1
A21H-0165: Regional Variability in Ozone in the Tropical and Subtropical Free Troposphere and Tropopause Transition Layer based on Aura-Era SHADOZ Data (2005-2009) S K Miller 1 , A M Thompson 1 , J C Witte 2 , N V Balashov 1 , D E Kollonige 1 , and the SHADOZ Team 1 Pennsylvania State University, Department of Meteorology; amt16 @psu.edu 2 Science Systems and Applications, Inc., and NASA/Goddard Space Flight Center, Code 614 SHADOZ Project & Data SHADOZ (Southern Hemisphere ADditional OZonesondes) is a project that has supplied more than 5000 ozone and PTU (pressure-temperature-humidity) profiles since 1998 at the website: (http://croc.gsfc.nasa.gov/shadoz ). The data have been used in satellite validation (Jiang et al, 2007; Schoeberl et al., 2007), model and satellite climatologies (McPeters and Labow, 2012; Tilmes et al, 2012) and dozens of trends and process studies, e.g. Randel and Thompson (2012). The 15 SHADOZ sites that operated during 2005-2009, the early Aura period, are illustrated in Figure 1. In this study, two questions are addressed using the 2005-2009 SHADOZ data: (1) How do FT and TTL structures of the newer subtropical stations, Hilo and Hanoi, compare to southern subtropical SHADOZ stations: Irene and Réunion Island? (2) At 11 tropical sites, how do FT and TTL O 3 vary in terms of convective & pollution signatures? Data from 2005-2009 are used. Results illustrated are taken from Thompson et al (2012). Note that Figure 2, that compares total ozone from the sondes (with above-burst ozone provided by the McPeters & Labow (2012) climatology and OMI total ozone, indicates good agreement between the two. Subtropical Stations Seasonal cross-section of mixing ratio (ppbv) for the 4 SHADOZ subtropical stations appears in Figure 3. Hanoi and Hilo share some characteristics with southern subtropical sties but differ in other respects. Hilo has a higher tropopause (we adopt a 100 ppbv ozonopause definition, dotted line in Figure 4) than the other three, except during March-April-May when stratospheric intrusions occur. Stratospheric intrusions are prominent at Irene (September-November) and Réunion. At Hilo, there is a generally lower ozone mixing ratio between 8 and 12 km (Figure 4). Hanoi is very polluted in February-April, due to biomass fires, and again in July-August when pollution interacts with the Asian Monsoon. (Note: In 2013, it is hoped that the SEAC4RS aircraft campaign will sample the pollution-Monsoon interaction). Both Hanoi and Irene display fairly polluted boundary layers at certain times of year (50 ppbv or more). Tropical Stations – FT-TTL Ozone In Figure 5 the seasonal cross-section of 9 tropical stations (within 18 degrees latitude of equator) is illustrated. The eastern Indian Ocean/Pacific stations (Figure 5 a-d) show lower ozone in the FT in general and the suggestion of strong convective mixing where low ozone (< 25 ppbv) appears in the tropo- sphere above 13 km. Pollution associated with biomass burning in the southern hemisphere (40-50+ ppbv in Figure 5 b-d) appears most strongly at 5-7 km in September-October. This feature is even higher in ozone over Paramaribo, Natal and Ascension (> 60 ppbv, Figure 5 f-h), Atlantic stations, at the same time. San Cristobal and Paramaribo (Figure 5 d, e) are intermediate between the Pacific and Atlantic. These two sites and Alajuela/Heredia (Costa Rica, not shown) have been designated the “equatorial Americas” (Thompson et al., 2010). Characteristics of 3 Tropical Zones The three tropical zones are summarized below: east Indian/west Pacific (blue), equatorial Americas (white), Atlantic/Africa (pink). The Pacific region has the lowest FT ozone and highest GWI. The Atlantic stations (Natal, Ascension) have the lowest GW, highest FT & TTL ozone. The SHADOZ project (http://croc.gsfc.nasa.gov/shadoz ) has supplied more than 5000 sets of ozone and PTU (pressure-temperature-moisture) profiles, surface to 10 hPa, to the scientific community since 1998. Here, we address two questions with 2005-2009 (Aura-era) data: (1) How do free troposphere (FT) and tropical tropopause layer (TTL) ozone structures at northern subtropical stations that joined SHADOZ since 2009 compare to those of the southern subtropical stations? (2) What are characteristics at SHADOZ tropical stations, and how do they vary in terms of TTL and FT ozone concentrations and convective influence? Acknowledgments and References SHADOZ support comes from NASA (K. Jucks, Program Manager), NOAA and about a dozen in-country Agencies & partners in Europe & Japan. Jiang, Y., et al., J. Geophys. Res., 112, D24S34, doi: 10.1029/2007JD008876, 2007. McPeters, R. D., G. J. Labow, J. Geophys. Res., 117, D10303, doi: 10.1029/2011JD017006, 2012. Randel, W. J., A. M. Thompson, J. Geophys. Res., 116, D07303, doi: 10.1029/2010JD015195, 2011. Schoeberl, M. R., et al., J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008873, 2007. Sivakumar, V., et al., J. Appl. Meteor. Clim., 50, 1403-1416, 2011. Thompson, A. M., et al., J. Geophys. Res., 115, D00J23, doi: 10.1029/2009JD012909, 2010. Thompson, A. M., et al., J. Geophys. Res., 116, D05302, doi: 10.1029/2009JD013429, 2011. Thompson, A. M., et al., J. Geophys. Res., 117, in press, doi: 10.1029/2011JD016911, 2012. Tilmes, S., et al., Atmos. Chem. Phys., 12, 7475-7497, 2012. Figure 1 Figure 2 Figure 3 Tropical Station Profiles Profiles for the eastern Indian Ocean/western Pacific (Figure 6) and Atlantic-African (Figure 7) stations appear below: 25-75 th - percentiles are ranges with medians illustrated for O 3 , H 2 O, temperature. Dashed lines indicate station ozonopause. The star (*) indicates minimum O 3 (inferred maximum convective outflow). To be more quantitative about distinctions of 3 regions, mean TTL (14-18.5 km) and FT (5-15 km) O 3 mixing ratios are computed with a proxy for convective activity, the GWI or “Gravity Wave Index” (Thompson et al, 2011); see Table. Looking Ahead The SHADOZ network is well-positioned to continue Aura validation and to support Suomi-NPP (the Ozone Mapper Profiler Suite) and future satellites planned by the US, Canada, Europe, and Asia, as shown below. SHADOZ Sites Suva, Fiji Watukosek−Java Pago Pago, Am. Samoa Hilo, HI Natal, Brazil La Reunion Is., France Nairobi, Kenya San Cristobal, Ecuador Irene, South Africa Kuala Lumpur, Malaysia Paramaribo, Surinam Costa Rica (various sites) Ha Noi, Vietnam Ascension Is., UK Cotonou, Benin Longitude Dependence of Difference (sonde-OMI/sonde*100%) -180 -120 -60 0 60 120 180 Longitude -10 -5 0 5 10 Percent Difference [%] Samoa Hilo San Cristobal Alajuela/Heredia Paramaribo Natal Ascension Irene Nairobi Reunion Kuala Lumpur Hanoi Watukosek Fiji a b c d Hanoi (21 N): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 40 40 40 40 40 40 40 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 70 70 70 70 90 90 120 120 150 150 Hilo (19 N): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 20 20 30 30 40 40 40 50 50 50 60 60 60 70 70 90 90 120 120 150 150 Irene (25 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 10 10 20 20 30 30 40 40 50 50 50 60 60 60 70 70 70 90 90 120 120 150 150 La Reunion (21 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 20 20 30 30 40 40 50 50 60 60 60 70 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Figure 4 a b c d 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Hanoi: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Hilo: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) La Reunion: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Irene: 2005-2009 a b c d e f g h i Kuala Lumpur (3 N): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 30 30 30 30 30 40 40 40 50 50 60 60 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Watukosek (7.5 N): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 30 30 30 30 30 30 30 30 30 30 40 40 40 40 40 50 50 60 60 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Fiji (18 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 10 20 20 30 30 30 30 30 40 40 40 40 50 50 50 60 60 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Samoa (14 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 10 20 20 30 30 30 30 30 40 40 40 50 50 60 60 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv San Cristobal (1 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 10 10 20 20 20 30 30 40 40 40 50 50 50 60 60 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Paramaribo (5 N): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 20 20 30 30 30 40 40 40 40 50 50 50 60 60 60 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Natal (6 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 20 20 30 30 40 40 40 50 50 50 50 50 60 60 60 70 70 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Ascension Island (8 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 20 20 30 30 40 40 50 50 50 60 60 60 60 60 70 70 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Nairobi (1 S): Annual Cycle of Ozone (ppbv) Jan Mar May Jul Sep Nov Jan Month 0 5 10 15 20 Altitude (km) 10 10 20 20 30 30 40 40 50 50 50 50 60 60 60 70 70 70 90 90 120 120 150 150 10 20 30 40 50 60 70 75 90 120 150 ppbv Figure 5 a b c d 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Kuala Lampur: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Watukosek: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Fiji: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) American Samoa: 2005-2009 a b c d 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Natal: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Ascension: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Cotonou: 2005-2009 0 50 100 150 200 Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue) 0 5 10 15 20 Height (km) -100 -50 0 50 Temperature (C) Nairobi: 2005-2009 Figure 6 Figure 7 Missions 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 EP-TOMS (’96–‘05) SAGE III Meteor-3M (‘01-’05) ENVISAT [MIPAS, SCIA] (‘02-’12) NOAA -16, 17, 18 19 [SBUV/2] Aqua [AIRS] (‘02- Aura [TES, OMI, MLS] MetOps-A,B,C [IASI, GOME-2] SCISAT [ACE-FTS, MAESTRO] (‘03- Odin [OSIRIS] (‘01- Suomi NPP [CrIS, OMPS] JPSS-1 [CrIS, OMPS] ISS [SMILES (’09-’10), SAGE III] Sentinel-5 Pre [UVNS-Tropomi] MetOp-A MetOp-B MetOp-C TABLE ! Profile characteristics of ozone for tropical SHADOZ stations (within ± 18 degrees). Site Ozone Minimum Altitude (Km) FT Mean O 3 Mixing Ratio (5km–12km) TTL Mean O 3 Mixing Ratio (14km! 18.5km) Ozonopause (km), LRT (km) (This Study)* Ozonopause (km) (Sivakumar et al., 2011)** Mean GWI, Altitude of GW max. § Kuala Lumpur 13 35.8 120 16.6, 16.9 !!! 19.4, 17.0 Watukosek 14 30.8 95.6 17.0, 16.9 16.6±1.3 18.5, 18.1 Fiji 13 40.1 140 16.6, 16.9 16.2±1.2*** 12.6, 18.1 Am. Samoa 12 35.7 135 16.5, 17.1 16.4±0.95 16.1, 18.1 San Cristóbal 11 48.1 135 16.5, 16.9 16.6±1.1 12.6, 18.1 Alajuela/ Heredia 11 48 137 16.3, 17.1 !!! !!! Paramaribo 11 59 123 15.6, 17.0 !!! 7.85, 18.1 Natal 11 58.6 140 16.2, 17.0 15.9±1.6 10.9, 18.2 Ascension 11 63.9 134 16.2, 17.1 15.5±1.9 8.35, 18.0 Cotonou 11 72.5 155 15.5, 16.9 !!! !!! Nairobi 11 55.3 134 16.4, 17.0 16.3±1.6 16.6, 18.0 * Altitude corresponding to 100 ppbv ozonopause; data from 2005!2009. ** From ozonopause definition of Sivakumar et al. [2011] based on 1998!2008 data. Mean difference between their ozonopause and LRT averages 0.25 km, with five of 7 tropical sites having ozonopause higher than LRT. *** Sivakumar et al. [2011] categorizes Fiji as a Sub!tropical site. § GWI = Gravity Wave Index, based on 1998!2007 soundings [Thompson et al., 2011].

SHADOZ Project & Data Tropical Stations – FT-TTL Ozone we address two questions with 2005-2009 (Aura-era) data: (1) How do free ... ratios are computed with a proxy for convective

  • Upload
    vonga

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SHADOZ Project & Data Tropical Stations – FT-TTL Ozone we address two questions with 2005-2009 (Aura-era) data: (1) How do free ... ratios are computed with a proxy for convective

A21H-0165: Regional Variability in Ozone in the Tropical and Subtropical Free Troposphere and Tropopause Transition Layer based on Aura-Era SHADOZ Data (2005-2009)

S K Miller1, A M Thompson1, J C Witte2, N V Balashov1, D E Kollonige1, and the SHADOZ Team 1 Pennsylvania State University, Department of Meteorology; [email protected]

2 Science Systems and Applications, Inc., and NASA/Goddard Space Flight Center, Code 614

SHADOZ Project & Data

SHADOZ (Southern Hemisphere ADditional OZonesondes) is a project that has supplied more than 5000 ozone and PTU (pressure-temperature-humidity) profiles since 1998 at the website: (http://croc.gsfc.nasa.gov/shadoz). The data have been used in satellite validation (Jiang et al, 2007; Schoeberl et al., 2007), model and satellite climatologies (McPeters and Labow, 2012; Tilmes et al, 2012) and dozens of trends and process studies, e.g. Randel and Thompson (2012). The 15 SHADOZ sites that operated during 2005-2009, the early Aura period, are illustrated in Figure 1. In this study, two questions are addressed using the 2005-2009 SHADOZ data: (1) How do FT and TTL structures of the newer subtropical stations, Hilo and Hanoi, compare to southern subtropical SHADOZ stations: Irene and Réunion Island? (2) At 11 tropical sites, how do FT and TTL O3 vary in terms of convective & pollution signatures? Data from 2005-2009 are used. Results illustrated are taken from Thompson et al (2012). Note that Figure 2, that compares total ozone from the sondes (with above-burst ozone provided by the McPeters & Labow (2012) climatology and OMI total ozone, indicates good agreement between the two.

Subtropical Stations Seasonal cross-section of mixing ratio (ppbv) for the 4 SHADOZ subtropical stations appears in Figure 3. Hanoi and Hilo share some characteristics with southern subtropical sties but differ in other respects. Hilo has a higher tropopause (we adopt a 100 ppbv ozonopause definition, dotted line in Figure 4) than the other three, except during March-April-May when stratospheric intrusions occur. Stratospheric intrusions are prominent at Irene (September-November) and Réunion. At Hilo, there is a generally lower ozone mixing ratio between 8 and 12 km (Figure 4). Hanoi is very polluted in February-April, due to biomass fires, and again in July-August when pollution interacts with the Asian Monsoon. (Note: In 2013, it is hoped that the SEAC4RS aircraft campaign will sample the pollution-Monsoon interaction). Both Hanoi and Irene display fairly polluted boundary layers at certain times of year (50 ppbv or more).

Tropical Stations – FT-TTL Ozone In Figure 5 the seasonal cross-section of 9 tropical stations (within 18 degrees latitude of equator) is illustrated. The eastern Indian Ocean/Pacific stations (Figure 5 a-d) show lower ozone in the FT in general and the suggestion of strong convective mixing where low ozone (< 25 ppbv) appears in the tropo-sphere above 13 km. Pollution associated with biomass burning in the southern hemisphere (40-50+ ppbv in Figure 5 b-d) appears most strongly at 5-7 km in September-October. This feature is even higher in ozone over Paramaribo, Natal and Ascension (> 60 ppbv, Figure 5 f-h), Atlantic stations, at the same time. San Cristobal and Paramaribo (Figure 5 d, e) are intermediate between the Pacific and Atlantic. These two sites and Alajuela/Heredia (Costa Rica, not shown) have been designated the “equatorial Americas” (Thompson et al., 2010).

Characteristics of 3 Tropical Zones The three tropical zones are summarized below: east Indian/west Pacific (blue), equatorial Americas (white), Atlantic/Africa (pink). The Pacific region has the lowest FT ozone and highest GWI. The Atlantic stations (Natal, Ascension) have the lowest GW, highest FT & TTL ozone.  

The SHADOZ project (http://croc.gsfc.nasa.gov/shadoz) has supplied more than 5000 sets of ozone and PTU (pressure-temperature-moisture) profiles, surface to 10 hPa, to the scientific community since 1998. Here, we address two questions with 2005-2009 (Aura-era) data: (1) How do free troposphere (FT) and tropical tropopause layer (TTL) ozone structures at northern subtropical stations that joined SHADOZ since 2009 compare to those of the southern subtropical stations? (2) What are characteristics at SHADOZ tropical stations, and how do they vary in terms of TTL and FT ozone concentrations and convective influence?

Acknowledgments and References SHADOZ support comes from NASA (K. Jucks, Program Manager), NOAA and about a dozen in-country Agencies & partners in Europe & Japan. Jiang, Y., et al., J. Geophys. Res., 112, D24S34, doi: 10.1029/2007JD008876, 2007. McPeters, R. D., G. J. Labow, J. Geophys. Res., 117, D10303, doi: 10.1029/2011JD017006, 2012. Randel, W. J., A. M. Thompson, J. Geophys. Res., 116, D07303, doi: 10.1029/2010JD015195, 2011. Schoeberl, M. R., et al., J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008873, 2007. Sivakumar, V., et al., J. Appl. Meteor. Clim., 50, 1403-1416, 2011. Thompson, A. M., et al., J. Geophys. Res., 115, D00J23, doi: 10.1029/2009JD012909, 2010. Thompson, A. M., et al., J. Geophys. Res., 116, D05302, doi: 10.1029/2009JD013429, 2011. Thompson, A. M., et al., J. Geophys. Res., 117, in press, doi: 10.1029/2011JD016911, 2012. Tilmes, S., et al., Atmos. Chem. Phys., 12, 7475-7497, 2012.

Figure 1 Figure 2

Figure 3

Tropical Station Profiles Profiles for the eastern Indian Ocean/western Pacific (Figure 6) and Atlantic-African (Figure 7) stations appear below: 25-75th-percentiles are ranges with medians illustrated for O3, H2O, temperature. Dashed lines indicate station ozonopause. The star (*) indicates minimum O3 (inferred maximum convective outflow). To be more quantitative about distinctions of 3 regions, mean TTL (14-18.5 km) and FT (5-15 km) O3 mixing ratios are computed with a proxy for convective activity, the GWI or “Gravity Wave Index” (Thompson et al, 2011); see Table.

Looking Ahead The SHADOZ network is well-positioned to continue Aura validation and to support Suomi-NPP (the Ozone Mapper Profiler Suite) and future satellites planned by the US, Canada, Europe, and Asia, as shown below.

SHADOZ Sites

Suva, FijiWatukosek−Java

Pago Pago, Am. Samoa

Hilo, HI

Natal, Brazil

La Reunion Is., France

Nairobi, KenyaSan Cristobal, Ecuador

Irene, South Africa

Kuala Lumpur, MalaysiaParamaribo, SurinamCosta Rica (various sites)

Ha Noi, Vietnam

Ascension Is., UK

Cotonou, Benin

Longitude Dependence of Difference (sonde-OMI/sonde*100%)

-180 -120 -60 0 60 120 180Longitude

-10

-5

0

5

10

Perc

ent D

iffer

ence

[%]

Sam

oaH

ilo

San

Cri

stob

alA

laju

ela/

Her

edia

Para

mar

ibo

Nat

alA

scen

sion

Iren

eN

airo

bi

Reu

nion

Kua

la L

umpu

rH

anoi

Wat

ukos

ek

Fiji

a b

c d

Hanoi (21 N): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov JanMonth

0

5

10

15

20

Alti

tude

(km

)

40 40

40

40

40

4040

5050

5050

50

50

50

50

50

60

60

60

6060

60

60

70

70

70

70

90

90

120120

150150

Hilo (19 N): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov JanMonth

0

5

10

15

20

20 203030

4040

40

50

50

50

60

60

60

70

70

90

90

120

120

150150

Irene (25 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov JanMonth

0

5

10

15

20

Alti

tude

(km

)

1010 2020 3030 4040 50

5050

60

60

60 70

70

7090

90

120120 150

150

La Reunion (21 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov JanMonth

0

5

10

15

20

2020

3030

4040

50

50

60

60

60

70

70

70

9090 120120 150

150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Figure 4

a b

c d

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Hanoi: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Hilo: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

La Reunion: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Irene: 2005-2009

a b c

d e f

g h i

Kuala Lumpur (3 N): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

30

30

30

30

30

40

40

40

5050

60607070

9090120120 150150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Watukosek (7.5 N): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

30

30

30

30

30

30

30

30

30

30

40 40

4040

40

50506060 7070 9090 120120 150150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Fiji (18 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

10 20

20

30

30

30

30

3040

40

40

40

5050

50

6060 7070 90

90 120120 150150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Samoa (14 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

10

2020

30

30

3030

30

4040

40

505060

60 7070 9090 120120150150

10 20 30 40 50 60 70 75 90 120 150 ppbv

San Cristobal (1 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

10 10

2020

20

30

30

40

40

40

50

50

50

60607070

9090120120 150150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Paramaribo (5 N): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

20

20

30

30

30

40

40

40

40

50

50

50

60

60

60

7070

9090120120 150150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Natal (6 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

2020

30

3040

40

40

50

50

50

50

50

60

60

60

70

70

70

70 90

90 120120 150

150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Ascension Island (8 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

20 203030

4040

50

50

50

60

60

60

60

60

70

70

70

70 90

90 120120 150

150

10 20 30 40 50 60 70 75 90 120 150 ppbv

Nairobi (1 S): Annual Cycle of Ozone (ppbv)

Jan Mar May Jul Sep Nov Jan

Month

0

5

10

15

20

Alt

itu

de (

km

)

1010 2020

3030

40

40

50

50

50

50

60

60

60

70

70

709090

120120 150150

10 20 30 40 50 60 70 75 90 120 150 ppbv Figure 5

a b

c d

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Kuala Lampur: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Watukosek: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Fiji: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

American Samoa: 2005-2009

a b

c d

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Natal: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Ascension: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Cotonou: 2005-2009

0 50 100 150 200Ozone Mixing Ratio (ppbv, black), Water Vapor Mixing Ratio(g/kg*10, blue)

0

5

10

15

20

Hei

ght (

km)

-100 -50 0 50Temperature (C)

Nairobi: 2005-2009

Figure 6 Figure 7

Missions 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

EP-TOMS (’96–‘05) SAGE III Meteor-3M (‘01-’05)

ENVISAT [MIPAS, SCIA] (‘02-’12)

NOAA -16, 17, 18 19 [SBUV/2]

Aqua [AIRS] (‘02-

Aura [TES, OMI, MLS]

MetOps-A,B,C [IASI, GOME-2]

SCISAT [ACE-FTS, MAESTRO] (‘03-

Odin [OSIRIS] (‘01-

Suomi NPP [CrIS, OMPS]

JPSS-1 [CrIS, OMPS]

ISS [SMILES (’09-’10), SAGE III]

Sentinel-5 Pre[UVNS-Tropomi]

MetOp-A MetOp-B

MetOp-C

TABLE&!"Profile"characteristics"of"ozone"for"tropical"SHADOZ"stations"(within"±"18"degrees).&

Site""

Ozone"Minimum"Altitude"(Km)""

FT"Mean"O3"Mixing"Ratio"(5km–12km)"

TTL"Mean"O3"Mixing"Ratio"(14km!18.5km)"

Ozonopause"(km),"LRT"(km)"(This"Study)*"

"

Ozonopause"(km)"

(Sivakumar"et"al.,"2011)**"

Mean"GWI,"Altitude"of"GW"max."

§"

Kuala&Lumpur& 13" 35.8" 120" 16.6,"16.9" !!!" 19.4,"17.0"

Watukosek& 14" 30.8" 95.6" 17.0,"16.9" 16.6±1.3" 18.5,"18.1"

Fiji& 13" 40.1" 140" 16.6,"16.9" 16.2±1.2***"12.6,"18.1"

"

Am.&Samoa& 12" 35.7" 135" 16.5,"17.1" 16.4±0.95" 16.1,"18.1"

San&Cristóbal& 11" 48.1" 135" 16.5,"16.9" 16.6±1.1" 12.6,"18.1"

Alajuela/&Heredia& 11" 48" 137" 16.3,"17.1" !!!" !!!"

Paramaribo& 11" 59" 123" 15.6,"17.0" !!!" 7.85,"18.1"

Natal& 11" 58.6" 140" 16.2,"17.0" 15.9±1.6" 10.9,"18.2"

Ascension& 11" 63.9" 134" 16.2,"17.1" 15.5±1.9" 8.35,"18.0"

Cotonou& 11" 72.5" 155" 15.5,"16.9" !!!" !!!"

Nairobi& 11" 55.3" 134" 16.4,"17.0" 16.3±1.6" 16.6,"18.0"

*"Altitude"corresponding"to"100"ppbv"ozonopause;"data"from"2005!2009."**"From"ozonopause"definition"of"Sivakumar)et)al.)[2011]"based"on"1998!2008"data."Mean"difference"between"their"ozonopause"and"LRT"averages"0.25"km,"with"five"of"7"tropical"sites"having"ozonopause"higher"than"LRT."***"Sivakumar)et)al.)[2011]"categorizes"Fiji"as"a"Sub!tropical"site."""§"GWI"="Gravity"Wave"Index,"based"on"1998!2007"soundings"[Thompson)et)al.,)2011]."

!