U734.09 Output of tension control K9249

10 U734.10 Web velocity K0039 (when an optional SBP board is used for v-constant

control)

3.1.2 Analog input

Maneuver setpoint: analog input main setpoint X174: 4-5 value range: -10V.....+10V tension / position feedback value1: analog input 1 X174: 6-7 value range: tension feedback value: 0..........+10V position feedback value: -10V.....+10V

(both end positions can be sensed with a +/- supply)

3.1.3 Analog output

Tension setpoint for compensating weight if compensating roll control is enabled : analog output 1 X175: 14-15

3.1.4 Pulse generator input

Input for digital pulse - generator corresponding to „User Manual“.

Page 16: Siemens Winder App

Edition 06 05.2007

20-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

4 Commissioning notes

4.1 Speed feedback adjustment The following parameters have to be set: U518 minimum diameter of winder shaft in mm

U519 gear ratio

If two gear box stages are used, the gear box with the smaller gear ratio has to be used

for example: i1=4, i2=5..... U519=4

winder

Motor

nni =

U520 rated speed

The motor speed in r.p.m. which occurs for the core diameter, maximum web speed setpoint and for the gear transmission ratio set at U519 must be set.

U522 standardization of system speed in m/s at maximum setpoint U523 standardization of diameter in mm. 100% = maximum diameter

4.2 Compensation of friction torque In general, the friction depends on the speed of the winder. Gear warming can result in negative influence. After a few hours of operation there is the possibility a post optimization has to be performed. Procedure: ♦ Operate winder only with speed control, binector B3512 (tension control ON ext.) has to be 0 ♦ Disable acceleration compensation f.e. by preventing the dv/dt Signal ( set P542 to 0,01 ). ♦ Take measurements at minimum diameter of winder; set minimal diameter; there may be no connection

to material web. ♦ Start drive via internal ramp function generator, and increase the speed in steps (f.e 10% steps) ♦ Read the actual torque on connector K0142 at every step and enter in U283.01 to .10 (characteristic

block no. 106). ♦ Stop drive ♦ Select "Dancer control" and set binector B3501 (retain diameter) to 1. ♦ Start drive for winder and increase speed in 10 % steps. After each increase check connector K0160

(output of speed controller). The value should be in the range of +/-3%.

NOTICE Setting the friction compensation too high can cause the winder to break away and produce backlash in the web while it is unwinding under indirect tension control.

Page 17: Siemens Winder App

05.2007 Edition 06

Siemens AG 21-55 SIMOREG DC-MASTER Application Center winder

4.3 Compensation of acceleration torque Unless the acceleration torque is negligible in relation to the remaining torque, acceleration compensation should be set on the winder with indirect and direct tension control. Acceleration compensation is not generally required in dancer control mode, and is not generally activated in v-constant mode. General procedure: ♦ No connection to material web, gear box stage 1 selected (changeover to gear box stage 2 is

automatically taken in to account. ♦ Set ramp up time and ramp down time according to the application ♦ P542 (dv/dt evaluation) is preset to 30s, i.e. the dv/dt value is 100% with a ramp-up or ramp-down time

of 30s. P542 should always be set to the same value as the actual ramp-up and ramp-down time so that the dv/dt signal (K0191) always corresponds to max. 100%. P542 can, if necessary, be set to another value for the purpose of finely adjusting the acceleration compensation function.

♦ Select operating state "indirect tension control" and set the bias P405 to 0 % and binector B3501 (hold diameter value) to 1.

4.3.1 Constant moment of inertia

♦ Take measurements at minimum coil diameter; set minimal diameter ♦ Prohibit influence of variable moment of inertia. fe. by setting the web width to 0% using K3008. ♦ Vary the speed of the winder between 10% and 90% and observe K0160 (output of speed controller)

during acceleration and deceleration. The deviation from the final value then equals the acceleration or deceleration torque.

♦ Set evaluation of the const. moment of inertia in P407 to the value calculated in the paragraph above. The output of the tension/dancer controller (K9249) can be monitored in direct tension control or dancer control mode to check the setting. This should remain within a range of +/-3%.

4.3.2 Variable moment of inertia

♦ Set the following parameters: U526 = U528 = Maximum possible diameter in mm P404 = Core diameter as % of maximum diameter U527 = Core diameter in mm

♦ If possible insert a rather fully loaded coil with a large material width and density. ♦ Set values of actual diameter, density of material and web width ♦ Vary the speed of the winder between approx. 10% and a speed at which the maximum peripheral

speed of the winder roller is not exceeded and monitor connector K0160 (speed controller output) while the drive is accelerating and decelerating. The deviation from the final value then equals the acceleration or deceleration torque.

♦ Set evaluation of the var. moment of inertia in U529 such that the value calculated in the paragraph above is output at K9121 (sum of const. and var. moments of inertia). The output of the tension/dancer controller (K9249) can again be monitored in direct tension control or dancer control mode to check the setting. This should remain within a range of +/-3%.

NOTE If the web width and / or the density is always constant, Parameter U150.03 and / or U525.04 (density) have to be set to K0001 (100%)

Page 18: Siemens Winder App

Edition 06 05.2007

22-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

4.4 Optimization of speed controller Raise torque limits, for example by setting the signal “Compensating roll position control ON” . (P605 is set to 150%) Set the adaptation of kp 2 using P559 and Tn 2 using P560. The value can be calculated using the following formula

100529UD

DD560P559P4max

4Core4max∗∗

−== [%]

Requirement: Density and width of material have to be 100%, U529 calculated according to 4.3.2

The thresholds 1 (P556, P557) must always equal to 0.

4.4.1 Optimization at minimal diameter

♦ Run system with fully loaded winder ♦ Perform optimization for speed controller according to the user manual (P051=26). ♦ Use value of P225 (kp) and P226 (Tn) to set P550 / P551 (equals lower values of kp-and Tn adaptation)

4.4.2 Optimization at maximum diameter

♦ Run system with empty winder ♦ Perform optimization for speed controller according to the user manual (P051=26). ♦ The set values in P225 and P226 equal the upper values of kp and Tn – adaptation

4.5 Hints for setting parameters P406: Gear stage 2. The value is calculated as follows: i1/i2. f.e. i1=4, i2=5 P406 = 4/5 = 80% U198: Tension control: Value for required tension or torque for web break observation 5%. Position control: Set observation value for compensating roll, f.e. 90%90%. U282.01-.10: Characteristic of friction. U283.01-.10: Only positive values allowed. U285.01-.10: Characteristic for slip coil control U286.01-.10: Only positive values allowed. U288.01-.10: Characteristic (Building block 108). U289.01-.10: Using this block, you can delinearize the influence of the potentiometer for maneuvering

(a characteristic is set which equals approximately y=f (x²)) U450: Delay web break recognition. Is used to disable false triggering on short, sudden tension or torque drops. U453: Time, during which the minimum tension (set using U198) has to be surpassed to activate the

tension control. U456: Time for reverse winding if web break occurs.

Page 19: Siemens Winder App

05.2007 Edition 06

Siemens AG 23-55 SIMOREG DC-MASTER Application Center winder

U539.01: Integration time - calculator for diameter The following formula is used for calculation:

( )95,0*

42,0*d*D537U*v*sleeveDD

01.539Uminmax

maxmax −= [s]

D max Maximum roller diameter [m] Dsleeve Minimum (core) diameter [m]

v max Maximum system speed [m/min] dmin Minimum thickness of the material [mm] 0.95 Factor for incorporating 5 % safety margin

Page 20: Siemens Winder App

Edition 06 05.2007

24-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

5 Appendix

5.1 List of freely assignable function blocks used Block type Blocknumber

Binector/connector converter 13

Average value during n cycles 16

Adders/subtractors 20,21,22,23,24,25

Sign inverters 35,36

Switchable sign inverters 40,41

Dividers 42,45,46

Multipliers 50,51,52,53,290.....297

High resolution multipliers/dividers 55,56

Absolute value generators with filter 60,61

limiters 65

Limit-value monitors without filters 73,74

Maximum selection 80

Tracking-/storrage element 82

Analog signal selector switches 90.....99

Integrators 101

Characteristic blocks 106,107,108, 280

Simple ramp-function generator 113

Technology controller 114

Velocity/speed controller 115

Variable moment of inertia 116

Multiplexer 86,87

AND – elements 121.....132

OR – elements 150.....167

Inverters 180.....193

NAND elements 200

RS-flipflop 215

Timers 240.....246

Binary signal selector switch 250.....253

PI-controller 260

Page 21: Siemens Winder App

05.2007 Edition 06

Siemens AG 25-55 SIMOREG DC-MASTER Application Center winder

5.2 List of settable fixed values used

Parameter Function Sheet

P401 Inching setpoint 1.1

P402 Adjustment of setpoint – actual value difference of torque for web break recognition 17.1

P403 Fine tuning of web (system) speed 8.4

P404 Diameter of core in % of Dmax 8.6

P405 Bias for speed controller in conjunction with direct and ind. tension cont. 14a.1

P406 i gear stage 2 11.1

P407 Constant moment of inertia 11.2

P408 Scaling of torque setpoint 16.1

P409 Influence tension-/position controller 15.5

P410 Stop tension 12.4

P411 Position setpoint (always 0 except in the case of dancer control!) 15.1

P421 Change of diameter monotone 0.....no 1.....yes 8.2

U099.01 Dancer end position sensing 17.1

U099.02 Maximum torque in n control mode 16.5

U099.03 Minimum tension setpoint 12.1

U198 Minimun tension or minimum torque 17.1

U201 Maximum permissible torque deviation for web break detection 17.5

5.3 Detailed schematics See following sheets 1.....20

NOTE For easier identification, the winder-specific changes to binector and connector links, and parameter changes, are displayed on a light gray background. These values deviate from the factory setting.

Page 22: Siemens Winder App

Edition 06 05.2007

26-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

.01

.02

.03

.04

.06

.07

.08

.05

.01

.02

.03

.04

.06

.07

.08

.05

1010

1010

1010

1010

1 0

1≥

&&

&&

&&

&&

1≥

100%

=1

1≥ 1≥

&

P435

(0)

B B B B B B B

P436

(0)

K04

01K K K K K K K

P43

8.F(

208)

K300

2K0

207

P437

.08P

437.

07

P437

.06P4

37.0

5 P43

7.04

P437

.03 P

437.

02

P43

7.01

K020

2

K040

1

B

Inch

ing

setp

oint

Sele

ct in

ject

ion

of in

chin

gse

tpoi

nt

Sele

ctse

tpoi

nt

Inch

ing,

bit

0fro

m c

ontro

l wor

d 1

Inch

ing,

bit

1fro

m c

ontro

l wor

d 1

On

com

man

dfro

m IN

CH

(to c

ontro

l wor

d 1)

ON

com

man

dfro

m O

N/O

FF1

(from

she

et"C

raw

ling

setp

oint

")

Byp

ass

ram

p-fu

nctio

n ge

nera

tor

to s

heet

"Ram

p-fu

nctio

n ge

nera

tor"

Inch

ing

Setp

oint

P

401.

F (2

,00)

syst

em -

spee

d se

tpoi

nt

Shee

t 1

Page 23: Siemens Winder App

05.2007 Edition 06

Siemens AG 27-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

.01

.02

.03

.04

.06

.07

.08

.05

.01

.02

.03

.04

.06

.07

.08

.05

1010

1010

1010

1010

1 0

1≥

&&

&&

&&

&&

1≥

DQ R

1

1

1 0

<1>

&

DQ R

1

1≥1≥

1 0

1≥ ....

<1>

P44

0 (0

)B

9350

B B B B B B B

P44

1 (0

)K

9231

K K K K K K K

P44

3.F(

207)

KK

0206

P44

2.08

P44

2.07

P44

2.06

P44

2.05

P44

2.04

P44

2.03

P44

2.02

P44

2.01

P44

4.B

(0)

B

P44

5

P65

4.B

(1)

B31

00

K02

01y

x

23

x

y

1

10

+200

%

-200

%

x10

x1

y1

y10

108

U28

7.01

(0)

K00

11K

9231

&.0

1.0

2.0

3

120

U32

0 (1

)B

3100

B94

54B

B93

50

Man

euve

r

Sel

ect

inje

ctio

n of

craw

ling

setp

oint

Sel

ect

craw

ling

setp

oint

Sel

ectio

nfo

r shu

tdow

n

Leve

l/edg

eS

elec

tion

for

switc

h-on

/shu

tdow

n

Sw

itch-

on/s

hutd

own

from

term

inal

37

(from

She

et "B

inar

y in

puts

1")

ON

com

man

d fro

mC

RA

WL

(to c

ontro

l wor

d 1)

Sw

itch-

on c

omm

and

from

ON

/OFF

1(to

con

trol w

ord

1)

to s

heet

"Ram

p-fu

nctio

nge

nera

tor"

Byp

ass

ram

p-fu

nctio

n ge

nera

tor

to s

heet

"Ram

p-fu

nctio

n ge

nera

tor"

<1>

Flip

-Flo

ps a

re re

set w

hen

P44

5=0

Man

euve

r-se

tpoi

nt

X-V

alue

s

Y v

alue

s

Shee

t 2

Tens

ion

Con

trol O

FF 1

3.8

ON

from

CW

1(a

ltern

ativ

ely

B001

2)

ON

from

CW

1

U28

9.01

to .1

0 (0

)

Page 24: Siemens Winder App

Edition 06 05.2007

28-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

1.8

-11

0

0 0

1 1

0 1

0 %

.01

.02

.03

.04

.01

.02

.03

.04

<1>

<1>

<1>

<1>

10

K01

95U

608.

F (1

5,00

%)

K01

94

U60

7.B

(938

2)B

P64

4.F(

206)

K02

07

K01

93

B02

10P

645.

F (0

)K

P63

5.F(

194)

K

P32

0.F

(100

,00)

(-300

,00.

..300

,00

%)

P32

1.F

(100

,00)

(-300

,00.

..300

,00

%)

P64

2 (2

)K K K K

P64

3 (9

)K K K Kr0

29

K01

96

K01

97K

0198

P32

2.F

(1)

K

P32

3.F

(1)

K

Setp

oint

pro

cess

ing

Mai

n se

tpoi

nt

Add

ition

al s

etpo

int

Ena

ble

posi

tive

dire

ctio

n of

rota

tion

from

con

trol w

ord

1

Ena

ble

nega

tive

dire

ctio

n of

rota

tion

from

con

trol w

ord

1

<1>

Whe

n P

643.

0x=9

, the

lim

it

s

elec

ted

via

P64

2.0x

act

s

w

ith in

verte

d si

gn a

s a

neg

ativ

e lim

it

Min

imum

to ra

mp-

func

tion

gene

rato

rin

put

no d

irect

ion

of ro

tatio

nen

able

d

Shee

t 3

Nor

mal

izat

ion

Page 25: Siemens Winder App

05.2007 Edition 06

Siemens AG 29-55 SIMOREG DC-MASTER Application Center winder

<1>

y =

0

y

.01

.02

1≥

.01

.02

.03

.04

.01

.02

.03

.04

<1>

<1>

<1>

<1>

1≥

1≥

.01

.02

0

0

P

303

- P30

60

1

P31

1 - P

314

1

0

P

307

- P31

0

2

3

32

10

45

6715

87

56

43

21

x

0%1 0

10

&T

0

01.0

1.0

2

1≥

B02

11

2.8

r027

P31

1.F

P30

7.F

P31

2.F

P30

8.F

P31

3.F

P30

9.F

P31

4.F

P31

0.F

dv/d

t

P54

2.F

P63

6 (1

)K K

K01

90

P30

3.F

P30

4.F

P30

5.F

P30

6.F

K01

91

K01

90

K01

92

r028

K01

81

K01

83

K01

70

K01

82

P63

2 (1

)K K K K

P63

3 (9

)K K K K

P30

0.F

P30

1.F

P63

4K

B02

06B

0208

B02

07

B02

09

P64

1.B

(0)

B

P63

7.B

(0)

B

P63

8.B

(0)

B

K02

0119

0 0

r316

r315

.1r3

15.2

r315

.3r3

15.4

P64

6.B

(1)

B

0: 1: 2: 3: 4: 5: 7: 15:

P31

7.F

P30

2.F

P31

8.F

B01

61

P31

9.F

(0,0

5)(0

,00.

..10,

00 s

)

P63

9 (1

67)

K

P64

0.B

(0)

BK

B01

04ne

gativ

ese

tpoi

nt li

mit

Low

est p

ositi

vese

tpoi

nt li

mit

posi

tive

setp

oint

lim

it

Lim

itatio

n af

ter

RFG

has

resp

onde

d

Hig

hest

neg

ativ

ese

tpoi

nt li

mit

Whe

n P

633.

0x =

9, t

he p

ositi

ve li

mit

sele

cted

via

P63

2.0x

act

s w

ith in

verte

dsi

gn a

s ne

gativ

e lim

it

Par

amet

er s

elec

tion

RFG

-set

ting

2

RFG

set

ting

3

Low

er tr

ansi

tion

roun

ding

Upp

er tr

ansi

tion

roun

ding

... R

FG s

ettin

g 3

[s]

... R

FG s

ettin

g 2

[s]

Set

poin

t(R

FG o

utpu

t)

Ram

p-fu

nctio

nge

nera

tor i

nput

... R

FG s

ettin

g 1

[s]

from

sta

rting

inte

grat

or c

ontro

l(s

ee P

302)

Tim

e di

ffere

nce

[s]

Ram

p-up

/dow

ntim

eR

ound

ing

This

cha

ngeo

ver t

o R

FG s

ettin

gs 2

and

3ha

s pr

iorit

y ov

er th

e in

put o

f RFG

set

ting

3by

the

star

ting

inte

grat

or c

ontro

l

Ram

p-fu

nctio

n ge

nera

tor

Min

imum

Max

imum

Spe

ed s

etpo

int

Ena

ble

setp

oint

from

cont

rol w

ord

1

Ram

p-fu

nctio

n ge

nera

tor

star

t fro

m c

ontro

l wor

d 1

ram

p-up

ram

p-do

wn

RFG

act

ive

to s

tatu

s w

ord

2

Sel

ect b

ypas

sra

mp-

func

tion

gene

rato

r

Ram

p-fu

nctio

nge

nera

tor s

ettin

gE

ffect

ive

para

met

ers

n-ac

t + ∆

n-ac

t - ∆

RFG

sta

tus

Ena

ble

ram

p-fu

nctio

n ge

nera

tor f

rom

cont

rol w

ord

1 (w

ith "0

"-S

igna

l: y=

0)

Ena

ble

chan

geov

er o

f sta

rting

inte

grat

or

Dis

play

of R

FG s

tatu

s on

r316

Ram

p-fu

nctio

n ge

nera

tor e

nabl

eR

amp-

func

tion

gene

rato

r sta

rtS

etpo

int e

nabl

e &

/OFF

1S

et ra

mp-

func

tion

gene

rato

rTr

ack

ram

p-fu

nctio

n ge

nera

tor

Byp

ass

ram

p-fu

nctio

n ge

nera

tor

Ram

p-do

wn

Ram

p-up

RFG

track

ing

Sta

rting

inte

grat

orS

et R

FGon

shut

dow

n

Ram

p-up

tim

eR

amp-

dow

n tim

e

Shu

tdow

n

Byp

ass

ram

p-fu

nctio

n ge

nera

tor f

rom

shee

ts "

Fixe

d se

tpoi

nt",

"Inc

hing

setp

oint

", "C

raw

ling

setp

oint

"

Ope

ratin

g st

ate

- -, I

or I

I

ON

del

ay

Set

ting

valu

e

Set

ram

p-fu

nctio

nge

nera

tor

Run

Shee

t 4

FS

Page 26: Siemens Winder App

Edition 06 05.2007

30-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

iD

n022

n023

U51

9.F

(1,0

0)U

520.

F (1

450)

(-32,

768.

..32,

767

m/s

)

U51

6 (0

)K0

170

K925

7

U51

7 (0

)K9

304

U51

8.F

(650

0,0)

(10,

0...6

553,

5mm

)

U52

2 (1

6,38

)(0

,01.

..327

,67m

/s)

U52

3 (1

638)

(10.

..600

00m

m)

115

4.8

x1 1

00%

x2

y

*

.01

x1

.02

x2

45

K921

4

U14

5 (1

)

K91

4510

.01

.02

90U

241

(0)

B95

50

K92

10

U24

0 (0

)

10

-1 y =

-x

yx

40

U14

0 (0

)

U14

1 (0

)B9

389

K914

0

5.8

K92

57K9

145

K921

0i

11.3

K

POW

ER O

N

QSE

T(Q

=1)

RES

ET(Q

=0)

Q

.01

.02

1<1

>

215

B955

0

B955

1

U41

5 (0

)B9

362

B012

1n<

Vel

ocity

/ sp

eed

- cal

cula

tor

velo

city

set

poi

nt

Nor

mal

izat

ion

min

.Dia

met

er

Cur

rent

dia

met

er 8

a.7

Nor

mal

izat

ion

Gea

r rat

ioR

ated

spe

ed

spee

d se

t poi

nt

Shee

t 5

Web

bre

ak 1

7a.3

spee

d se

t poi

nt

v set

n set

nra

ted

D ∗

π ∗

nra

ted

nset

= --

------

------

--- ∗

100

%vs

et ∗

i

Spee

d ca

lcua

ltion

win

ding

from

top

/ bot

tom

18.

5

Page 27: Siemens Winder App

05.2007 Edition 06

Siemens AG 31-55 SIMOREG DC-MASTER Application Center winder

0 %

10-1

y

x

x

y

87

56

43

21

y

x

x

y

y

x

x

y

P63

0 (1

62)

K

K01

76

r219

P55

3.F

(0)

P55

0.F

(3,0

0)(0

,10

... 2

00,0

0)

P55

6.F

(0,0

0)(0

,00

... 1

00,0

0 %

)P

559.

F (0

,00)

(0,0

0 ...

100

,00

%)

P22

5.F

(3,0

)(0

,10

... 2

00,0

0)

P56

2.F(

100,

00)

(0,0

0...1

99,9

9%)

P56

3.F(

-100

,00)

(-199

,99.

..0,0

0%)

r218

P55

4.F

(0)

P55

1.F

(0,6

50)

(0,0

10 ..

. 10,

000)

P55

7.F

(0,0

0)(0

,00

... 1

00,0

0 %

)P

560.

F (0

,00)

(0,0

0 ...

100

,00

%)

P22

6.F

(0,6

50)

(0,0

10 ..

. 10,

000)

r217

P55

5.F

(0)

P55

2.F

(0,0

)(0

,0 ..

. 10,

0)

P55

8.F

(0,0

0)(0

,00

... 1

00,0

0 %

)P

561.

F (0

,00)

(0,0

0 ...

100

,00

%)

P22

7.F

(0,0

)(0

,0 ..

. 10,

0)

K94

37

K94

37

K

Spee

d co

ntro

ller (

1)

dn(d

roop

)

I com

p. n

con

tr.

n co

ntr.

Kp(

act)

n co

ntr.

Kp1

Ada

p.po

int 1

Ada

p.po

int 2

P22

5.F

(3.0

)(0

.10

... 2

00.0

0)n

cont

r. K

p2

Ena

ble

droo

p fro

mco

ntro

l wor

d 2

n co

ntr.

Tn(a

ct)

n co

ntr.

Tn1

Ada

p.po

int 1

Ada

p.po

int 2

n co

ntr.

Tn2

Ada

p.po

int 1

Ada

p.po

int 2

n co

ntr.

droo

p K

p1

n co

ntr.

droo

p K

p2

n co

ntr.

droo

p K

p (a

ct)

Ada

ptat

ion

of th

e P

gai

n

Dro

op (w

ith a

dapt

atio

n)

Spe

ed c

ontro

ller P

gai

nto

She

et S

peed

con

trolle

r 2Ada

ptat

ion

of th

e in

tegr

atio

n tim

e

Spe

ed c

ontro

ller i

nteg

ratio

n tim

eto

She

et S

peed

con

trolle

r 2

Shee

t 6

Var

iabl

e m

omen

t of i

nerti

a 1

1.6

Var

iabl

em

omen

tof

iner

tia 1

1.6

Page 28: Siemens Winder App

Edition 06 05.2007

32-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

-1

T1Tv

0 1 2 3

0%

135,

05P

115

*

Kp

Tn

0%

10

4

&

BAB

<A

87

56

43

21

10

10

101 -1

14a.

6

P62

7 (1

78)

KK

0169

K01

68

P62

9 (1

77)

KK

0178

P62

5.F(

170)

K91

40

P62

6.F(

167)

K

P62

8 (1

79)

KK

0177

P08

3.F

K01

66

K01

67

r025

K00

13

P11

5

K01

61

K01

48

P62

0 (1

65)

K

P63

1 (0

)K

P69

5.B

(0)

B

P69

6.B

(0)

B

B02

05

P22

3.F

(1)

K01

74

K01

79

dn

P62

1 (1

76)

K94

51

P62

2 (1

74)

K

P62

3 (1

79)

K

P62

4 (0

)K

K01

65

K01

62

P20

6.F

(0)

(0 ..

. 100

ms)

P20

5.F

(0)

(0 ..

. 100

0ms)

P20

4.F

(0)

(0 ..

. 3)

P20

3.F

(1)

(1 ..

. 140

Hz)

P22

8.F

(0)

(0 ..

. 100

00 m

s)

P20

0.F

(0)

(0 ..

. 100

00 m

s)

P20

2.F

(0)

(0 ..

. 3)

P20

1.F

(1)

(1 ..

. 140

Hz)

P50

2 (0

)K

K00

40

P60

9 (0

)K

K01

60

K01

64

P22

2.F

K01

66

P69

8.B

(0)

B

r026

P22

9.F

0%

1≥

r023

r219

r218

n(se

t, sm

ooth

)

n(ac

t, sm

ooth

)

n(ac

t)

n(se

t,lim

it)

Spee

d co

ntro

ller (

2)

Mai

n ac

tual

val

ue

M(s

et,n

con

tr.)

Set

.val

.I-co

mp.

n co

ntr.

Con

tr. d

ev.

Set

I-co

mp.

n c

ontr.

Sto

p I-c

omp.

n c

ontr.

n(ac

t)n(

act,f

ilter

)

qual

ity

Res

onan

t fre

quen

cy

Sm

ooth

. n(s

et)

Sm

ooth

. n(a

ct)

qual

ity

Res

onan

t fre

quen

cy

Act

ual v

alue

from

puls

e en

code

r

Inte

rnal

actu

al E

MF

valu

e

Fric

tion

and

mom

ent o

fin

ertia

com

pens

atio

n

Spe

ed c

ontro

ller

setp

oint

/act

. val

. dev

iatio

n

I com

pone

nt

P c

ompo

nent

Abs

olut

e ac

tual

spe

ed v

alue

Sw

itcho

ver

spee

d

Sw

itcho

ver t

oP

con

trolle

r

Ena

ble

spee

d co

ntro

ller f

rom

cont

rol w

ord

2 an

d se

quen

cing

con

trol

Mas

ter/s

lave

driv

e fro

m c

ontro

l wor

d 2:

Mak

e I c

ompo

nent

follo

w o

n sl

ave

driv

eso

that

M(s

et, n

con

tr.) =

M(s

et, l

imit)

and

set

spee

d se

tpoi

nt =

act

ual s

peed

val

ue (K

0179

)

Fast

sto

p

Fast

sto

p

Sto

p I c

ompo

nent

whe

n α

G-li

mita

tion,

curre

nt li

mita

tion,

torq

ue li

mita

tion,

spe

edlim

iting

con

trolle

r rea

ched

Spe

ed c

ontro

ller i

nteg

ratio

n tim

efro

m S

heet

Spe

ed c

ontro

ller 1

Spe

ed c

ontro

ller P

gai

nfro

m S

heet

Spe

ed c

ontro

ller 1

Rev

erse

pol

arity

of a

ctua

l spe

ed v

alue

on

field

reve

rsal

and

app

lied

nega

tive

field

dire

ctio

nfro

m S

heet

"Fie

ld re

vers

al w

ith S

IMO

RE

G6R

A70

sin

gle-

quad

rant

dev

ice"

Shee

t 6a

Sup

plem

enta

rysp

eed

setp

oint

Page 29: Siemens Winder App

05.2007 Edition 06

Siemens AG 33-55 SIMOREG DC-MASTER Application Center winder

0%10

0%

-100

%P5

20

P521

P530

-P53

0

1 00%

K017

9

(0...

1000

0ms)

P54

6.F

(0)

P697

.B (1

)B

9385

K01

73

K01

52

P619

(191

)K9

215

K016

4

K016

8

P54

1.F

P540

.F

K01

50

K017

2

K01

71

K019

1

P543

.F

87

56

43

21

Com

pens

atio

n of

fric

tion

A

TTEN

TIO

N!

Do

N O

T a

ctiv

ate,

con

tact

she

et 1

1 fo

r fur

ther

info

rmat

ion

Com

pens

atio

n of

mom

ent o

f ine

rtia

(dv/

dt -

Add

ition

)

dv/d

t * P

542

vom

Hoc

hlau

fgeb

er

Shee

t 7

Dan

cer o

r v-c

onst

ant c

ontro

l 14

.4

Page 30: Siemens Winder App

Edition 06 05.2007

34-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

-1 -1

123 0

.01

.02

.03

B+ B–

X<B

X>B+

B+

B–

yx

y

x

-1

60

65

B915

1

U17

5

K000

1

K040

4

0

9165

9166

B915

0

0...1

0000

ms

U16

0 (0

)

U16

1 (1

)

U16

2 (1

00)

K91

60

K91

67

x1

x210

0%*

y.0

1 x

1.0

2 x

2

x1

x210

0%*

y.0

1 x

1.0

2 x

2

52 53

U15

2 (0

)

U15

3 (0

)

K915

2

K915

3

x4=

x1 *

x2

x4 (3

2Bit)

.01

x1

.02

x2

y

y =

x4 /

x3

.02

x3

<1>

55

U15

5 (1

)

K915

5

.01

.02

.03

20

K91

20

U12

0 (0

)

K K930

4

K916

7

K921

1

K945

5

K04

03K0

404

B042

1

K00

0110

0,00

%

K040

3K9

160

K040

4K9

152

K915

3

K921

4

K915

5

i 11

.3

&.0

1.0

2.0

3

&.0

1.0

2.0

3

130

131

B936

0

B936

1

U33

0 (1

)B

0421

B B93

90

U33

1 (1

)B

0421

B B94

611

191

B946

1U

391

(0)

B939

0

18.5

.01

xy

16n

U17

2 (0

)K0

166

K94

55

U17

3.01

(10)

10.0

1.0

2

91U

243

(0)

B939

1

K92

11

U24

2 (0

)K0

170

K003

9

yx

23

x

y

1

10 +200

%

-200

%

x10

x1

y1

y10

U28

1.02

(0)

K91

20K9

410

280

v nv n

decr

easi

ng m

onot

one

Cur

rent

8a.

7di

amet

erM

onot

one

yes

/ no

P

421.

F (1

)

|nac

t| 6

a.3

Sys

tem

spe

ed.

setp

oint

afte

r ram

pg.

4.5

Adap

tion

ofsy

stem

spe

ed.

P40

3.F

(100

,00)

Cor

edi

amet

erP

404.

F (1

0,00

)

Cor

e di

amet

er 8

.5

Dia

met

er li

mits

Sm

ooth

.

Anz

ahl d

erA

btas

tzyk

len

Cal

cula

tor f

or d

iam

eter

(1)

Un.

/Win

der

18.5

incr

easi

ng m

onot

one

aver

age

ofn

Cyc

les

Shee

t 8

Actu

al v

alue

2

0.7

from

web

tach

o

v-co

nsta

nt c

ontro

l 18

.5

FS

U28

3.11

to .2

0 (0

)

U28

2.11

to .2

0 (0

)

Y va

lues

X va

lues

Sta

lls a

t X<

-0.2

% to

Y=-

5%an

d at

X>+

0.2%

to Y

=+5%

at -0

.2%

<X<+

0.2%

, Y=0

Page 31: Siemens Winder App

05.2007 Edition 06

Siemens AG 35-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

KpTn

-1 *

001

001

1

XY

U53

0 (0

)K

9410

U53

3 (0

)K

U54

2 (1

)K

U53

6 (1

)

K04

04

U53

1 (0

)B

0001

U53

2 (0

)B

U53

8 (1

)

U53

4 (1

)K

T1

B93

81

B93

82

K92

13

B94

83B

9360

B93

61

260

K930

0

U53

5.01

(50

ms).0

1

.01

.01

.01

.11

.11

.01

.11

.21

.31

.41

U53

9.01

(3,0

00 s

)U

537.

01(0

,2)

U54

0.01

(0)

U54

1.01

(1)

.01

.01

K930

1

K930

2

U54

3.01

(100

,0)

K93

06

K930

5K

9303

.01

B96

60(K

9305

)

U54

5.01

(100

,0)

U54

4 (9

306)

K93

04

K930

7

B96

50

.01

B96

70

(K93

07)

8.8

KK93

048a

.7

Tens

ion

feed

b <

GW

17a

.8

Cal

cula

tor f

or D

iam

eter

(2)

Hol

d di

amet

er 9

.8

Enab

le P

I - c

ontro

ller 1

= S

et I

- com

pone

nt <

4>1

= S

et v

alue

PI -

con

trolle

r out

put <

2>S

et d

iam

eter

9.8

Dia

met

er s

et v

alue

9.8

Setz

wer

t für

I-An

teil

Setz

wer

t für

PI-R

egle

r-Au

sgan

g

<5>

Stop

I - c

ompo

nent

:

P -c

ompo

nent

act

ive

St

op I

- com

pone

nt

Out

put =

P-c

ompo

nent

+ I-

com

pone

nt<6

> St

op I

- com

pone

nt in

pos

itive

dire

ctio

n :

P-co

mpo

nent

act

ive

If

cont

rolle

r inp

ut (X

) pos

itive

,

then

I - c

ompo

nent

is s

topp

ed

Out

put =

P-c

ompo

nent

l + I-

com

pone

nt<7

> St

op I

- com

pone

nt in

neg

ativ

e di

rect

ion

P-

com

pone

nt a

ctiv

e

If co

ntro

ller i

nput

(X) i

s ne

gativ

e,

then

the

I - c

ompo

nent

is s

topp

ed

Out

put =

P- c

ompo

nent

+ I

- com

pone

nt

Prio

rity:

1. D

isab

le P

I - c

ontro

ller

2. S

et O

utpu

t3.

Sto

p O

utpu

t4.

Set

I - c

ompo

nent

5. S

top

I -co

mpo

nent

6. S

top

I- co

mpo

nent

in p

os. d

irect

ion

7. S

top

I- co

mpo

nent

in n

eg. d

irect

ion

Cur

rent

dia

met

erl

Stop

I - c

ompo

nent

inne

g. d

irect

ion

and

set t

o ne

gativ

e lim

it

Sto

p th

e I -

com

pone

nt

in p

ositv

ie d

irect

ion,

and

limit

it to

pos

itive

0 =

Set

I-com

pone

ntze

ro

0 =

set

P-c

ompo

nent

zero

0 =

Dis

able

PI -

con

trolle

r <1>

1 =

Sto

p I -

com

pone

nt <

5>1

= S

top

outp

ut <

3>1

= S

top

posi

tve

I - c

ompo

nent

<6>

1 =

Sto

p I-c

ompo

nent

in n

egat

ive

dir.

<7>

PI-c

ontro

ller

Con

trolle

r has

reac

hed

nega

tive

limit

PI -

con

trolle

r out

put

Con

trolle

r has

reac

hed

nega

tive

limit

Reg

ler a

n Au

s-ga

ngsb

egre

nzun

g

nega

tive

limit

Smoo

th

incr

easi

ng m

onot

one

8.4

posi

tive

limit

P-c

ompo

nent

I-com

pone

nt

Tran

sfer

func

tion:

1 1 + sTn

G(s) = --------- * Kp * ---------

1 + sT1 sTn

decr

easi

ng m

onot

one

8.4

She

et 8

a

8.8

Set P

I - c

ontro

ller

Cor

e di

amet

er 8

.5

Page 32: Siemens Winder App

Edition 06 05.2007

36-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

.01

.02

.03

xy

82

U22

3 (0

)B9

580

B B

K919

5U

222

(0)

U22

4 (0

)1

⇒ y

=x

⇒ fr

eeze

y

10.0

1.0

2

93U

247

(0)

K921

3

U24

6 (0

)

.01

.02

.03

1≥.0

1.0

2.0

31≥

150

151

B938

0B9

381

U35

0 (0

)U

351

(0)

118

0

B945

0U

380

(0)

B93

96B9

450

B938

8B9

380

B012

1

K93

04K

3006

K91

95

B958

2

.01

.02

.03

1≥

152

B938

2

U35

2 (0

)

B

B010

5

B905

0&

.01

.02

.03

124

B935

4

U32

4 (1

)B

9387

B94

54B

0105

B935

4

B00

011

B938

6

T

0T

O

1T

O

2T

T

T3

1

241

U44

4 (3

,000

)(0

,000

...60

,000

s)U

445

(3)

B958

2

B958

3

U44

3 (0

)B9

050

B

T

0T

O

1T

O

2T

T

T3

1240

U44

1 (5

,000

)(0

,000

...60

,000

s)U

442

(0)

B958

0

B958

1

U44

0 (0

)B0

001

B

Stop

/ Se

t dia

met

er

Tens

ionc

ontro

l ON

ext.

18.

7S

top

diam

eter

ext

. 18

.5O

pera

tion

Set

dia

met

er e

xt.

18.5

Tens

ionc

ontro

l OFF

13.

8P

ower

On

Imp.

Set d

iam

eter

Stop

dia

met

er

ext.

Dia

met

er s

etva

lue

Prio

rität

:1.

RES

ET

2. T

RAC

K3.

STO

RE

Cur

rent

di

amet

er

8a.

7

Pow

er O

n Im

p.

Web

bre

ak 1

7a.3n<

Dia

met

erse

t val

ue

Shee

t 9

Del

ayed

ON

dela

yed

Off

On

/ Off

del

ay.

Impu

lsge

nera

tor

1 =

Res

et

Del

ayed

ON

dela

yed

Off

On

/ Off

del

ay.

Impu

lsge

nera

tor

1 =

Res

etM

ode

Pow

er O

n

Ope

ratio

n

Page 33: Siemens Winder App

05.2007 Edition 06

Siemens AG 37-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

K930

4K K K3

009

116

.01

.02

.03

.04

K925

8

U52

5 (1

)

U52

6 (1

0000

)(1

0...6

0000

mm

)

U52

7 (1

0000

)(1

0...6

0000

mm

)

U52

8 (1

0000

)(1

0...6

0000

mm

)

U52

9 (1

,00)

(0,1

0...1

00,0

0)

Varia

ble

mom

ent o

f ine

rtia

Nor

mal

izat

ion

of d

iam

eter

Cur

rent

dia

met

er.

8a.7

Den

sity

of m

ater

ial

Nor

mal

izat

ion

of

Cor

e di

amet

er

Nor

mal

izat

ion

of

max

. dia

met

er

Varia

ble

mom

ent o

f ine

rtia

D

4 - D

Cor

e4

JV

= ---

------

------

--- *

K

Dm

ax4

Shee

t 10

Page 34: Siemens Winder App

Edition 06 05.2007

38-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

10.0

1.0

2

94U

249

(0)

B93

94

K92

14

U24

8 (0

)K

0001

K04

06K

0001

100,

00 %

K04

06.0

1.0

2.0

3

21U

121

(0)

KK

9121

K04

07

x1

x210

0%*

y.0

3 x

1.0

4 x

2

x1

x210

0%*

y.0

5 x

1.0

6 x

2

x1

x210

0%*

y.0

3 x

1.0

4 x

2

x1

x210

0%*

y.0

5 x

1.0

6 x

2

290

291

292

293

U15

0 (0

)

U15

0 (0

)

U15

1 (0

)U

151

(0)

K94

30

K94

31

K94

32K

9433

K91

21K

9432K92

14K

9214

K30

08

K94

37K

0407

K92

14K

0191

yx

23

x

y

1

10 +200

%

-200

%

x10

x1

y1

y10

106

U28

1.01

(0)

K01

66K

9229

.01

.02

.03

22U

122

(0)

KK

9122

-1 y =

-x

yx

35

U13

5 (0

)K

9135

10.0

1.0

2

95

U25

1 (0

)B

9390

K92

15

U25

0 (0

) K91

22

K91

22K

9135

K91

56K

9229

K92

58

i² 8a.7

i

x1

x210

0%*

y.0

5 x

1.0

6 x

2

297

K94

31K

9430

U15

3 (0

)

K94

37

x4=

x1 *

x2

x4 (3

2Bit)

.01

x1

.02

x2

y

y =

x4 /

x3

.03

x3

<1>

56

K94

33K

9304

K

U15

6 (1

)

K91

56i

11.3

dv/d

t 4.

6

Com

pens

atio

n of

ace

lera

tion

and

fric

tion

Gea

r sta

ge 1

/2 1

8.7

P40

6.F

(100

;00)

Gea

r sta

ge 2

Web

wid

thV

ar. m

omen

t of i

nerti

a 1

0.7

P40

7.F

(0,0

0) fi

xed

mom

ent

o

f ine

rtia

Cur

rent

diam

eter

unw

. / w

inde

r 18

.5

|nac

t| 6

a.3Cha

ract

eris

tic o

f firc

tion

Sum

m o

f pre

co

ntro

l mom

ents

Shee

t 11

Y v

alue

sU

283.

01 to

.10

(0)

X va

lues

U28

2.01

to .1

0 (0

)

Page 35: Siemens Winder App

05.2007 Edition 06

Siemens AG 39-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

freez

e y

y

y=0

x

1

10

10

0s0s

THTR

y=x

R S

Q

<1>

.01

.02

.03

<2>

113

B958

2U

301

B B

0 0 1

U30

0 (0

)K9

219

K92

36

B91

90

B91

91

U30

2 (5

,00)

U30

3 (5

,00)

x1

x210

0%*

y.0

3 x

1.0

4 x

2

294

K94

50K

9236

U15

2 (0

)

K94

34

.01

.02

.03

.01

.02

.03

.04

.06

.07

.08

.05

B1B2

B3

X0

X1

X2

X3

X4

X5

X6

X7

Y

86

U31

0 (0

)B3

308

B330

9B3

310

U31

1 (0

)K9

230

K K K K K

K94

50

yx

23

x

y

1

10 +200

%

-200

%

x10

x1

y1

y10

107

U28

4.01

(0)

K930

4K9

230

K00

0110

0,00

%K0

001

K30

07

8a.7

B3

B2

B1

Y

0

0

0

X0

0

0

1

X1

0

1

0

X2

0

1

1

X3

1

0

0

X4

1

0

1

X5

1

1

0

X6

1

1

1

X7

x1

x210

0%*

y.0

1 x

1.0

2 x

2

51

K919

3K0

410

U15

1 (0

)

K915

110

.01

.02

99U

259

(0)

B935

9

K92

19

U25

8 (0

)K9

193

K915

1

K041

0

&.0

1.0

2.0

3

129

B93

59

U32

9 (1

)B

9395

B01

21B

10.0

1.0

2

97U

255

(0)

B939

2

K921

7

U25

4 (0

)K9

434

9.4

K

y.0

1

x1.0

2

x2.0

3

x3

80

MA

X

U22

0 (0

)K

3005

K95

03K

K919

3K

9503

Setp

oint

pro

cess

ing

12.7

Tens

ion

setp

oint

Cur

rent

dia

met

erl

ext.

slip

cor

e co

ntro

l danc

er. r

oll p

os. c

trl.

18.5

Tens

ion

con

trol a

fter

influ

ence

of s

lip c

ore

cont

rol

Tens

ions

etpo

int

Sto

p Te

nsio

n 1

8.7

<2>

from

ele

ctro

nic

syst

em p

ower

supp

ly m

onito

r

<1>

If U

301.

01 =

919

1 is

act

ive

only

onc

e af

ter b

eein

g en

able

d (F

lank

e lo

g. "0

" auf

"1")

Prio

rity:

1. S

(SE

T)2.

R (R

ESE

T)

0 =

Ram

p ge

nera

tor

first

run

1 =

Enab

le s

impl

e

ra

mp

gene

rato

r0

= Se

t ram

p gn

erat

or

to

zer

o

Sto

p si

mpl

e ra

mp

gene

rato

r

ext.

Tens

ion

s.po

int

Stop

tens

ion

valu

e

P41

0.F

(0,0

0)

n<

Ove

rrid

e ra

mp

gner

ator

ram

p - u

p tim

era

mp

- dow

n tim

e

Shee

t 12

X v

alue

s

Y v

alue

sU

286.

01 to

.10

(0)

U28

5.01

to .1

0 (0

)

Switc

hove

rch

arac

teris

tic o

fsl

ip c

ore

cont

rol

FS

U09

9.03

(5.0

) M

in. t

ensi

on

PO

WE

R O

N

Page 36: Siemens Winder App

Edition 06 05.2007

40-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

118

2

B94

52U

382

(0)

B94

83

&.0

1.0

2.0

3

123

B935

3

U32

3 (1

)B

9588

B93

96B

0110

118

4

B945

4U

384

(0)

B935

3

-1 -1

123 0

xy

y [V

] =

*P

753

x10

0%14 15

P75

1 (0

)

P75

2 (0

)

K00

26

-10,

00...

+10,

00V

P75

4 (0

,00)

-2

00,0

0...+

199,

99V

P75

3 (1

0,00

)

P750

(0)

K943

4

(0...

1000

0ms)

r006

AD

X17

5

T

0T

O

1T

O

2T

T

T3

1244

U45

3 (5

,000

)(0

,000

...60

,000

s)U

454

(0)

B95

88

B958

9

U45

2 (0

)B9

452

B

T

0T

O

1T

O

2T

T

T3

1

245

U45

6 (1

0,00

0)(0

,000

...60

,000

s)U

457

(1)

B95

90

B95

91

U45

5 (0

)B9

353

B

Tens

ionc

ontr

ol e

nabl

e

tens

ion

feed

back

val

ue<

limit

or.

actu

al p

ositi

on 1

7a.8

> lim

it

Ten

sion

cont

rol O

NTe

nsio

ncon

trol O

N e

xt.

18.7

OFF

3

Tens

ionc

ontro

l del

. OFF

Sm

ooth

.

Tens

ion

setp

oint

afte

rsl

ip c

ore

cont

rol

1

2.7

Nor

mal

izat

ion

Offs

et

Tens

ion

setp

oint

for e

xter

nal T

ensi

onco

ntro

l

Tens

ionc

ontro

l OFF

Del

ayed

ON

dela

yed

Off

On

/ Off

del

ay.

Impu

lsge

nera

tor

1 =

Res

et

Del

ayed

Off

On

/ Off

dela

y

Impu

lseg

nera

tor

1 =

Res

et

Shee

t 13

Del

ayed

ON

Page 37: Siemens Winder App

05.2007 Edition 06

Siemens AG 41-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

.01

.02

.03

1≥

155

B938

5

U35

5 (0

)B9

391

B939

2B

&.0

1.0

2.0

3

200

B947

0

U40

0 (1

)B9

391

B939

2B

119

3

B946

3U

393

(0)

B939

1

119

2

B94

62U

392

(0)

B947

0

Shee

t 14

v-co

nsta

nt c

ontro

l 18

.5O

pera

ting

mod

e am

bigu

ous

v-co

nsta

nt c

ontro

l

P659

O

FF3

Dan

cer c

ontro

l 18

.5

Sw

itchi

nglo

gic

for

the

cont

rol m

etho

ds

v-co

nsta

nt o

rD

ance

r con

trol O

N

Page 38: Siemens Winder App

Edition 06 05.2007

42-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

118

6

B94

56U

386

(0)

B93

93

&.0

1.0

2.0

3

127

B93

57

U32

7 (1

)B

9353

B93

83B

9384

.01

.02

.03

1≥

153

B93

83

U35

3 (0

)B

9392

B94

56B

.04

.05

.06

.01

.02

.03

.04

.06

.07

.08

.05

B1B2

B3X0 X1 X2 X3 X4 X5 X6 X7

Y

B3

B2

B1

Y

0

0

0

X0 0

0

1

X1

0

1

0

X2 0

1

1

X3

1

0

0

X4 1

0

1

X5

1

1

0

X6 1

1

1

X7

87

U31

0 (0

)B

9484

B94

85B

9392

U31

2 (0

)

K04

05K

9136

K K92

54K

9451

K04

0514

a.1

.01

.02

.03

1≥

154

B93

84

U35

4 (0

)B

9392

B94

59B

-1 y =

-x

yx36

U13

6 (0

)K

405

K91

36

K K KK

118

5

B94

55U

385

(0)

B93

90

&.0

1.0

2.0

3

&.0

1.0

2.0

3

125

126

B93

55

B93

56

U32

5 (1

)B

9458

B93

53B

9455

U32

6 (1

)B

9454

B93

53B

9390

118

8

B94

58U

388

(0)

B93

92

10.0

1.0

2.0

3

10.0

1.0

2.0

3

252

253

B94

84

B94

85

U47

2 (0

)B

9392

B93

55B

U47

3 (0

)B

9392

B93

56B

Shee

t 14a

Bia

s fo

r spe

edco

ntro

ller i

nco

njun

ctio

n w

ithte

nsio

ncon

trol

P40

5.F

(5,0

0)

Out

put o

f Ten

sion

/po

sitio

n co

ntro

ller

15.

8

Zugr

egel

ung

EIN

13.

4

Dan

cerro

llcon

trol

18.5

Unw

inde

r/Win

der

18.5

Dir.

/ ind

.te

nsio

ncon

trol

18.5

Dan

cerro

llcon

trol

18.5

Unw

inde

r/Win

der

18.5

Dan

cerro

llcon

trol

18.5

Dan

cerro

llcon

trol

18.5

Dan

cerro

llcon

trol

18.5

Dan

cerro

llcon

trol

18.5

Ten

sion

cont

rol O

N 1

3.4

Ten

sion

cont

rol O

N 1

3.4

Ena

ble

Tens

ion/

pos.

con

trolle

r

Web

bre

ak 1

7a.5

Sup

plem

enta

ry s

peed

set

poin

t

Sw

itchi

nglo

gic

for

the

cont

rol m

etho

ds (2

)

Page 39: Siemens Winder App

05.2007 Edition 06

Siemens AG 43-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

10 01

0% 0%

- +

0,10

...30

,00 1

0

100%

Y2

Y1Y

X1

X2

X

Y

X

xy

101

1000

110

00

.01

.02

.03

.04

.01

.02

.03

.04

10

-1 *

114

<1>

U49

0.F

(0,0

0)

U48

0 (0

)K

0230

K K K U48

4 (0

)

KK92

17K K

K924

3

n017

U48

7.F(

0,00

)

K92

44

U48

9 (0

)K

9437

U49

2.F

(1,0

0)U

493.

F(1

,00)

U49

1.F

(100

,00)

U48

2.F(

0,00

0)U

483.

F(0)

U49

7.F(

0,0)

U49

8.F

(100

,00)

U49

9.F

(-10

0,00

)

K924

2

K924

6

U49

4.F

(3,0

00)

U48

8.F

(3,0

0)

U49

5.F(

0)

U50

5 (0

)K

K92

47

K92

48

U50

8.F

(50,

0)

U50

7 (1

)K9

221

U51

2.F

(100

,0)

U51

1 (1

)

K92

52

U51

0.F

(50,

0)

U50

9 (9

252)

K

K92

50

K92

54

K92

53

K92

51

n019

n018

U50

0 (0

)

U50

6 (0

)B

U48

6 (0

)

U49

6 (0

)B

0,00

...20

0,00

%

B949

9

n016

K92

40K

9241

U48

1.F(

0,00

s)

0,10

...30

,00

U48

5.F

(0,0

0)

U50

2.F

(0)

U50

3.F

(1)

U50

4.F

(1)

K92

45

K924

9

K91

41

B93

57

11.6

14a.

8

10

-1 y =

-x

yx

41

U14

2 (0

)K0

409

U14

3 (0

)B9

390

K914

1K

0409

K04

1112

.8

K041

1P4

11.F

(0,0

0)

15a.

5

15b.

7Tens

ion-

or D

ance

r - ro

ll po

s. c

ontr

l.(1)

Var

. mom

ent o

f ine

rtia

Influ

ence

Ten

sion

/po

sitio

n co

ntr.

P40

9.F

(100

,00)

Un-

/Win

der

18.5

posi

tive

limit

Out

put o

f Ten

sion

/po

sitio

n co

ntro

ller

nega

tive

limit

Con

trolle

r has

reac

hed

outp

ut li

mit

0 =

D-c

ompo

nent

influ

ence

s on

ly t

he fe

ddba

ckva

lue

chan

nel

1 =

Nor

mal

PID

-Reg

ler:

D-c

ompo

nent

l is

activ

e fo

r con

trol d

evia

tion

Pos

ition

set

poin

tTe

nsio

n se

tpoi

nt

Shee

t 15

Thre

shol

d

Smoo

th.

D-C

ompo

nent

Tens

ion/

Pos

ition

-Con

trolle

r

Hol

d I -

com

pone

nt

Set

I - c

ompo

nent

Hol

d I -

com

pone

nt

Sm

ooth

. [s]

Stat

ik -

addi

tion

for

cont

rool

erP-

com

pone

nt

I-com

pone

nt

0 =

Set

p-co

mpo

nent

zero

0 =

Set

I-c

ompo

nent

zero

Kp-fa

ctor

s

Kp-fa

ctor

Set

poin

tE

nabl

e Te

nsio

n / p

os. c

ontro

ller

KpTn

Page 40: Siemens Winder App

Edition 06 05.2007

44-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

K00

0110

0,00

%

119

0

B94

60U

390

(0)

B93

57

x

t

y

yx

Tn 10

.01

.02

101

U26

5 (3

000)

U26

6 (0

)B

U26

7 (0

)K

U26

4 (0

)K

0001

K92

21

B94

60

(10.

..650

00m

s)

Tens

ion-

/pos

ition

con

trol

ler (

2)

Tens

ion

- / p

ositi

on

cont

rolle

r lim

it

Enab

leTe

nsio

n/po

s. c

ontro

ller

14a.

8

Sto

p in

tegr

ator

Set

inte

grat

or

Shee

t 15a

Set

val

ueInte

grat

iont

ime

(Tn)

Page 41: Siemens Winder App

05.2007 Edition 06

Siemens AG 45-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

10.0

1.0

2

10.0

3

.01

.02

10.0

1.0

2

10.0

3

.01

.02

P456

(0)

B93

83

K023

0

P455

(0)

K91

42K

0015

B K

P458

(0)

B

K023

1

P457

(0)

K KB K

x1 1

00%

x2

y

*

.03

x1

.04

x2

42

K01

49K

9304

U14

5 (1

)

K91

42

Tens

ion-

/pos

ition

con

trol

ler (

3)

Shee

t 15b

Dan

cer c

ontro

l or

dir.

tens

ion

cont

rol

14

a.5

Con

nect

or s

elec

tor s

witc

h

Cur

rent

dia

met

erTe

nsio

n/po

s.cu

rrent

val

ue

Inst

enta

neou

s va

lue

of m

omen

t

Page 42: Siemens Winder App

Edition 06 05.2007

46-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

.01

.02

.03

23U

123

(0)

K925

4K9

217

KK

9123

&.0

1.0

2.0

3

121

B935

1

U32

1 (1

)B

9453

B01

10B

9353

10.0

1.0

2

96U

253

(0)

B93

51

K921

6

U25

2 (0

)K

0408

K91

24

x1

x210

0%*

y.0

5 x

1.0

6 x

2

295

K912

3K9

304

U15

2 (0

)

K943

5

K04

08

K04

08

118

3

B94

53U

383

(0)

B938

5

P605

.01

.01

.02

.03

24U

124

(0)

K943

6K9

215

KK9

124

x1

x210

0%*

y.0

3 x

1.0

4 x

2

296

K94

35K

0408

U15

3 (0

)

K943

6

Det

erm

inat

ion

of m

omen

t set

poin

t if t

ensi

onco

ntro

l is

activ

e

OFF

3

Sum

m o

f pre

cont

rol m

omen

ts 1

1.8

P408

.F (1

00,0

0)N

orm

aliz

atio

n of

mom

ent s

etpo

int

Cur

rent

8a.

7di

amet

er

Out

put

Tens

ion/

Pos.

Con

trl.

13.8

Tens

ion

setp

oint

12.

7

Shee

t 16

Mom

ent f

eedb

ack

valu

e if

tens

ion

cont

rol i

s ac

tive

Ten

sion

cont

rol O

N 1

3.4

U09

9.02

(100

)To

rque

lim

it in

n co

ntro

l mod

e

Dan

cer o

r v-c

onst

ant c

ontro

l 14

.4

Page 43: Siemens Winder App

05.2007 Edition 06

Siemens AG 47-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

-1 -1

123 0

61

K01

42

0...1

0000

ms

U16

3 (0

)

U16

4 (1

)

U16

5 (0

)

K91

61

x1

x210

0%*

y.0

1 x

1.0

2 x

2

50

K91

61K

0402

U15

0 (0

)

K91

50

.01

.02

.03

U12

5 (0

)K

9216

K K91

50K

9125

x1 1

00%

x2

y

*

.01

x1

.02

x2

46

K91

25K

9216

U14

6 (1

)

K91

46

B

A<B

A=B

A

|A|<

B

A

B

ABB

B

A

0 00

<1>

.01

.0273

U19

9U

199

U19

9

U19

9

U19

9/2

B91

69

B91

71

B91

70

0,00

...19

9,99

U19

9 (0

,00)

K95

01

U19

7K

9218

K92

120

9186

B

A<B

A=B

A

|A|<

B

A

B

ABB

B

A

0 00

<1>

.01

.0274

U20

2U

202

U20

2

U20

2

U20

2/2

B91

72

B91

74

B91

73

0,00

...19

9,99

U20

2 (0

,00)

K91

87

U20

0K

9146

K91

870

9187

10.0

1.0

2

98

U25

7 (0

)

K92

18

U25

6 (0

)

K92

41

B93

83

K91

50

K04

02

16.7

25

10.0

1.0

2

92

U24

5 (0

)B

9392

K92

12

U24

4 (0

)K

9186

K95

01K

9186

Web

bre

ak re

cogn

ition

(1)

inst

enta

neou

s va

lue

of m

omen

t

Adj

ustm

ent o

f m

omen

t-se

tpoi

nt -

actu

al v

alue

diff

.P

402.

F (1

00,0

0)

U20

1 (2

0,00

)M

axim

al a

llow

edm

omen

t dev

iatio

n

Mom

ent s

etpo

int

16.7

Hys

tere

sis

Hys

tere

sis

Shee

t 17

Dan

cer c

ontro

l or

dir.

tens

ion

cont

rol

14a

.5

U09

9 (9

0,00

)D

ance

r rol

len

dpos

ition

U19

8 (5

,00)

Min

imum

tens

ion

orto

rque

|Ten

sion

, pos

ition

or

torq

ue a

ctua

l val

ues |

15.

3

FS FS

Page 44: Siemens Winder App

Edition 06 05.2007

48-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

10.0

1.0

2.0

3

250 B9

482

U47

0 (0

)B

9393

B B91

73

1181

B94

51U

381

(0)

B948

2&

.01

.02

.03

122 B9

352

U32

2 (1

)B

9483

B94

51B

9584

10.0

1.0

2.0

3

251

B948

3

U47

1 (0

)B9

392

B916

9B9

457

1

187

B94

57U

387

(0)

B916

917

.8

&.0

1.0

2.0

3

128

B93

58

U32

8 (1

)B

9362

B95

91B

T

0T

O

1T

O

2T

T

T3

1242

U44

7 (5

,000

)(0

,000

...60

,000

s)U

448

(0)

B95

84

B95

85

U44

6 (0

)B9

590

B

T

0T

O

1T

O

2T

T

T3

1243

U45

0 (2

,000

)(0

,000

...60

,000

s)U

451

(0)

B95

86

B05

87

U44

9 (0

)B9

352

B

.01

.02

.03

1≥

156

B93

86

U35

6 (0

)B

9586

B93

97B

118

9

B945

9U

389

(0)

B936

2

T

0T

O

1T

O

2T

T

T3

1

246

.01

.02

U45

9 (1

,00)

(0,0

0...6

00,0

0s)

U46

0 (3

)

B959

2

B959

3

U45

8 (0

)B

9358

B

P65

8

&.0

1.0

2.0

3

132

B936

2

U33

2 (1

)B9

386

B946

3B

.01

.02

.01

.02

Web

bre

ak re

cogn

ition

(2)

ind.

Ten

sion

cont

rol

18.5

Mom

ent s

etpo

int -

1

7.8

actu

al v

alue

diff

. > li

mit

Tens

ionc

ontro

ll O

FF d

ella

yed

13.

8

Web

bre

ak e

xt.

18.7

Web

bre

akTe

nsio

ncon

troll

OFF

del

. 13

.8

OFF

3W

eb b

reak

Web

bre

ak in

t.

Act

ual t

ensi

on a

nd/o

rac

tual

torq

ue <

lim

it or

actu

al p

ositi

on >

lim

it 1

7.8

Dan

cerr

oll c

ontro

l 18

.5

Shee

t 17a

Del

ayed

ON

Del

ayed

Off

On

/ Off

del

ay.

Impu

lsge

nera

tor

1 =

Res

et

Del

ayed

ON

Del

ayed

Off

On

/ Off

del

ay.

Impu

lsge

nera

tor

1 =

Res

etD

elay

ed O

N

Del

ayed

Off

On

/ Off

del

ay.

Impu

lsge

nera

tor

1 =

Res

et

Mod

e

Mod

e

Mod

e

v-ko

nsta

nt-R

egel

ung

Page 45: Siemens Winder App

05.2007 Edition 06

Siemens AG 49-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

.01

.02

.03

1≥

157

158

159

160

161

162

163

164

165

166

167

B93

87

B93

88

B93

89

B93

90

B93

91

B93

94

B93

95

B93

96

B93

97

B93

92

B93

93

U35

7 (0

)B B

3500

B

U35

8 (0

)B B

3501

B

U35

9 (0

)B B

3502

B

U36

0 (0

)B B

3503

B

U36

1 (0

)B B

3504

B

U36

2 (0

)B B

3505

B

U36

3 (0

)B B

3506

B

U36

4 (0

)B B

3507

B

U36

5 (0

)B B

3511

B

U36

6 (0

)B B

3512

B

U36

7 (0

)B B

3513

B

Set

dia

met

er e

xt.

Win

ding

from

top

/ bot

tom

Dan

cerro

llcon

trol

Gea

rsta

ge 1

/2

Stop

tens

ion

Web

bre

ak e

xt.

Hol

d di

amet

er e

xt.

Unw

inde

r/Win

der

Dir.

/ ind

. ten

sion

cont

rol

Tens

ion

Con

trol O

N e

xt.

Setti

ng C

ontr

olw

ord

3

Shee

t 18

v-co

nsta

nt c

ontro

l

Page 46: Siemens Winder App

Edition 06 05.2007

50-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

87

56

43

21

.07

.04

.01

.02

.06

.05

.08

.10

.09

.13

.12

.11

.14

.16

.15

.03

02

34

56

78

910

1112

1314

151

13

n013

U11

3 (0

)B9

353

B949

9B9

386

B012

0B9

462

B B B B B B B B B B B

K911

3

Stat

usw

ord

3

Bitfi

eld

4B

inec

tor-

/ C

onne

ktor

chan

ger 1

Sta

tusw

ord

3

Tens

ionc

ontro

l ON

13.

4Te

nsio

n co

ntro

ller o

pera

tes

in li

mit

15.

8W

eb b

reak

17a

.3sp

eed

limit

succ

eede

d

Shee

t 19

Ope

ratin

g m

ode

ambi

guou

s 1

4.6

Page 47: Siemens Winder App

05.2007 Edition 06

Siemens AG 51-55 SIMOREG DC-MASTER Application Center winder

87

56

43

21

X40

0

X40160 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

+5/1

5V

u

&

<1>

<2>

<2>

<2>

<2>

10 2

0

1&

U79

2 (1

024)

n795

B70

00

B70

01B

7002

B70

03

B005

5

B005

6

U79

6

n024

.02

K003

9

KK00

36

K003

8

U79

4 (5

00,0

)

+ Vs

s- V

ss

CTR

L +

CTR

L - =

M

Volta

ge le

vel

U79

0.01

: A/B

, CTR

L tra

ckU

790.

02: Z

ero

puls

e

Supp

ly v

olta

geU

791

= 0:

5V

U79

1 =

1: 1

5V

Ref

eren

ce s

peed

50.0

...65

00.0

En

code

r typ

eU

793=

0: A

/B tr

ack

U79

3=1:

For

war

d/re

vers

e tra

cks

Num

ber o

f lin

es10

0...2

0000

Trac

k A

+

Trac

k A

-Tr

ack

B +

Trac

k B

-

Posi

tion

<1>

0=En

able

pos

ition

cou

nter

(KK

0038

)

1

=Res

et (K

K00

38:=

0)<2

> Th

e si

gnal

s "c

oars

e pu

lse

2" a

nd "

fine

puls

e 2"

are

onl

y ro

uted

to b

inec

tors

B70

02 a

nd B

7003

in

the

SIM

OR

EG

DC

Mas

ter.

The

y ha

ve n

o ot

her f

unct

ion.

Zero

pul

se +

Zero

pul

se -

Trac

k A

Trac

k B

Zero

pul

se

Con

trol t

rack

Ove

rflow

Und

erflo

w

SBP

puls

e en

code

r eva

luat

ion

( opt

iona

l for

web

tach

o, re

quire

d on

ly in

v c

onst

ant c

ontro

l mod

e)

Pow

er s

uppl

yP

ulse

enc

oder

Gro

und

coar

se/fi

neC

oars

e pu

lse

1C

oars

e pu

lse

2

Fine

pul

se 2

Coa

rse

puls

e 1

Coa

rse

puls

e 2

Fine

pul

se 2

Con

trol t

rack

Pul

se e

ncod

er e

valu

atio

n

Spe

ed m

easu

rem

ent

Spe

ed a

ctua

l val

ue in

rpm

Spe

ed a

ctua

l val

ue

Res

etpo

sitio

n co

unte

r

Pos

ition

acq

uisi

tion

valu

e ra

nge:

8000

000

0H to

7FF

F FF

FFH

Shee

t 20

Page 48: Siemens Winder App

Edition 06 05.2007

52-55 Siemens AG SIMOREG DC-MASTER Application Center Winder

5.4 Parameter list Download file "achswickler.winder.dnl" is stored in the "Applications_d" folder on the SIMOREG DC-MASTER CD-ROM (Order No.: 6RX1700-0AD64).

The file "achswickler.winder.dnl" has been created with "DriveMonitor" and can only be loaded with this application. This should not be done until the basic commissioning process (motor data settings, optimization runs) is finished. Parameters modified during basic commissioning are not altered by the contents of the download file.

NOTE After "achswickler.winder.dnl" has been downloaded, parameter U969 must be set to 4. This ensures that unconnected function blocks are deselected and any connected function blocks are selected (activated) if they are not selected already.

Deselecting any function blocks that are not needed reduces the load on the processor (see visualization parameter n009).

Page 49: Siemens Winder App
Page 50: Siemens Winder App

Edition 06 05.2007

SIMEA

Siemens Industrial Manufacturing, Engineering and Applications P.O. Box 83, A-1211 Vienna

© Siemens AG, 2000-2007 Subject to change without notice SIMOREG DC-MASTER Application Center Winder Printed in EU (Austria)

Page 51: Siemens Winder App

© Siemens AG 2012. All Rights Reserved.

SINAMICS DCC Winder V3.2

Page 52: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Introduction

The application SINAMICS DCC Winder was developed with the objective to address many of the known winder applications using one application software. If required, the application can be configured and/or also changed. Using the application SINAMICS DCC Winder allows winders and un-winders to be implemented in a wide range of applications, e.g. foil making machines, printing machines, coating machines... The winder application can be used on the following devices: SINAMICS S120, S150, G130, G150 SINAMICS DCM SINAMICS Integrated in SIMOTION D4xx-2

Page 53: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Benefits when using the Application

Shorter engineering and service times (same look & feel)

Industry standards are used

Supported by the various PM Application Centers

Continuously updated in the Intranet

Essentially open source code so that you can adapt the functions to your requirements

User Manuals in English and German

Free of Charge

Page 54: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Contents of the Application

PowerPoint presentation (English / German) Programming in CFC User Manuals (English / German) Feedback sheets (English / German)

Page 55: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality

Tension

Coil

Tension

Coil

Nip

Center Winder or tandem center winder winds material around a core or mandrel the coil is driven by a motor the motor can be operated in torque or

speed controlled mode dancers or load cells for tension control are

optional Roll hardness controlled by web tension

and optional by nip pressure

Turret winder two or more centerwinds on a rotating axis Roll change on the fly A flying knife will slice the material and

automatically hold it while it starts to wrap a new coil

Page 56: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality

Min Diameter DMin

Max. Diameter DMax

Web Width w

Gear, Gear ratio iMoment of Inertia Jgear

Material Velocity V

External Moment of Inertia JCore

Motor Moment of InertiaJMotor

Dact Actual Diamter

Page 57: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality

V+, F+

Winder from above

V+, F+

Winder from below

V+, F+

Unwinder from below

V+, F+

Unwinder from above

n+

no+

Mf+

MP+

MT+

n-

no-

Mf-

MP-

MT-

n-

no+

Mf-

MP-

MT+

n+

no-

Mf+

MP+

MT-

Mf: Friction TorqueMP: Torque PrecontrolMT: Tensionn: winder speedno: speed override

Page 58: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality

The Winder Function Block covers the common control modes and is an open function for adjustments or build in your own Know-how! Control modes: indirect tension control dancer roll control with speed correction tension control with speed correction tension control with torque limiting constant v-control

Page 59: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Indirect Tension Control

No tension feedback required Web speed is set via nip Tension Torque pre-controlled via torque setpoint Good Inertia and friction torque compensation required Diameter ratio app. 10:1 Tension ratio app. 6:1 Winder torque ration app. 40:1 Web speed up to app. 600 m/min Material: foil, textile, paper

Page 60: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Indirect Tension Control

Maneuver

Vset

overcontrol

M

Fset 1

Power unitSpeed controller

Current controller

Friction momentdn/dt

Dactnact

Diameter calculation

Kp-adaptation

J

Tension taper curve

Jog set point

Vconst n+M+

F

Dact

Inertia curve

Page 61: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality - Tension control with torque limiting

Tension measuring device required Web speed is set via nip Tension Torque pre-controlled via torque set point Nip required, tension capsule is very damageable Good Inertia and friction torque compensation required Diameter ratio app. 15:1 Tension ratio app. 20:1 Winder torque app. 100:1 Web velocity up to app. 2000 m/min Tension control via torque limitation Material: paper, thin film

Page 62: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality - Tension control with torque limiting

Maneuver

Vset

overcontrol

FactM

Fset 1

Power unitSpeed

controllerCurrent

controller

Friction curve

dn/dt

Dactnact

Diameter calculation

Fact

Kp-adaptation

J

Kp-adaptation

Dact

Tension taper curve

Jog set point

Vconst n+M+F

Tension controller

Dact

Inertia curve

Page 63: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality - Dancer position control with speed setpoint-correction

Dancer position measuring device required (e.g. potentiometer, encoder) Web speed is set via nip Web tension is controlled via additional speed setpoint Nip required, dancer influences the web path Diameter ratio up to app. 15:1 Tension ration controlled via dancer Winder torque ratio up to app. 40:1, depending on the dancer

system Web speed up to app. 2000 m/min Material: rubber, cable, textile, film and paper

Page 64: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality - Dancer position control with speed setpoint-correction

Maneuver

vset

Sact

M

Sset

Power unitSpeed

controllerCurrent

controller

Friction moment

Dactnact Diameter

calculation

Sist

Kp-adaptation

J

Kp- adaptation

Dact

Tension taper curve

P U

Fset 1

Dact

Jog set point

+

-

VconstM+

n+F

Position controller

dn/dt

Dact

Inertia curve

Page 65: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – constant v-control

Web velocity input via web tachometer Web speed isn’t set via nip Tension can‘t be affected by winder No nip required Diameter ratio up to app. 15:1 Web velocity is depending on the mechanical construction Especially for sorter

Page 66: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – constant v-control

Maneuver

Vset

Vact M

Power unitspeed controller

Currentcontroller

Friction moment

Dactnact Diametercalculation

Kp-adaption

J

Jog set point

M+n+

dn/dt

Dact

Inertia curve

Vact

Page 67: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Diameter calculation

Diameter calculation based on ratio between web velocity and winder rotational speed

The diameter is required to e.g. calculate the correct speed of the winder axis from the machine speed

optional there is an integrating calculation methode, a division method, the possibility to interconnect a diameter sensor or a methode with layer counting available

Page 68: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Taper characteristic

Optional for rewinder, if the tension is reduced with increasing diameter Taper characteristic depends on the actual diameter Decrease can be absolute (N) or relative (% of tension setpoint) four characteristics are implemented: Hyperbolic characteristic with: Max. tension reduction at infinite diameter Max. tension reduction at specified diameter

Linear characteristic with tension reduction when maximum diameter is reached Personal characteristic using 10 points along the characteristic

Page 69: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Controller adaption

Controller gain of the tension/position controller is adaptable based on the actual diameter

higher gain at higher diameter Controller gain of the speed controller is adaptable based on the

moment of inertia of the roll higher controller performance with high load conditions

Page 70: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Torque pre-control

Optional compensation of the acceleration/ deceleration torque, resulting of the moment of inertia to improve the dynamic reaction of the drive Inertia compensation reduces tension fluctuation based on speed

changes Inertia compensation is required if indirect tension control is used

and recommended in tension control mode via load cell Inertia compensation is set up during commissioning Inertia compensation is calculated based on the diameter, the

web width, the gear ratio und the material density

Page 71: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – tension operation

Tension operation can only be enabled if the control is in operation and web break detection is not signaling an error It is recommended to only enable tension operation in machine

stand still Tension or position setpoint will be enabled using adaptable ramp

functions If tension operation is not active, the diameter computer and the

speed override are disabled

Page 72: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Maneuvering input

The maneuvering input can e.g. be connected with an analog input to influence the internal speed setpoint.

Page 73: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Jog

Jog operation is only enabled when tension operation is disabled Jog speed setpoint either via fixed setpoint or via connectable

input During jog operation, the maneuvering mode is disabled separate ramp function generator

Page 74: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Velocity master, synchronize and stop web setpoint

winder can operate as velocity master for the whole machine stop the winder on continuing web, e.g. after flying roll change synchronize a stopped winder to the web, e.g. before splicing

- WI1111 -Function diagram

87654321Wickler DCC V3 1 en.VSDDO: SERVO, VECTOR, DC CTRL

SINAMICS12.06.12 V03.01.00Setpoint Computer Part 2 (Speed setpoint calculation; Master; Stop)

<1> If winder is used as speed master, the internal setpoint for web speed is used for the diameter calculation

<2> tension operation is deactivated when „Stop“ is selected, if a fixed web velocity is set and this value is also used as speed setpoint for the speed master, p22060 has to be set to „1"

When the winder is set as speed master, r21626 shows the reaching of the upper velocity limit, r21627 the reaching of the lower velocity limit.

1

0

0 %

(0)

BI: Synchronize/stop web setpoint[ 0 = synchr.; 1 = stop]

p21621

Ramp-up time, webvelocity catch up [ms]

p21622 (5000ms)

BO: Web velocity synchronizedr21626

BO: Web velocity stoppedr21627

≥1stop after splice active

stop after web length braking active

[WI1020.4]

[WI1020.4]

p21000[3]SetpointComputer

[WI1010.2]

[WI1010.2]

<2>

RUT

STSTSTSTSTSTSTST

RDT

Tup_eff Tdn_eff

Web velocity ramp functiongeneratorx

y

t

y

dy/dt

y

1

&1

winderas speed master

1

1

rampstop speed master

fast stopspeed master

10

Ramp-down time, webvelocity, fast stop [ms]p21624 (2500ms)

Ramp-down time, webvelocity, stop [ms]p21623 (5000ms)

1

0100 %CI: Velocity setpointmaterial web

(setpoint/actual valuenip position)

(0)p21515

<1>

x

y

1

0

1

0

Smoothing time rampfunction generatorweb velocity [ms]p21625 (200ms)

lower limit velocity master [%]p21629 (-2.0 ≙ -200%)

upper limit velocity master [%]p21628 (2.0 ≙ 200%)

100%

0%

r21630

CO: velocitysetpoint RFG

velocitymaster [%]

Stopp am Antrieb aktiv[WI1030.7]

r21512CO: Motor speed, actual value [rpm]

r21547

CO: Multiplier setpoint channel [1/m]

Normierung Bahngeschwindigkeit

RFG follow up when external stop

r21517CO: Material web velocity,

actual [m/min]

[WI110x.3]

[WI110x.3]

[WI110x.7]

[WI1010.2]

[WI1010.2]

[WI110x.1]

[WI1010.2]

[WI1110.3]

Page 75: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – web length and braking distance

calculation of the actual web length by integration of the material web velocity stop the winder when reaching a set web length setpoint

Page 76: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Splice control

flying roll change with optional application splice control (precondition is active position controller for position sensing) cam outputs to control knife and splice roll “rewinding after splice” for unwinder

New

Old Knife

Rotating turret

Splice roll

Splice position

Page 77: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Execution groups

The required components of the application are enabled via execution groups:

Page 78: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Scope of Functionality – Execution groups

The execution groups “Diameter computer”, “Setpoint calculator”, “Control unit” are always required, the execution group “TensionDancerContr” not for indirect closed-loop tension control, the execution groups “Winding hardness calculator”, “Integrating diameter computer” and “Web break detection” - only if the functions are actually required. For drive systems with the CU320-2 Control Unit, sampling times

of 4ms are recommended; for standard settings, this corresponds to the clock cycles of the execution group “BEFORE speed setpoint channel” for servo - or “BEFORE position controller” for servo and vector (This execution group is available independent of the activated basic positioner function module). Sampling times of 8ms or 16ms are recommended for the

SINAMICS DCM drive system.

Page 79: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Function Block Overview

The winder functionality is part of the application SINAMICS DCC Winder.

The application is implemented in DCC.

The documentation is based on function plans.

Normalization web velocity [m/min] p21516 (30)

Actual web velocity(0)

p21515

Normalization,speed [rpm] (r2700)

p21511

speed act. valuemotor encoder (r63)

p21510

Diameter computer

r21517Web velocity actual value [m/min]

r21512actual motor speed [rpm]

<>0

=0

Setting valuefixed diameter [m]

p21522 (0.1)

Setting valuediameter normalizedto maximum diameter

(0)p21523

r21524

Setting value,diameter effective [m]

Maximumdiameter

p21534 (2 m)

Minimum diameterp21535 (0.1m)

π•=

∫motor speed

gear factor ∫ web velocityDiameter

r21545Calculated diameter, absolute [m]

r21547Multiplier, setpoint channel[1/m]

set diameterhold diameter

winding from bottom

[WI1030.7]

[WI1010.4][WI1030.7]

Diameter is limited to the maximum diameter Diameter is limited to the minimum diameter

[WI1020.4]

[WI1020.4]

Normalization web velocity

Speed normalization

gear factor

- WI1101 -Function diagram

87654321Wickler_DCC_V3_en.VSDDO: SERVO, VECTOR, DC_CTRL

SINAMICS29.11.10 V03.00.00Diameter computer integrating method (p21538=1, p21540=0, p21541=0)

1

0

r21548

Diameter value saved(retentively) [m]

Saved diameter value validr21549

saved diameter valueas setting value

[WI1010.5]

Diameter setting value

Non-volatile (retentive) memory for the diameter

value

Balancing time web velocityintegrating method p21536 (0 ms)

Smoothing time diameter integratingmethod [ms] p21537 (100.000)

(0)

BI: smoothing diameter out-put integrating method

[1=OFF; 0=ON]

p21539

Wound roll revolutions per integration interval

p21525 (1)Δt (integration interval)

r21546

Calculated diameter, relative [%]

Dmax

p21000[0]integratingDiaComp

p21000[1]Diameter Computer

minimumdiameter

maximumdiameter

motor speed

material web velocityactual diameter

gear factorM

xy

Gear factor, load revolutionsp21520 (1)

Gear factor, motor revolutionsp21521 (1)

Page 80: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Example Configuration

Example Configuration: • SINAMICS CU310 DP/PN • SINAMICS S120 PM340 AC/AC • TM31 (analog input) • Breaking resistor (optional) • e.g. 1PH8 motor Standards: SINAMICS DCC Winder

Benefits: Cost effective and simple „stand alone“ solution Integrated I/O and Safety functions (STO) Integrated TTL/HTL/SSI encoder interface No PLC required for simple applications

Winder e.g. 1PH8

SIN

AMIC

S C

U31

0 D

P

PROFIBUS

HMI

PM340

Page 81: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Converting Toolbox Example Configuration

SIMATIC S7

Machine control

PROFIBUS

HMI Web handling

TM31

SINAMICS CU310 DP DCC SINAMICS S120 AC/AC

1PH8

Winder Dancer system (or load cell)

Nip

Page 82: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Example Configuration

Example Configuration: • SINAMICS CU320 (1 Winder / CU) • SINAMICS S120 DC/AC • TB30 or TM31 • e.g. 1PH8 motor Standards: SINAMICS DCC Winder SINAMICS DCC Load Sharing (Tandem Winder)

Benefits: Modular solution based on standard products High hardware integration (no external traversing controller required) No programming necessary No PLC required for simple applications

SIN

AMIC

S C

U32

0

PROFINET / PROFIBUS

SIMATIC S7 (Machine control)

Mot

or m

odul

e

Winder (Master) e.g. 1PH8

Slave

Page 83: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Converting Toolbox Example Configuration

HMI

Web handling

TM31

SINAMICS CU320 / DCC SINAMICS S120 DC/AC

1PH8

Winder Dancer system (or load cell)

Nip

PROFINET / PROFIBUS

1PH8

SIMATIC S7

Machine control

CU

320

Infe

ed

Mot

or M

odul

es

Page 84: Siemens Winder App

© Siemens AG 2012. All Rights Reserved. Industry Sector

Tools

Example Configuration

Function Block Overview

Scope of Functionality

Contents of the Application

Benefits when using the Application

Introduction

Converting Toolbox Tools

Page 85: Siemens Winder App

© Siemens AG 2012. All Rights Reserved.

Application Center I DT MC PMA APC Frauenauracher Str. 80 D-91056 Erlangen E-Mail: [email protected]

Thank you for your attention!

Page 86: Siemens Winder App

1 Introduction

8 Application Handbook

Version 1.0.1

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

1 Introduction The "Converting Library" is intended to provide S7-1200 users with help while engineering and programming converting machinery. The Converting Library provides standards that can be adapted depending on the particular machine and application. These standards cover the typical basic functions of a converting machine. These functions are available as an open source. The appropriate interfaces are provided to make adaptations depending on the specific machine and application. These interfaces are described in detail in the following documentation. Changes to standard functions that go beyond this should only be made in exceptional cases as this is not in-line with the level of standardization that we wish to achieve here.

1.1 Area of Application

1.1.1 Segment, Machine & Unit description

This library is intended to be used for moderate dynamics applications and will help when engineering & programming converting machinery. This library covers the typical basic functions of a converting machine. The appropriate interfaces are provided to make adaptations depending on the specific machine and application. The functions are available as open source.

1.1.2 Scope of Application

Applications where this library can be used:

Secondary Slitters Web Inspection machines Coil Rewinders Wire drawing machines Coating lines Extrusion line winders Printing machines (Mechanical Line Shaft)

1.2 Objective

1.2.1 Task The Library consist of simple function blocks which can be helpful for any machine and also includes complete solutions to fulfill the demanding requirements of winders, tension controlled sections and material transport. This document will highlight the technical requirements of Winder application & solution which is developed to cater it.

Page 87: Siemens Winder App

1 Introduction

Application Handbook Version 1.0 .1 9

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

1.2.2 Advantages

The Library includes complete solution to fulfill the demanding requirements of winders, tension controlled sections and material transport.

Appropriate interfaces are provided to make adaptations depending on the specific machine and application.

The library is open source code. Reduction of engineering time Possibility of making changes

Page 88: Siemens Winder App

2 Winder Solution Overview

10 Application Handbook

Version 1.0.1

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

2 Winder Solution Overview 2.1 General overview of Winders

Generally, a winder solution comprises a winder drive, a material web and possibly sensors. The function of a winder is to rewind or unwind a material web with a defined tension. When winding, the diameter changes. Depending on whether it involves a rewinder or unwinder, the material is wound or unwound. The motion control system calculates the actual diameter using several system variables and controls the motor speed so that the tension of the material web is kept constant. To do this, the actual velocity of the material web and the speed of the winder shaft must be known. If the system must fulfill higher demands regarding the performance and tension accuracy, then an appropriate range of sensors must be added to the winder solution. These can include a dancer roll or a load cell. The dancer roll is a position-controlled measuring system. The material web is threaded through this dancer roll system. A cylinder with a deflection roll presses, with an adjustable force against the material web. If tension is established in the material web then this acts against the pressure from the dancer roll. If the dancer roll is at its center position, then the material web tension is the same as the selected dancer roll force. In order to control (closed-loop) the tension in the material web, the motion control system must ensure that the dancer roll remains at its center position. If the tension in the system changes, then the position of the dancer roll also changes – that is in turn coupled with the motion control system via a position detection function. If such a deviation is detected, then the system would respond, and e.g. change the drive speed. The tension measuring transducer directly measures the tension in the system and transfers this signal to the motion control system. If the tension changes then this can either be compensated by changing the speed or by changing the motor torque.

Page 89: Siemens Winder App

2 Winder Solution Overview

Application Handbook Version 1.0 .1 11

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

2.1.1 Winding Techniques

In general there are two types of winding techniques used in industry- Center Winder

With a center winder, the roll is driven by a central shaft. The diameter range is an important factor when designing this winder type. The reason for this is that for a constant web velocity and constant tension, the speed is inversely proportional to the diameter. This means that the maximum required drive speed is defined by the minimum roll diameter – whereby the maximum required torque is defined by the maximum diameter. The center winder is more complicated and from control perspective more difficult to handle than the surface winder; however it is still more widely established of the two winder types. Surface Winder

For a surface winder, the roll is driven through one or several rolls that are in contact with the roll being wound. The drive speed and power depends on the diameter of the roll being wound. From a mechanical design perspective, this winder technique is more complicated than that of a center winder. The contact winder (surface winder) is essentially used if there are no special requirements placed on the surface quality of the material being wound.

Page 90: Siemens Winder App

2 Winder Solution Overview

12 Application Handbook

Version 1.0.1

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

2.1.2 Tension Control Techniques

The standard application library allows following control concepts to be implemented:

Indirect Tension Control Tension Control using Load-cell Tension Control using Dancer

These control concepts will be briefly explained in the following. Indirect Tension Control: The indirect tension control is very frequently used if a user does not want to use expensive sensor systems as there are no higher-level control loops available. This technique must be able to operate without any tension feedback signal. This therefore places the highest requirements on the torque setpoint conditioning and the torque accuracy of the drive. The indirect tension control is based on the physical interrelationship between torque and the tension of the material web. The motor torque is changed as a function of the diameter of the roll being wound so that a setpoint (reference) tension is obtained. The technology controller is not used – instead, the tension setpoint (reference value) is multiplied by the diameter and the result is directly pre-controlled as torque setpoint. This means that the motor current linearly increases with increasing diameter and the tension is kept constant. In this case it is important that the friction and accelerating torques are precisely compensated so that the pre-controlled torque setpoint results in the best possible approximation to the required material tension. For this control type it must be ensured that the mechanical losses are kept as low as possible. This means that worm gears may not be used, no open intermediate gear ratios - and if herringbone gearing is used, then the shaft should rotate in the direction of the herringbones. It is also important to ensure the lowest possible loss differences between gearboxes in the warm and cold states.

Page 91: Siemens Winder App

2 Winder Solution Overview

Application Handbook Version 1.0 .1 13

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

Block diagram:

Tension Control using Load-cell For the tension control, the tension acting in the system is measured using a static measuring device and is compared with the tension setpoint (tension reference value) as measured quantity. The tension control is used if the precision of the open-loop torque control is no longer sufficient. This can be the case if a high torque control range is demanded or if the winder is subject to disturbances. A load cell directly senses the material tension. Its output signal is proportional to the tension and is fed to the technology controller as actual value signal. This means that in this case the technology controller is effective and directly controls the tension of the material web. Just the same as for indirect tension control, the speed controller in the drive operates in saturation (at its end limits). The drive is at one of the two torque limits and is controlled through these torque limits. The correction value from the technology controller acts additively on these torque limits. Supplementary torque setpoints – e.g. from the acceleration pre-control (inertia compensation) or the tension taper characteristic – are connected-up so they act additively to the torque limits. For this technique, it is not necessary to intervene in the material web as is the case for a dancer roll system. However, in this case there is not the advantage of having a storage function for the material web.

Page 92: Siemens Winder App

2 Winder Solution Overview

14 Application Handbook

Version 1.0.1

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

Tension Control using Load-cell : Torque Control Tension controller output is added with Friction & Moment of inertia torque which in turns act as torque limit.

Page 93: Siemens Winder App

2 Winder Solution Overview

Application Handbook Version 1.0 .1 15

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

Tension Control using Load-cell : Speed Control Tension controller output is added as additional speed setpoint along with main setpoint scaled with actual diameter of the roll.

Page 94: Siemens Winder App

2 Winder Solution Overview

16 Application Handbook

Version 1.0.1

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

Tension Control using Dancer A dancer roll is used for the dancer roll position control - a position- controlled measuring system. The position of the dancer roll is determined using a suitable position encoder, which is then compared with the position setpoint (reference value). The tension is only determined using the dancer roll. If the tension changes, then the position of the dancer roll also changes. By changing the winder speed, the dancer roll position control corrects this position offset. Although brief speed fluctuations have an effect on the position of the dancer roll, they hardly have any effect on the tension in the system. However, this only applies as long as the dancer roll does not reach its limits. The dancer roll position control has the advantage that brief fluctuations in the tension can be absorbed due to the material web storage function of the dancer roll. However, an intervention has to be made in the material web routing as a result of the mechanical arrangement. The limits of the dancer roll position control are predominantly defined by the mechanical implementation of the dancer roll and its dynamic characteristics.

2.2 Functions of the Application Library

The application library is used to control rotating mechanical equipment to wind or unwind a material web (film, paper, wire, foil, etc.) The core function conditions the signals that are required to control the winder shaft – such as speed and torque. The core function comprises a function block, which generates the setpoints to control the winder shaft. These setpoints are the setpoint velocity and, depending on the control mode torque limits, additive torque setpoints as well as variables to control the controller gain adaptation function.

Page 95: Siemens Winder App

2 Winder Solution Overview

Application Handbook Version 1.0 .1 17

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

The block handles all of the essential functions of the winder such as diameter calculation, moment of inertia calculation, Tension Preparation, Gain Adaption and Tension Taper Characteristic. The winder block can be simply changed-over to various control modes by appropriately parameterizing it. It is not necessary to make any changes to the program in order to, for example, toggle between indirect and direct tension control. However, it is possible to access the code of the winder function blocks as this is not password protected.

2.2.1 Properties and features of the core “Winder” functions The following properties and features were taken into account while developing this library and can even be used in user programs that you generate yourself: Diameter calculator 4 different techniques are available to calculate the diameter of the roll being wound:

The diameter is calculated using the ratio between the velocity of the material web and the winder speed

The diameter is calculated by adding the material thickness The diameter comes from extern (sensor) The diameter is calculated from the ratio between the material

length and the revolutions of the winder (integration)

Tension taper characteristic A tension taper characteristic is required if the tension, with which the material is wound, is to be decreased as the diameter of the roll being wound increases. 5 different techniques are available to calculate the tension taper characteristic:

No characteristic Linear characteristic – the tension is linearly reduced as a

function of the actual diameter Hyperbolic characteristic type 1 – the tension decreases

according to a hyperbolic function/characteristic Hyperbolic characteristic type 2 – the tension decreases

according to a hyperbolic function/characteristic Interpolated characteristic using a table of points – 10 points can

be entered to define the characteristic Tension preparation Preparing the tension setpoint value for further usage Functions implemented for tension control with dancer roll, tension control with load cell, indirect tension control and taper characteristic

Page 96: Siemens Winder App

2 Winder Solution Overview

18 Application Handbook

Version 1.0.1

Cop

yrig

ht

Sie

men

s Lt

d. 2

013

All r

ight

s re

serv

ed

Controller Adaptation The gain of the technology controller can be adapted as a function of the diameter. This permits a higher controller gain at a bigger diameter In case of S120 drives, the speed controller gain in the drive can be adapted as a function of the moment of inertia or the actual diameter of the roll being wound. This is necessary so that a full roll can also be rapidly accelerated or decelerated. Inertia Compensation While the material web is being accelerated and decelerated, an additive torque can be switched to the drive in order to respond dynamically (quickly) to velocity changes. The inertia compensation avoids tension dips or tension increases due to the velocity change. This pre-control is required, especially for indirect tension control but also for tension control with a load cell. The pre-control is made available to the user as an additive torque at the output of the winder function block. Instructions for making the appropriate interconnections are explained step-by-step in Section “Integration of the core function” using as an example, a SINAMICS drive.