Shake Table Prashant 14

Embed Size (px)

Citation preview

  • 8/14/2019 Shake Table Prashant 14

    1/61

    11

    X - axis

    Y - axis

  • 8/14/2019 Shake Table Prashant 14

    2/61

    2

    Group Members Analysis Group

    Prashant Savaliya (PM) Jesus E. Carrillo (APM) Phu Nguyen Nham Nguyen Steven Wang

    Experimental Group Francisco J. Jaime Jr. (APM) Rafael A. Donado Farzaneh Mousavi Ike Ogiamien

  • 8/14/2019 Shake Table Prashant 14

    3/61

    33

    Overview Concepts of Earthquakes Structural Protection Systems

    3D Steel Moment Frame Structure Experimental Computer Analysis

    2D Steel Structure Experimental

    Computer Analysis Timber Structure

    Experimental

    Conclusion

  • 8/14/2019 Shake Table Prashant 14

    4/61

    4

    Concepts of Earthquakes Caused by a sudden slip on a fault.

    Occurs when plates grind and scrape against eachother.

    The Pacific Plate and the North American Plate. Earthquakes occur on faults.

    4

  • 8/14/2019 Shake Table Prashant 14

    5/61

    5

    Types of Geological Faults

    5

    Normal Fault

    Thrust Fault

    Strike SlipFault

  • 8/14/2019 Shake Table Prashant 14

    6/61

    66

    Tectonic Plates

    6

    Seven (7) major and

    minor plates

    Earthquakes,

    volcanic activity, occur

    along plate boundaries

  • 8/14/2019 Shake Table Prashant 14

    7/61

    7

    Major Faults of California Local Major Faults

    San Andreas fault(Lateral fault)

    Loma Prieta Earthquakeproduced by SanAndreas fault

    Santa Monica Fault San Gabriel Fault

    Blind Faults Northridge Earthquake

    http://education.usgs.gov/california/maps/faults_names2.htm

  • 8/14/2019 Shake Table Prashant 14

    8/61

    8

    Northridge EarthquakeRevealed buildings that were not built to code

    Failure of Moment-Frame structures

    Insufficient design of connections

    Failure of non-structural elements

  • 8/14/2019 Shake Table Prashant 14

    9/61

    99

    Northridge Earthquake

    9

  • 8/14/2019 Shake Table Prashant 14

    10/61

    10

    Northridge Earthquake January 17, 1994

    Magnitude of 6.5

    57 killed

    12,000 injured.

    $12.5 billionDamages

    10

  • 8/14/2019 Shake Table Prashant 14

    11/61

    1111

    Structural Protective

    Systems Viscous Damper Friction Damper Mass Damper Base Isolator

    11

  • 8/14/2019 Shake Table Prashant 14

    12/61

    121212

  • 8/14/2019 Shake Table Prashant 14

    13/61

    1313

    Viscous Dampers Functions like an

    automobiles shockabsorber

    Reduces displacement

    High acceleration

    resistance

    Reduction in story drift

    Utilizes less construction

    materials 13

  • 8/14/2019 Shake Table Prashant 14

    14/61

    14

    Application of Viscous

    Dampers

  • 8/14/2019 Shake Table Prashant 14

    15/61

    1515

    Friction Dampers

    15

    Utilize friction powerto absorb vibration

    energy

    Increases stiffness ofthe structure

    Limiting base sheardemands onstructural

    foundations

    Friction Damper

  • 8/14/2019 Shake Table Prashant 14

    16/61

    1616

    Tuned-MassDamper Function like an inverted

    pendulum

    Dissipates energy createdby the motion of its mass

    Creates an equal andopposite force to resistmotion

    Resist lateral forces anddisplacement ofstructures

    Reduces resonanceresponse

    1616

  • 8/14/2019 Shake Table Prashant 14

    17/61

    1717

    Ta

    ipe

    I1

    01

    06/07/08 19:11 1717

  • 8/14/2019 Shake Table Prashant 14

    18/61

    1818

    Base Isolator

    Allows the building

    foundation to movewith the ground

    Flexes laterally to

    reduce the groundmotion fromaffecting thestructure

    18

  • 8/14/2019 Shake Table Prashant 14

    19/61

    19

    Analyzing the Structures

    3D Steel Moment Frame Structure 2D Steel StructureTimber Structure

  • 8/14/2019 Shake Table Prashant 14

    20/61

  • 8/14/2019 Shake Table Prashant 14

    21/61

    2121

    Free Vibration

    Free Vibration without Mass Damper

    -3

    -2

    -1

    0

    1

    2

    0 2 4 6 8 10 12

    Time (sec)

    Acceleration(g)

    21

    10 Cycles in 4.5 Sec.

  • 8/14/2019 Shake Table Prashant 14

    22/61

    2222

    Prototype Steel Moment-Frame

    Structure

    From Free Vibration

    Time measuredduring 10 cycles:4.5 seconds

    ExperimentalFundamentalperiod: 0.45 sec

    22

  • 8/14/2019 Shake Table Prashant 14

    23/61

    2323

    SAP Modeling

    23

    M d l P i d ith Pi d

  • 8/14/2019 Shake Table Prashant 14

    24/61

    2424

    Modal Period with PinnedBase

    T1 = 0.48 sec, f1 = 2.1

    Hz

    24

  • 8/14/2019 Shake Table Prashant 14

    25/61

    2525

    Modal Period with Fixed Base

    T1 = 0.42 sec, f1 = 2.4

    Hz

    25

  • 8/14/2019 Shake Table Prashant 14

    26/61

    2626

    Experimental Determination

    of Fundamental Period

    In conclusion, the support of thestructure at the base behavessomewhere between pinned and

    fixed.

    26

  • 8/14/2019 Shake Table Prashant 14

    27/61

  • 8/14/2019 Shake Table Prashant 14

    28/61

    2828

    Resonance Effect

    Cyclic Frequency (Hz) Acceleration (g)

    1.00 0.13

    1.50 0.30

    2.00 0.90

    2.25 1.80

    2.50 3.50

    2.75 2.00

    3.00 1.40

    3.50 0.70

    4.00 0.40

    28

  • 8/14/2019 Shake Table Prashant 14

    29/61

    2929

    Resonance Effect(Acceleration vs. Frequency)

    Natural Frequency f1=2.4 Hz (from SAPanalysis)

    The maximum acceleration response occurs for

    f=2.5 Hz Acceleration vs. Frequency

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    Frequency (Hz)

    Accelera

    tion

    (g)

    Acceleration vs. Frequency

    06/07/08 19:11 2929

  • 8/14/2019 Shake Table Prashant 14

    30/61

    30

    Mexico City Earthquake

    Resonance Natural period of the

    ground vibration wasabout 2 seconds.

    Buildings between10-25 stories havenatural periods ofabout 2 seconds.

    Natural frequency ofthe building wassimilar to resonancefrequency of seismicloading from soil

  • 8/14/2019 Shake Table Prashant 14

    31/61

    3131

    Time-history Analysis underNorthridge Earthquake

    Ground motion at the HollywoodStorage station is used for the

    seismic analysis.

    31

  • 8/14/2019 Shake Table Prashant 14

    32/61

    3232

    Ground Motion Acceleration

    Time History(x-direction)

    Ground Accelerations vs. Time

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0 5 10 15 20 25 30 35 40

    Time (second)

    Acceleration

    (g)

    X direction

    Peak ground acceleration is 0.231 g 32

  • 8/14/2019 Shake Table Prashant 14

    33/61

    3333

    Ground Motion Acceleration

    Time History(y-direction)

    Ground Accelerations vs. Time

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0 5 10 15 20 25 30 35 40

    Time (second)

    Acceleration

    (g)

    Y direction

    Peak ground acceleration is 0.358 g 33

  • 8/14/2019 Shake Table Prashant 14

    34/61

    3434

    Measured Acceleration Response onConventional System at 4th Level

    Maximum acceleration response is 1.03 g34

  • 8/14/2019 Shake Table Prashant 14

    35/61

    3535

    Measure Acceleration Response onConventional System at 4th Level

    Maximum acceleration response is 1.705 g 35

  • 8/14/2019 Shake Table Prashant 14

    36/61

    3636

    Acceleration Response atVarious Levels of Structure

    0

    0.4

    0.8

    1.2

    1.6

    2

    0 1 2 3 4 5 6 7

    Floor Level

    Acceleration(g

    Story Force=Acceleration x Floor Mass36

  • 8/14/2019 Shake Table Prashant 14

    37/61

  • 8/14/2019 Shake Table Prashant 14

    38/61

    3838

    Tuned-Mass Damper IllustrationUsing Shake Table Analysis

    Weights are addedto the top of theexperimental steelstructure toillustrate theconcept of tuned-mass damping

    38

  • 8/14/2019 Shake Table Prashant 14

    39/61

    39

    Big Steel Frame with MassDamper Attached during

    ExperimentMass Damper

    39

  • 8/14/2019 Shake Table Prashant 14

    40/61

    4040

    Measured Acceleration Responsewith Mass Damper

    Maximum acceleration response is 0.756 g at 8.7 second. 40

  • 8/14/2019 Shake Table Prashant 14

    41/61

  • 8/14/2019 Shake Table Prashant 14

    42/61

    4242

    4th Level Measured Acceleration Responseof Conventional System and DampedSystem

    42

  • 8/14/2019 Shake Table Prashant 14

    43/61

    4343

    4th Level Measured Acceleration Responseof Conventional System and DampedSystem

    43

  • 8/14/2019 Shake Table Prashant 14

    44/61

    4444

    Lateral Displacement

    1

    2

    3

    4

    5

    6

    7

    0 0.5 1 1.5

    Lateral Displacement (in.)

    FloorLevel

    Conventional Damped 44

    Comparison between

  • 8/14/2019 Shake Table Prashant 14

    45/61

    45

    Comparison betweenConventional System andDamped System

    Max. Acceleration Column Moment

    Conventional 1.03 g 191 in-lb

    With Mass Damper 0.58 g 121 in-lb

    Reduction (%) 43.7 % 36.7 %

  • 8/14/2019 Shake Table Prashant 14

    46/61

    4646

    2D Steel Frame PrototypeStructures

    Seismic Excitationonly in one direction

    Height: 54.5 in Width: 6.25 in 10N weight

    46

  • 8/14/2019 Shake Table Prashant 14

    47/61

    4747

    Free Vibration Graph

    47

  • 8/14/2019 Shake Table Prashant 14

    48/61

    4848

    Free Vibration Graph

    48

  • 8/14/2019 Shake Table Prashant 14

    49/61

    49

    SAP Model

  • 8/14/2019 Shake Table Prashant 14

    50/61

    5050

    Modal Period for 2D Steel Frame

    T1 = 0.17 sec, f1 = 5.8

    Hz

    50

  • 8/14/2019 Shake Table Prashant 14

    51/61

    5151

    Experimental Determination ofFundamental Period

    Time measured during 7 cycles:

    1.4 seconds Experimental Fundamental Period:

    0.20 sec Sap2000 Fundamental Period:

    0.17 sec

    51

  • 8/14/2019 Shake Table Prashant 14

    52/61

    5252

    Measured Damping Ratio

    Using equation:

    Damping ratio without fluid dampers : 1.9% Damping ratio with fluid dampers: 4.2% Calculation is based on structural dynamic

    theory. 52

    %9.1019.0

    )5(2

    )562.0

    023.1

    ln(

    2

    )ln(

    ==

    =

    == +

    g

    g

    m

    a

    a

    RatioDamping mn

    n

  • 8/14/2019 Shake Table Prashant 14

    53/61

    53

    Demonstration

  • 8/14/2019 Shake Table Prashant 14

    54/61

    54

    Experimental Video on

    Timber StructureWithout FrictionDamper With Friction Damper

    54

  • 8/14/2019 Shake Table Prashant 14

    55/61

    5555

    Timber Structure-Undamped

    Max Acceleration=0.46 g at 7.5

    sec.

  • 8/14/2019 Shake Table Prashant 14

    56/61

    5656

    Timber Structure-Undamped

    Max Acceleration=0.71 g at 7.5

    sec

  • 8/14/2019 Shake Table Prashant 14

    57/61

    5757

    Timber Structure-Undamped

    Max Acceleration=1.0 g at 7.5sec.

  • 8/14/2019 Shake Table Prashant 14

    58/61

    5858

    Acceleration Response at VariousLevels

    Conventional X-direction Accelerations at Floor

    Levels

    0.2

    0.46

    0.71

    1

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 1 2 3 4 5 6 7 8

    Floor Level

    Flo

    orAcceleration(g)

    Measured Peak

    Acceleration

  • 8/14/2019 Shake Table Prashant 14

    59/61

    59

    IBC-06 Seismic Provisions

    V

    hw

    hwF

    k

    ii

    k

    xx

    x

    =

    Vertical Force Distribution

  • 8/14/2019 Shake Table Prashant 14

    60/61

    6060

    Conclusion

    Our study shows how resonance causesearthquake loads to increasedramatically.

    We demonstrated the behavior of threedifferent structures with and withoutdamping systems.

    Our experimental data and analyticalresults illustrate that structuralresponse decreases with earthquakeprotection systems.

    60

  • 8/14/2019 Shake Table Prashant 14

    61/61

    The End

    Thank You