301
Set theory s From Wikipedia, the free encyclopedia

Set Theory s

  • Upload
    man

  • View
    14

  • Download
    7

Embed Size (px)

DESCRIPTION

1. From Wikipedia, the free encyclopedia2. Lexicographical order

Citation preview

  • Set theory sFrom Wikipedia, the free encyclopedia

  • Contents

    1 Admissible set 11.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 Almost 22.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    3 Benacerrafs identication problem 33.1 Historical motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    4 BIT predicate 54.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.3 Private information retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.4 Mathematical logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.5 Construction of the Rado graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5 Cabal (set theory) 75.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    6 Cantors diagonal argument 86.1 Uncountable set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    6.1.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96.1.2 Real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    6.2 General sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.2.1 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.2.2 Version for Quines New Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    6.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    i

  • ii CONTENTS

    6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    7 Cantors rst uncountability proof 147.1 The article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147.2 The proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167.3 Constructive or non-constructive nature of Cantors proof of the existence of transcendentals . . . . 177.4 The development of Cantors ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187.5 Why Cantors article emphasizes the countability of the algebraic numbers . . . . . . . . . . . . . . 187.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    8 Cantors paradise 248.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    9 Cantors theorem 259.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269.2 A detailed explanation of the proof when X is countably innite . . . . . . . . . . . . . . . . . . . 269.3 Related paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279.4 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    10 Cardinal assignment 3010.1 Cardinal assignment without the axiom of choice . . . . . . . . . . . . . . . . . . . . . . . . . . 3010.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    11 Cardinality of the continuum 3111.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    11.1.1 Uncountability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3111.1.2 Cardinal equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3111.1.3 Alternative explanation for c = 2@0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    11.2 Beth numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3311.3 The continuum hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3311.4 Sets with cardinality of the continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3311.5 Sets with greater cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3411.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    12 Categorical set theory 3612.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3612.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

  • CONTENTS iii

    12.3 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    13 Changs conjecture 3713.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    14 Class (set theory) 3814.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3814.2 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3814.3 Classes in formal set theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3814.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3914.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    15 Class logic 4015.1 Class logic in the strict sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4015.2 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4115.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    16 Club lter 4216.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    17 Club set 4317.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4317.2 The closed unbounded lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4317.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4417.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    18 Clubsuit 4518.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4518.2 and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4518.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4518.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    19 Code (set theory) 4619.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4619.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    20 Conality 4720.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4720.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4720.3 Conality of ordinals and other well-ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 4820.4 Regular and singular ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4820.5 Conality of cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4820.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4920.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

  • iv CONTENTS

    21 Condensation lemma 5021.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    22 Continuous function (set theory) 5122.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    23 Continuum (set theory) 5223.1 Linear continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5223.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5223.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    24 Controversy over Cantors theory 5324.1 Cantors argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5324.2 Reception of the argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5424.3 Objection to the axiom of innity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5424.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5524.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5524.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5524.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    25 Deductive closure 5725.1 Epistemic closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5725.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    26 Denable real number 5826.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5826.2 Notion does not exhaust unambiguously described numbers . . . . . . . . . . . . . . . . . . . . 5926.3 Other notions of denability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    26.3.1 Denability in other languages or structures . . . . . . . . . . . . . . . . . . . . . . . . . 5926.3.2 Denability with ordinal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    26.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5926.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    27 Diaconescus theorem 6127.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6127.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    28 Diagonal intersection 6328.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6328.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    29 Diamond principle 6429.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6429.2 Properties and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

  • CONTENTS v

    29.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6529.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    30 Dimensional operator 6630.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6630.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6630.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    31 Eastons theorem 6731.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6731.2 No extension to singular cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6831.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6831.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    32 Equaliser (mathematics) 6932.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6932.2 Dierence kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6932.3 In category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7032.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7032.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7132.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7132.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    33 ErdsRado theorem 7233.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7233.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    34 Extension (semantics) 7334.1 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7334.2 Computer science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7334.3 Metaphysical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7434.4 General semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7434.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7434.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    35 Extensionality 7535.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7535.2 In mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7535.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7635.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    36 Fodors lemma 7736.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7736.2 Fodors lemma for trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

  • vi CONTENTS

    36.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    37 Game-theoretic rough sets 7837.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    38 Goodsteins theorem 7938.1 Hereditary base-n notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7938.2 Goodstein sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8038.3 Proof of Goodsteins theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8038.4 Extended Goodsteins theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8138.5 Sequence length as a function of the starting value . . . . . . . . . . . . . . . . . . . . . . . . . . 8138.6 Application to computable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8138.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8238.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8238.9 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8238.10External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    39 Gdel logic 8339.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    40 Hartogs number 8440.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8440.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    41 Hausdor gap 8541.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8541.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8541.3 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    42 Hereditarily countable set 8742.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8742.2 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    43 Hereditarily nite set 8843.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8843.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8843.3 Ackermanns bijection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8943.4 Rado graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8943.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8943.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    44 Hereditary property 9044.1 In topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9044.2 In graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

  • CONTENTS vii

    44.2.1 Monotone property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9044.3 In model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9144.4 In matroid theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9144.5 In set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9144.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    45 Hereditary set 9345.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9345.2 In formulations of set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9345.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9345.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9345.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    46 Humes principle 9446.1 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9446.2 Inuence on set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9446.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9546.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    47 Ideal (set theory) 9647.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9647.2 Examples of ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    47.2.1 General examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9647.2.2 Ideals on the natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9647.2.3 Ideals on the real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9747.2.4 Ideals on other sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    47.3 Operations on ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9747.4 Relationships among ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9747.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9747.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    48 Implementation of mathematics in set theory 9948.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9948.2 Empty set, singleton, unordered pairs and tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . 10048.3 Ordered pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10048.4 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    48.4.1 Related denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10148.4.2 Properties and kinds of relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    48.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10248.5.1 Operations on functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10248.5.2 Special kinds of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    48.6 Size of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10348.7 Finite sets and natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

  • viii CONTENTS

    48.8 Equivalence relations and partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10448.9 Ordinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    48.9.1 Digression: von Neumann ordinals in NFU . . . . . . . . . . . . . . . . . . . . . . . . . 10648.10Cardinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10648.11The Axiom of Counting and subversion of stratication . . . . . . . . . . . . . . . . . . . . . . . 107

    48.11.1 Properties of strongly cantorian sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10748.12Familiar number systems: positive rationals, magnitudes, and reals . . . . . . . . . . . . . . . . . 10748.13Operations on indexed families of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10848.14The cumulative hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10848.15See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11048.16References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11048.17External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    49 Innitary combinatorics 11149.1 Ramsey theory for innite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11149.2 Large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11249.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11249.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    50 Information diagram 11350.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    51 Jensens covering theorem 11551.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    52 Jnsson function 11652.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    53 Kuratowskis free set theorem 11753.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    54 Laver function 11854.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11854.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11854.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    55 Limit cardinal 11955.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11955.2 Relationship with ordinal subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11955.3 The notion of inaccessibility and large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . 12055.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12055.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12055.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

  • CONTENTS ix

    56 List of exceptional set concepts 121

    57 List of set theory topics 12357.1 Articles on individual set theory topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12357.2 Lists related to set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12657.3 Set theorists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12657.4 Societies and organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    58 List of statements undecidable in ZFC 12858.1 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12858.2 Set theory of the real line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12958.3 Order theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12958.4 Abstract algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12958.5 Number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13058.6 Measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13058.7 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13058.8 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13058.9 Model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13158.10References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13158.11External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    59 Lvy hierarchy 13259.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13259.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    59.2.1 0=0=0 formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13259.2.2 1-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13359.2.3 1-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13359.2.4 1-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13359.2.5 2-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13359.2.6 2-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13359.2.7 2-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13359.2.8 3-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13459.2.9 3-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13459.2.10 3-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13459.2.11 4-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    59.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13459.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13459.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    60 Mathematical structure 13560.1 Example: the real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13560.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13660.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

  • x CONTENTS

    61 Mengenlehreuhr 13761.1 Telling the time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13761.2 Kryptos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13761.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13761.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    62 MilnerRado paradox 14162.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14162.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    63 Morass (set theory) 14263.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14263.2 Variants and equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14263.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    64 Mostowski model 14464.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    65 Multiplicity (mathematics) 14565.1 Multiplicity of a prime factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14565.2 Multiplicity of a root of a polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    65.2.1 Behavior of a polynomial function near a multiple root . . . . . . . . . . . . . . . . . . . 14565.3 Intersection multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14665.4 In complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14765.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    66 Naive set theory 14866.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    66.1.1 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14866.1.2 Cantors theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14966.1.3 Axiomatic theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14966.1.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14966.1.5 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    66.2 Sets, membership and equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15066.2.1 Note on consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15066.2.2 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15166.2.3 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15166.2.4 Empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    66.3 Specifying sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15166.4 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15266.5 Universal sets and absolute complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15266.6 Unions, intersections, and relative complements . . . . . . . . . . . . . . . . . . . . . . . . . . . 15266.7 Ordered pairs and Cartesian products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

  • CONTENTS xi

    66.8 Some important sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15366.9 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15466.10See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15566.11Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15566.12References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15666.13External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

    67 Normal function 15767.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15767.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15767.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15867.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    68 Ontological maximalism 15968.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    69 Open coloring axiom 16069.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16069.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    70 Ordinal arithmetic 16170.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16170.2 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16270.3 Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16370.4 Cantor normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16570.5 Factorization into primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16670.6 Large countable ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16670.7 Natural operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16770.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16870.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16870.10External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    71 Ordinal denable set 16971.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    72 Pairing function 17072.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17072.2 Cantor pairing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

    72.2.1 Inverting the Cantor pairing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17072.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    73 Paradoxes of set theory 17373.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    73.1.1 Cardinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

  • xii CONTENTS

    73.1.2 Ordinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17373.1.3 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

    73.2 Paradoxes of the innite set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17473.2.1 Paradoxes of enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17473.2.2 Je le vois, mais je ne crois pas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17473.2.3 Paradoxes of well-ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

    73.3 Paradoxes of the Supertask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17573.3.1 The diary of Tristram Shandy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17573.3.2 The Ross-Littlewood paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    73.4 Paradoxes of proof and denability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17573.4.1 Early paradoxes: the set of all sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17573.4.2 Paradoxes by change of language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17673.4.3 Paradox of Lwenheim and Skolem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

    73.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17773.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17773.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17773.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    74 Paradoxical set 17874.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    74.1.1 BanachTarski paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17874.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    75 PCF theory 17975.1 Main denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17975.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17975.3 Unsolved problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17975.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18075.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18075.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    76 Permutation model 18176.1 Construction of permutation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18176.2 Construction of lters on a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18176.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    77 Preordered class 18277.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18277.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18277.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    78 Primitive notion 18378.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

  • CONTENTS xiii

    78.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18478.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

    79 Primitive recursive set function 18579.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18579.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    80 Pseudo-intersection 18680.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    81 Quasi-set theory 18781.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18781.2 Outline of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18781.3 Some further details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18881.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19081.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    82 Recursive ordinal 19282.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19282.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    83 Reection principle 19383.1 Motivation for reection principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19383.2 The reection principle in ZFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19383.3 Reection principles as new axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19483.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    84 S (set theory) 19584.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19584.2 Primitive notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19584.3 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19684.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19684.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19784.6 Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    85 SchrderBernstein property 19885.1 SchrderBernstein properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19885.2 SchrderBernstein problems and SchrderBernstein theorems . . . . . . . . . . . . . . . . . . . 19985.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20085.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20085.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20085.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

    86 Scotts trick 201

  • xiv CONTENTS

    86.1 Application to cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20186.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    87 Separating set 20287.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20287.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    88 Set (mathematics) 20388.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20488.2 Describing sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20488.3 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

    88.3.1 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20688.3.2 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    88.4 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20788.5 Special sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20788.6 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    88.6.1 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20888.6.2 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20988.6.3 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20988.6.4 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    88.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21288.8 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21288.9 Principle of inclusion and exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21388.10De Morgans Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21388.11See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21488.12Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21488.13References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21488.14External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

    89 Set intersection oracle 21589.1 Minimum memory, maximum query time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21589.2 Maximum memory, minimum query time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21589.3 A compromise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21589.4 Reduction to approximate distance oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21689.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

    90 Set notation 21790.1 Denoting a set as an object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21790.2 Focusing on the membership of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21790.3 Metaphor in denoting sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21890.4 Other conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21990.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21990.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

  • CONTENTS xv

    91 Set theory 22091.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22191.2 Basic concepts and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22291.3 Some ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22391.4 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22391.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22491.6 Areas of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

    91.6.1 Combinatorial set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22591.6.2 Descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22591.6.3 Fuzzy set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22591.6.4 Inner model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22591.6.5 Large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22691.6.6 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22691.6.7 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22691.6.8 Cardinal invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22691.6.9 Set-theoretic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

    91.7 Objections to set theory as a foundation for mathematics . . . . . . . . . . . . . . . . . . . . . . . 22791.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22791.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22791.10Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22891.11External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    92 Set theory of the real line 22992.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22992.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

    93 Set-builder notation 23193.1 Direct, ellipses, and informally specied sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23193.2 Formal set builder notation sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23293.3 Expressions to the left of 'such that' rather than a variable . . . . . . . . . . . . . . . . . . . . . . 23293.4 Convention of annotating the variable domain on the left of the 'such that' . . . . . . . . . . . . . . 23393.5 Leaving the variable domain understood by context . . . . . . . . . . . . . . . . . . . . . . . . . 23393.6 Equivalent builder predicates means equivalent sets . . . . . . . . . . . . . . . . . . . . . . . . . 23493.7 Russells Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23493.8 Z notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23493.9 Parallels in programming languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23593.10Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23593.11References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

    94 Set-theoretic limit 23694.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

    94.1.1 The two denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

  • xvi CONTENTS

    94.1.2 Monotone sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23794.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23794.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23894.4 Probability uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

    94.4.1 BorelCantelli lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23994.4.2 Almost sure convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    94.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    95 Set-theoretic topology 24195.1 Objects studied in set-theoretic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

    95.1.1 Dowker spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24195.1.2 Normal Moore spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24195.1.3 Cardinal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24195.1.4 Martins axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24295.1.5 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

    95.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24395.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

    96 Sierpiski set 24496.1 Example of a Sierpiski set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24496.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

    97 Simplied morass 24597.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

    98 Soft set 24698.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24698.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    99 Solovay model 24799.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24799.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24799.3 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24799.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

    100Square principle 249100.1Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249100.2Variant relative to a cardinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249100.3Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

    101Stationary set 250101.1Classical notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250101.2Jechs notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250101.3Generalized notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

  • CONTENTS xvii

    101.4References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251101.5External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

    102Stratication (mathematics) 252102.1In mathematical logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252102.2In set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252102.3In singularity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253102.4In statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

    103Structuralism (philosophy of mathematics) 254103.1Historical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254103.2Contemporary schools of thought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255103.3References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255103.4Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255103.5See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256103.6External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

    104Subclass (set theory) 257104.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

    105Successor cardinal 258105.1See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259105.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

    106Sunower (mathematics) 260106.1 lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261106.2 lemma for !2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261106.3Sunower lemma and conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261106.4References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

    107Superstrong cardinal 262107.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

    108Supertransitive class 263108.1See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263108.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

    109Support (mathematics) 264109.1Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264109.2Closed support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264109.3Compact support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265109.4Essential support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265109.5Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266109.6In probability and measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

  • xviii CONTENTS

    109.7Support of a distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266109.8Singular support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266109.9Family of supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266109.10See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267109.11References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

    110Suslin representation 268110.1See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268110.2External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    111Symmetric set 269111.1Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269111.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

    112The Paradoxes of the Innite 270112.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

    113-logic 271113.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271113.2External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272113.3Text and image sources, contributors, and licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 273

    113.3.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273113.3.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280113.3.3 Content license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

  • Chapter 1

    Admissible set

    In set theory, a discipline within mathematics, an admissible set is a transitive set A such that hA;2i is a model ofKripkePlatek set theory (Barwise 1975).The smallest example of an admissible set is the set of hereditarily nite sets. Another example is the set of hereditarilycountable sets.

    1.1 See also Admissible ordinal

    1.2 References Barwise, Jon (1975). Admissible Sets and Structures: An Approach to Denability Theory, Perspectives inMathematical Logic, Volume 7, Springer-Verlag. Electronic version on Project Euclid.

    1

  • Chapter 2

    Almost

    For other uses, see Almost (disambiguation).

    In set theory, when dealing with sets of innite size, the term almost or nearly is used to mean all the elements exceptfor nitely many.In other words, an innite set S that is a subset of another innite set L, is almost L if the subtracted set L\S is ofnite size.Examples:

    The set S = fn 2 Njn kg is almost N for any k in N, because only nitely many natural numbers are lessthan k.

    The set of prime numbers is not almost N because there are innitely many natural numbers that are not primenumbers.

    This is conceptually similar to the almost everywhere concept of measure theory, but is not the same. For example,the Cantor set is uncountably innite, but has Lebesgue measure zero. So a real number in (0, 1) is a member of thecomplement of the Cantor set almost everywhere, but it is not true that the complement of the Cantor set is almostthe real numbers in (0, 1).

    2.1 See also Almost all Almost surely

    2

  • Chapter 3

    Benacerrafs identication problem

    Benacerrafs identication problem is a philosophical argument, developed by Paul Benacerraf, against set-theoreticPlatonism.[1] In 1965, Benacerraf published a paradigm changing article entitled What Numbers Could Not Be.[1][2]Historically, the work became a signicant catalyst in motivating the development of structuralism in the philosophyof mathematics.[3] The identication problem argues that there exists a fundamental problem in reducing naturalnumbers to pure sets. Since there exists an innite number of ways of identifying the natural numbers with pure sets,no particular set-theoretic method can be determined as the true reduction. Benacerraf infers that any attempt tomake such a choice of reduction immediately results in generating a meta-level, set-theoretic falsehood, namely inrelation to other elementarily-equivalent set-theories not identical to the one chosen.[1] The identication problemargues that this creates a fundamental problem for Platonism, which maintains that mathematical objects have a real,abstract existence. Benacerrafs dilemma to Platonic set-theory is arguing that the Platonic attempt to identify thetrue reduction of natural numbers to pure sets, as revealing the intrinsic properties of these abstract mathematicalobjects, is impossible.[1] As a result, the identication problem ultimately argues that the relation of set theory tonatural numbers cannot have an ontologically Platonic nature.[1]

    3.1 Historical motivationsThe historical motivation for the development of Benacerrafs identication problem derives from a fundamentalproblem of ontology. Since Medieval times, philosophers have argued as to whether the ontology of mathematicscontains abstract objects. In the philosophy of mathematics, an abstract object is traditionally dened as an entity that:(1) exists independent of the mind; (2) exists independent of the empirical world; and (3) has eternal, unchangeableproperties.[4] Traditional mathematical Platonismmaintains that some set ofmathematical elementsnatural numbers,real numbers, functions, relations, systemsare such abstract objects. Contrarily, mathematical nominalism denies theexistence of any such abstract objects in the ontology of mathematics.In the late 19th and early 20th century, a number of anti-Platonist programs gained in popularity. These includedintuitionism, formalism, and predicativism. By the mid-20th century, however, these anti-Platonist theories had anumber of their own issues. This subsequently resulted in a resurgence of interest in Platonism. It was in this historiccontext that the motivations for the identication problem developed.

    3.2 DescriptionThe identication problem begins by evidencing some set of elementarily-equivalent, set-theoretic models of thenatural numbers.[1] Benacerraf considers two such set-theoretic methods:

    Set-theoretic method I0 = 1 = {}2 = {{}}3 = {{{}}}

    3

  • 4 CHAPTER 3. BENACERRAFS IDENTIFICATION PROBLEM

    ...

    Set-theoretic method II0 = 1 = {}2 = {, {}}3 = {, {}, {, {}}}...

    As Benacerraf demonstrates, both method I and II reduce natural numbers to sets.[1] Benacerraf formulates thedilemma as a question: which of these set-theoretic methods uniquely provides the true identity statements, whichelucidates the true ontological nature of the natural numbers?[1] Either method I or II could be used to dene thenatural numbers and subsequently generate true arithmetical statements to form a mathematical system. In theirrelation, the elements of such mathematical systems are isomorphic in their structure. However, the problem ariseswhen these isomorphic structures are related together on the meta-level. The denitions and arithmetical statementsfrom system I are not identical to the denitions and arithmetical statements from system II. For example, the twosystems dier in their answer to whether 0 2, insofar as is not an element of {{}}. Thus, in terms of failing thetransitivity of identity, the search for true identity statements similarly fails.[1] By attempting to reduce the naturalnumbers to sets, this renders a set-theoretic falsehood between the isomorphic structures of dierent mathematicalsystems. This is the essence of the identication problem.According to Benacerraf, the philosophical ramications of this identication problem result in Platonic approachesfailing the ontological test.[1] The argument is used to demonstrate the impossibility for Platonism to reduce numbersto sets that reveals the existence of abstract objects.

    3.3 See also Philosophy of mathematics Structuralism (philosophy of mathematics) Paul Benacerraf

    3.4 References[1] Paul Benacerraf (1965), What Numbers Could Not Be, Philosophical Review Vol. 74, pp. 4773.[2] Bob Hale and Crispin Wright (2002) Benacerrafs Dilemma Revisited European Journal of Philosophy, Issue 10:1.[3] Stewart Shapiro (1997) Philosophy of Mathematics: Structure and Ontology New York: Oxford University Press, p. 37.

    ISBN 0195139305[4] Michael Loux (2006) Metaphysics: A Contemporary Introduction (Routledge Contemporary Introductions to Philosophy),

    London: Routledge. ISBN 0415401348

    3.5 Bibliography Benacerraf, Paul (1965) What Numbers Could Not Be Philosophical Review Vol. 74, pp. 4773. Benacerraf, Paul (1973) Mathematical Truth, in Benacerraf & Putnam Philosophy ofMathematics: SelectedReadings, Cambridge: Cambridge University Press, 2nd edition. 1983, pp. 403420.

    Hale, Bob (1987) Abstract Objects. Oxford: Basil Blackwell. ISBN 0631145931 Hale, Bob and Wright, Crispin (2002) Benacerrafs Dilemma Revisited European Journal of Philosophy,Issue 10:1.

    Shapiro, Stewart (1997) Philosophy of Mathematics: Structure and Ontology New York: Oxford UniversityPress. ISBN 0195139305

  • Chapter 4

    BIT predicate

    In mathematics and computer science, the BIT predicate or Ackermann coding, sometimes written BIT(i, j), is apredicate which tests whether the jth bit of the number i is 1, when i is written in binary.

    4.1 History

    The BIT predicate was rst introduced as the encoding of hereditarily nite sets as natural numbers by WilhelmAckermann in his 1937 paper[1][2] (The Consistency of General Set Theory).Each natural number encodes a nite set and each nite set is represented by a natural number. This mapping uses thebinary numeral system. If the number n encodes a nite set A and the ith binary digit of n is 1 then the set encodedby i is element of A. The Ackermann coding is a primitive recursive function.[3]

    4.2 Implementation

    In programming languages such as C, C++, Java, or Python that provide a right shift operator >> and a bitwiseBoolean and operator &, the BIT predicate BIT(i, j) can be implemented by the expression (i>>j)&1. Here the bitsof i are numbered from the low order bits to high order bits in the binary representation of i, with the ones bit beingnumbered as bit 0.[4]

    4.3 Private information retrieval

    In the mathematical study of computer security, the private information retrieval problem can be modeled as one inwhich a client, communicating with a collection of servers that store a binary number i, wishes to determine the resultof a BIT predicate BIT(i, j) without divulging the value of j to the servers. Chor et al. (1998) describe a method forreplicating i across two servers in such a way that the client can solve the private information retrieval problem usinga substantially smaller amount of communication than would be necessary to recover the complete value of i.[5]

    4.4 Mathematical logic

    The BIT predicate is often examined in the context of rst-order logic, where we can examine the system resultingfrom adding the BIT predicate to rst-order logic. In descriptive complexity, the complexity class FO + BIT resultingfrom adding the BIT predicate to FO results in a more robust complexity class.[6] The class FO + BIT, of rst-orderlogic with the BIT predicate, is the same as the class FO + PLUS + TIMES, of rst-order logic with addition andmultiplication predicates.[7]

    5

  • 6 CHAPTER 4. BIT PREDICATE

    4.5 Construction of the Rado graphAckermann in 1937 and Richard Rado in 1964 used this predicate to construct the innite Rado graph. In theirconstruction, the vertices of this graph correspond to the non-negative integers, written in binary, and there is anundirected edge from vertex i to vertex j, for i < j, when BIT(j,i) is nonzero.[8]

    4.6 References[1] Ackermann, Wilhelm (1937). Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathematische Annalen 114:

    305315. doi:10.1007/bf01594179. Retrieved 2012-01-09.

    [2] Kirby, Laurence (2009). Finitary Set Theory. Notre Dame Journal of Formal Logic 50 (3): 227244. doi:10.1215/00294527-2009-009. Retrieved 31 May 2011.

    [3] Rautenberg,Wolfgang (2010). AConcise Introduction toMathematical Logic (3rd ed.). NewYork: Springer Science+BusinessMedia. p. 261. doi:10.1007/978-1-4419-1221-3. ISBN 978-1-4419-1220-6.

    [4] Venugopal, K. R. (1997). Mastering C++. Muhammadali Shaduli. p. 123. ISBN 9780074634547..

    [5] Chor, Benny; Kushilevitz, Eyal; Goldreich, Oded; Sudan, Madhu (1998). Private information retrieval. Journal of theACM 45 (6): 965981. doi:10.1145/293347.293350..

    [6] Immerman, Neil (1999). Descriptive Complexity. New York: Springer-Verlag. ISBN 0-387-98600-6.

    [7] Immerman, Neil (1999). Descriptive Complexity. New York: Springer-Verlag. pp. 1416. ISBN 0-387-98600-6.

    [8] Rado, Richard (1964). Universal graphs and universal functions. Acta Arith. 9: 331340..

  • Chapter 5

    Cabal (set theory)

    The Cabal was, or perhaps is, a grouping of set theorists in Southern California, particularly at UCLA and Caltech,but also at UC Irvine. Organization and procedures range from informal to nonexistent, so it is dicult to say whetherit still exists or exactly who has been a member, but it has included such notable gures as Donald A. Martin, YiannisN. Moschovakis, John R. Steel, and Alexander S. Kechris. Others who have published in the proceedings of theCabal seminar include Robert M. Solovay, W. Hugh Woodin, Matthew Foreman, and Steve Jackson.The work of the group is characterized by free use of large cardinal axioms, and research into the descriptive settheoretic behavior of sets of reals if such assumptions hold.Some of the philosophical views of the Cabal seminar were described in Maddy 1988a and Maddy 1988b.

    5.1 Publications Kechris, A. S. et al. (1978). Cabal Seminar 76-77: Proceedings. Caltech-UCLA Logic Seminar 1976-77.Springer. ISBN 0-387-09086-X.

    Kechris, A. S. (editor) (1983). Cabal Seminar 79-81: Proc Caltech-UCLA Logic Seminar 1979-81 (LectureNotes in Mathematics). Springer. ISBN 0-387-12688-0.

    Martin, D. A., A. S. Kechris, J. R. Steel (1988). Cabal Seminar 81-85: Proceedings Caltech UCLA LogicSeminar (Lecture Notes in Mathematics, No 1333). Springer. ISBN 0-387-50020-0.

    Alexander S. Kechris, Benedikt Lwe, John R. Steel (2008). Games, Scales, and Suslin cardinals: The CabalSeminar Volume I: Lecture Notes in Logic. CUP. ISBN 9780521899512.

    5.2 References Maddy, Penelope (1988). Believing the Axioms I (PDF). The Journal of Symbolic Logic 53 (2): 481511. Maddy, Penelope (1988). Believing the Axioms II (PDF). The Journal of Symbolic Logic 53 (3): 736764.

    7

  • Chapter 6

    Cantors diagonal argument

    In set theory, Cantors diagonal argument, also called the diagonalisation argument, the diagonal slash argu-ment or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are innitesets which cannot be put into one-to-one correspondence with the innite set of natural numbers.[1][2][3] Such sets arenow known as uncountable sets, and the size of innite sets is now treated by the theory of cardinal numbers whichCantor began.The diagonal argument was not Cantors rst proof of the uncountability of the real numbers; it was actually pub-lished much later than his rst proof, which appeared in 1874.[4][5] However, it demonstrates a powerful and generaltechnique that has since been used in a wide range of proofs, also known as diagonal arguments by analogy withthe argument used in this proof. The most famous examples are perhaps Russells paradox, the rst of Gdelsincompleteness theorems, and Turings answer to the Entscheidungsproblem.

    6.1 Uncountable setIn his 1891 article, Cantor considered the set T of all innite sequences of binary digits (i.e. consisting only of zeroesand ones). He begins with a constructive proof of the following theorem:

    If s1, s2, , sn, is any enumeration of elements from T, then there is always an element s of T whichcorresponds to no sn in the enumeration.

    To prove this, given an enumeration of arbitrary members from T, like e.g.

    he constructs the sequence s by choosing its nth digit as complementary to the nth digit of sn, for every n. In theexample, this yields:

    By construction, s diers from each sn, since their nth digits dier (highlighted in the example). Hence, s cannotoccur in the enumeration.Based on this theorem, Cantor then uses an indirect argument to show that:

    The set T is uncountable.

    He assumes for contradiction that T was countable. Then (all) its elements could be written as an enumeration s1,s2, , sn, . Applying the previous theorem to this enumeration would produce a sequence s not belonging tothe enumeration. However, s was an element of T and should therefore be in the enumeration. This contradicts theoriginal assumption, so T must be uncountable.

    8

  • 6.1. UNCOUNTABLE SET 9

    An illustration of Cantors diagonal argument (in base 2) for the existence of uncountable sets. The sequence at the bottom cannotoccur anywhere in the enumeration of sequences above.

    6.1.1 Interpretation

    The interpretation of Cantors result will depend upon ones view of mathematics. To constructivists, the argumentshows no more than that there is no bijection between the natural numbers and T. It does not rule out the possibilitythat the latter are subcountable. In the context of classical mathematics, this is impossible, and the diagonal argumentestablishes that, although both sets are innite, there are actually more innite sequences of ones and zeros than thereare natural numbers.

  • 10 CHAPTER 6. CANTORS DIAGONAL ARGUMENT

    YX123

    x

    246

    2x. .

    . .

    An innite set may have the same cardinality as a proper subset of itself, as the depicted bijection f(x)=2x from the natural to theeven numbers demonstrates. Nevertheless, innite sets of dierent cardinalities exist, as Cantors diagonal argument shows.

    6.1.2 Real numbers

    The uncountability of the real numbers was already established by Cantors rst uncountability proof, but it also fol-lows from the above result. To see this, we will build a one-to-one correspondence between the set T of innite binarystrings and a subset of R (the set of real numbers). Since T is uncountable, this subset of R must be uncountable.Hence R is uncountable.To build this one-to-one correspondence (or bijection), observe that the string t = 0111 appears after the binarypoint in the binary expansion 0.0111. This suggests dening the function f(t) = 0.t, where t is a string in T.Unfortunately, f(1000) = 0.1000 = 1/2, and f(0111) = 0.0111 = 1/4 + 1/8 + 1/16 + = 1/2. So thisfunction is not a bijection since two strings correspond to one numbera number having two binary expansions.However, modifying this function produces a bijection from T to the interval (0, 1)that is, the real numbers > 0and < 1. The idea is to remove the problem elements from T and (0, 1), and handle them separately. From (0, 1),remove the numbers having two binary expansions. Put these numbers in a sequence: a = (1/2, 1/4, 3/4, 1/8, 3/8,5/8, 7/8, ). From T, remove the strings appearing after the binary point in the binary expansions of 0, 1, and thenumbers in sequence a. Put these eventually-constant strings in a sequence: b = (000, 111, 1000, 0111,01000, 11000, 00111, 10111, ...). A bijection g(t) from T to (0, 1) is dened by: If t is the nth string insequence b, let g(t) be the nth number in sequence a; otherwise, let g(t) = 0.t.To build a bijection from T to R: start with the tangent function tan(x), which provides a bijection from (/2, /2)to R; see right picture. Next observe that the linear function h(x) = x - /2 provides a bijection from (0, 1) to(/2, /2); see left picture. The composite function tan(h(x)) = tan(x - /2) provides a bijection from (0, 1) toR. Compose this function with g(t) to obtain tan(h(g(t))) = tan(g(t) - /2), which is a bijection from T to R. Thismeans that T and R have the same cardinalitythis cardinality is called the "cardinality of the continuum.

  • 6.2. GENERAL SETS 11

    6.2 General sets

    Illustration of the generalized diagonal argument: The set T = {n: nf(n)} at the bottom cannot occur anywhere in the range off:P(). The example mapping f happens to correspond to the example enumeration s in the above picture.

    A generalized form of the diagonal argument was used by Cantor to prove Cantors theorem: for every set S the powerset of S; that is, the set of all subsets of S (here written as P(S)), has a larger cardinality than S itself. This proofproceeds as follows:Let f be any function from S to P(S). It suces to prove f cannot be surjective. That means that some member T ofP(S), i.e. some subset of S, is not in the image of f. As a candidate consider the set:

    T = { s S: s f(s) }.

    For every s in S, either s is in T or not. If s is in T, then by denition of T, s is not in f(s), so T is not equal to f(s).On the other hand, if s is not in T, then by denition of T, s is in f(s), so again T is not equal to f(s); cf. picture. Fora more complete account of this proof, see Cantors theorem.

    6.2.1 Consequences

    This result implies that the notion of the set of all sets is an inconsistent notion. If S were the set of all sets then P(S)would at the same time be bigger than S and a subset of S.Russells Paradox has shown us that naive set theory, based on an unrestricted comprehension scheme, is contra-dictory. Note that there is a similarity between the construction of T and the set in Russells paradox. Therefore,

  • 12 CHAPTER 6. CANTORS DIAGONAL ARGUMENT

    depending on how we modify the axiom scheme of comprehension in order to avoid Russells paradox, argumentssuch as the non-existence of a set of all sets may or may not remain valid.The diagonal argument shows that the set of real numbers is bigger than the set of natural numbers (and therefore,the integers and rationals as well). Therefore, we can ask if there is a set whose cardinality is between that ofthe integers and that of the reals. This question leads to the famous continuum hypothesis. Similarly, the questionof whether there exists a set whose cardinality is between |S| and |P(S)| for some innite S leads to the generalizedcontinuum hypothesis.Analogues of the diagonal argument are widely used in mathematics to prove the existence or nonexistence of certainobjects. For example, the conventional proof of the unsolvability of the halting problem is essentially a diagonalargument. Also, diagonalization was originally used to show the existence of arbitrarily hard complexity classes andplayed a key role in early attempts to prove P does not equal NP.

    6.2.2 Version for Quines New Foundations

    The above proof fails for W. V. Quine's "New Foundations" set theory (NF). In NF, the naive axiom scheme ofcomprehension is modied to avoid the paradoxes by introducing a kind of local type theory. In this axiom scheme,

    { s S: s f(s) }

    is not a set i.e., does not satisfy the axiom scheme. On the other hand, we might try to create a modied diagonalargument by noticing that

    { s S: s f({s}) }

    is a set in NF. In which case, if P1(S) is the set of one-element subsets of S and f is a proposed bijection from P1(S)to P(S), one is able to use proof by contradiction to prove that |P1(S)| < |P(S)|.The proof follows by the fact that if f were indeed a map onto P(S), then we could nd r in S, such that f({r})coincides with the modied diagonal set, above. We would conclude that if r is not in f({r}), then r is in f({r}) andvice versa.It is not possible to put P1(S) in a one-to-one relation with S, as the two have dierent types, and so any function sodened would violate the typing rules for the comprehension scheme.

    6.3 See also Cantors rst uncountability proof

    Controversy over Cantors theory

    6.4 References[1] Georg Cantor (1892). Ueber eine elementare Frage der Mannigfaltigkeitslehre (PDF). Jahresbericht der Deutschen

    Mathematiker-Vereinigung 18901891 1: 7578 (8487 in pdf le). (in german)

    [2] Keith Simmons (30 July 1993). Universality and the Liar: An Essay on Truth and the Diagonal Argument. CambridgeUniversity Press. pp. 20. ISBN 978-0-521-43069-2.

    [3] Rudin, Walter (1976). Principles of Mathematical Analysis (3rd ed.). New York: McGraw-Hill. p. 30. ISBN 0070856133.

    [4] Gray, Robert (1994), Georg Cantor and Transcendental Numbers (PDF), American Mathematical Monthly 101: 819832, doi:10.2307/2975129

    [5] Bloch, Ethan D. (2011). The Real Numbers and Real Analysis. New York: Springer. p. 429. ISBN 978-0-387-72176-7.

  • 6.5. EXTERNAL LINKS 13

    6.5 External links Cantors Diagonal Proof at MathPages Weisstein, Eric W., Cantor Diagonal Method, MathWorld.

  • Chapter 7

    Cantors rst uncountability proof

    Georg Cantors rst proof of uncountability demonstrates that the set of all real numbers is uncountably, ratherthan countably, innite. This proof diers from the more familiar proof that uses his diagonal argument. Cantorsrst uncountability proof was published in 1874, in an article that also contains a proof that the set of real algebraicnumbers is countable, and a proof of the existence of transcendental numbers.[1]

    Two points about which not all authors writing about Cantors article have agreed are these:

    Is Cantors proof of the existence of transcendental numbers constructive or non-constructive?[2]

    Why did Cantor emphasize the countability of the real algebraic numbers rather than the uncountability of thereal numbers?[3]

    In 1891 Cantor published his diagonal argument,[4] which produces an uncountability proof that is generally con-sidered simpler and more elegant than his rst proof. Both uncountability proofs contain ideas that can be usedelsewhere. The diagonal argument is a general technique that is useful in mathematical logic and theoretical com-puter science, while Cantors rst uncountability proof can be generalized to any ordered set with the same orderproperties as the real numbers.[5]

    7.1 The articleCantors article[6] begins with a discussion of the real algebraic numbers, and a statement of his rst theorem: Thecollection of real algebraic numbers can be put into one-to-one correspondence with the collection of positive integers.Cantor restates this theorem in terms more familiar to mathematicians of his time: The collection of real algebraicnumbers can be written as an innite sequence in which each number appears only once.Next Cantor states his second theorem: Given any sequence of real numbers x1, x2, x3, and any interval [a, b],[7]one can determine numbers in [a, b] that are not contained in the given sequence.Cantor observes that combining his two theorems yields a new proof of the theorem: Every interval [a, b] containsinnitely many transcendental numbers. This theorem was rst proved by Joseph Liouville.[8]

    He then remarks that his second theorem is:

    the reason why collections of real numbers forming a so-called continuum (such as, all real numberswhich are 0 and 1) cannot correspond one-to-one with the collection () [the collection of all positiveintegers]; thus I have found the clear dierence between a so-called continuum and a collection like thetotality of real algebraic numbers.[9]

    The rst half of this remark is Cantors uncountability theorem. Cantor does not explicitly prove this theorem, whichfollows easily from his second theorem. To prove it, use proof by contradiction. Assume that the interval [a, b] canbe put into one-to-one correspondence with the set of positive integers, or equivalently: The real numbers in [a, b]can be written as a sequence in which each real number appears only once. Applying Cantors second theorem to

    14

  • 7.1. THE ARTICLE 15

    Georg Cantor

    this sequence and [a, b] produces a real number in [a, b] that d