29
Senior Design Presentation Direct Fe Reduction Iron Plant Group Golf Selimos, Blake A. Arrington, Deisy C. Sink, Brandon Ciarlette, Dominic F. (Scribe) Advisor : Orest Romaniuk Group Meeting 1 – 01/29/2013

Senior Design Presentation Direct Fe Reduction Iron Plant Group Golf Selimos, Blake A. Arrington, Deisy C. Sink, Brandon Ciarlette, Dominic F. (Scribe)

Embed Size (px)

Citation preview

Senior Design Presentation

Direct Fe Reduction Iron Plant

Group Golf

Selimos, Blake A.

Arrington, Deisy C.

Sink, Brandon

Ciarlette, Dominic F. (Scribe)

Advisor : Orest Romaniuk

Group Meeting 1 – 01/29/2013

2

Table of ContentsPage 3: Previous Questions

Page 4: Design Basis

Page 5-9: Process Flow Diagram

Page 10-14: Material Balance

Page 15-18: Energy Balance

Page 19: Work in progress

Page 20-22: Economics

Page 23: Summary

Page 24: Oxy Fuel Booster

Page 25: References

3

Previous QuestionsWill Sulfur in the methane stream poison the

Nickel catalysis?

What is our ore source?

What is the largest Midrex plant currently in operation?

What are our power requirements?

4

Design Basis

• 2 million metric tons DRI produced yearly

• Receive methane from Gas Treatment Plant

• Receive oxygen from Air Separation Plant

• Send CO2 to Gas Cleanup Water Reuse Plant

5

Flow Diagram

Oxy Fuel Boost Reformer

Removal

GuardBed

Heater

Shaft Furnace

Top Gas Scrubber

Midrex Reformer

Main Air

Ejector Stack

Iron Ore

Iron Briquettes

Compressor

Fuel Gas

Recycle1.

2.

3.

4.

5.

6.

7.

9.10.

11.

12. 21.

14.

15.

16.

17.

18.

19.

20.

13.

22.

2

24.

8.

6

Flow Diagram - Reformers

7

Flow Diagram – Top Gases

Removal

Top Gas Scrubber

Compressor

Fuel Gas

Recycle9.10.

17.

18.

8.

13.

7.

8

Flow Diagram – Feed/Heat Recovery

9

Flow Diagram - Furnace

Shaft Furnace

Iron Ore

Iron Briquettes

6.

7.

19.

20.

6.

10

2𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑚𝑇𝑜𝑛𝐷𝑅𝐼𝑦𝑒𝑎𝑟

×𝑚𝑜𝑙𝐷𝑅𝐼

5.585×10−5𝑚𝑇𝑜𝑛𝐷𝑅𝐼×

𝑚𝑜𝑙𝐹𝑒𝑚𝑜𝑙𝐷𝑅𝐼

×3𝑚𝑜𝑙𝑂2𝑚𝑜𝑙 𝐹𝑒

×𝑚𝑜𝑙𝐻 2𝑚𝑜𝑙𝑂

Calculating how much H2 will be needed in stream 6

Hand Calculations

11

Hand Calculations (2)

( 57𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑚𝑜𝑙𝑠𝐶𝑂 (𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑟𝑒𝑓𝑜𝑟𝑚𝑒𝑟 )𝑑𝑎𝑦

−2𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑚𝑜𝑙𝑠𝐶𝑂 (𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔𝑟𝑒𝑓𝑜𝑟𝑚𝑒𝑟 )

𝑑𝑎𝑦 )

¿45𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑚𝑜𝑙𝑠𝐶𝐻4

𝑑𝑎𝑦

×[ 2𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 )2𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 )+1𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 )

×𝑚𝑜𝑙𝐶𝐻 4

2𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 )×

10.80 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 )

¿+1𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 )

2𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 )+1𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 )×

𝑚𝑜𝑙𝐶𝐻 4

1𝑚𝑜𝑙𝐶𝑂 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 2 )×

10.80 (𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 ) ]

Calculating how much CH4 will be needed in stream 1

12

Material Balance Assumptions

Post reformerAssume following conversion rates

Reaction 1: 80%Reaction 2: 80%Reaction 3: 80%

Post OXY boosterAssume booster adds 5.0% of stream 5 to stream 5.Assume conversion rate of 80%

Post shaft furnaceAssume reduction reaction conversion rates of 93%

Process gas splitAssume all steam is condensed and all water is sent to process recycle

stream.Assume 60:40 split for streams 9:17.

13

Material Balance Assumptions (2)

Post CO2 removalAssume 100% removal of appreciable CO2.

Top gas to combustion splitAssume no water in this stream.

Ore feedAssume only Fe2O3.In reality this stream will contain, in addition to Fe2O3, Fe3O4, and

SiO2.Needs to be corrected to include other components.

Product streamAssume only pure Fe and residual Fe2O3.

 Post reformer combustion

Assume total combustion of fuel gases from stream 21.

14

Material Balance

Stream number

1 3 5 6 7 9

Stream name Methane process

feed

Methane and recycle process stream

Reformed process gas

Temperature boosted process

gas

Top gas 

60% recycle gas

split with water

CH4 45 45 9 3 3 2

H2 - 4 82 88 6 4

CO - 2 57 59 4 2

CO2 1 36 3 3 59 35

H2O - 82 - - 82 82

N2 2 3 2 2 2 1

C3+ 3 3 - - - -

Process Gas (million mol/day)

15

Energy Balance AssumptionsFor the furnace temperature we used an average

value of 980F.

For the reformer we used a temperature of 1562F

Energy balance of furnace based only on incoming and outgoing iron due to weight of

iron being substantially higher than weight of incoming gases.

16

Energy Balance

Page 5-6: Process Flow Diagram (1)

Page 7-12: Material Balance

Page 13-15: Energy Balance

Page 16: Work in progress

Page 17-19: Economics

Page 20: Summary

Page 21: References

Page 23: Process Flow Diagram (2)

Heats of formation Heat capacity Empirical Constants

Components MW ∆Hf a b c d

CH4 16 -64075666.38 0.03431 0.00005469 3.66E-09 -1.10E-11

H2O 18 -207922613.9 0.03336 -0.00000688 7.60E-09 -3.59E-12

CO 28 -95038693.04 0.02895 0.00000411 3.55E-09 -2.22E-12

CO2 44 -338357695.6 0.03611 0.00004233 2.89E-08 7.46E-12

H2 2 0 0.02884 7.65E-08 3.29E-09 -8.70E-13

O2 32 0 0.0291 0.00001158 -6.08E-09 1.31E-12

T Cp/R A B D

Fe 1043 3.005 -0.111 6.11E-03 1.15E-05

Fe2O3 960 12.48 11.812 9.70E-03 -1.98E-05

 

17

Energy Hand CalculationsEndothermic Reaction in the Primary Reformer

CH4+ CO2 → 2CO + 2H2

H°Σ f=(2*-95038693.04)+(2*0)-(-64075666.38)-(-338357695.6)

H°Σ f= 40,729,381

(h2-h1)CH4=0.03431(850-25)+(8502-252)+ (8503-503)+*(8504-504)

(h2-h1)CH4=212,355,976

∆H=212355976+(2*22191541)+(2*20967220)-40729381-44680237

∆H=213,263,879.8

18

Energy BalanceSUMMARY

REFORMERΔHCH4+ CO2 → 2CO + 2H2 213,000,000 38,000

CH4+ H2O → CO + 3H2 198,000,000 36,000

2CH4+ O2 → 2CO + 4H2 510,000,000 93,000

CO + H2O → CO2 + H2 -14,000,000 -2,700

CH4→ C(S) + 2H2 65,000,000 12,000

OXY BOOST

2CH4+ O2 → 2CO + 4H2 510,000,000 93,000

2CH4+ 2O2 → CO2 + 2H2O -170,000,000 -31,000

FURNACE

Fe2O3 + 3CO → 2Fe + 3CO2

Hreaction =-1.08743E+12[KJ]Fe2O3 + 3H2 → 2Fe + 3H2O

19

Energy Balance- Work in progress

Flue Gas heat recovery steam.

Combustion Flue gas provides energy to heat incoming combustion air and feed

gas.

20

Total Capital Investment

Page 5-6: Process Flow Diagram (1)

Page 7-12: Material Balance

Page 13-15: Energy Balance

Page 16: Work in progress

Page 17-19: Economics

Page 20: Summary

Page 21: References

Page 23: Process Flow Diagram (2)

Direct costs $(MM)

Major Equipment Costs 97

Installation/ Construction Costs

110

Piping 30

Electrical 19

Service Facilities 55

Buildings/ Misc. 19

Total 330

Indirect Costs

Land 8

Engineering/ Supervision 30

Legal/ Contingency 38

Total 76

Total Capital Investment 406

21

Major Equipment CostMajor Equipment Costs $(MM)

Reformer 35

Shaft Furnace 32

Other Equipment 30

Total 97

22

ProfitProduction (Tons/yr) 2,000,000

Production Cost ($/ton) 240

Product Sell Price ($/ton) 425

Profit per ton ($/ton) 185

Total Profit per Year ($) 370,000,000

23

Summary1. This process will produce 2.2 million tons DRI.

2. This plant will consume roughly 210,000 MW-h annually .

3. 23 million mols of CO2 will be sent to the gas treatment plant.

4. Based on our economic analysis, this plant will cost approximately $97 million.

24

Oxygen-Fuel Boost Reformer

Relatively new technology for secondary oxygen reforming in Midrex Processes. Uses a two step partial combustion process in which oxygen and methane are mixed and combusted in the first stage. The combustion

gases are then mixed in an elongated mixing tube with methane and oxygen in a swirling motion producing H2 on CO syngas along with H2O, CO2 and

CH4 to be used as enrichment gases to combine with and enhance the reducing gas from the reformer. This increases the reducing gas amount and

temperature of gas going to the furnace increasing productivity.

25

References1. http://www.midrex.com/uploads/documents/

MIDREXShaftBrochure2.pdf2. http://www.midrex.com/uploads/documents/

MidrexCorporateBrochure1.pdf3. US patent # 6602317 b24. US patent # 6524356 b25. US patent # 6506230 b26. http://www./handler.cfm/cat_id/163/section/global7. http://www.midrex.com/uploads/documents/SSS.pdf8. http://www.midrex.com/uploads/documents/DFM1Q041.pdf9. http://www.midrex.com/uploads/documents/New

%20Developments%20in%20the%20Midrex%20DR%20Process.pdf

26

Questions

27

Complete Flow Diagram

Oxy Fuel Boost Reformer

Removal

GuardBed

Heater

Shaft Furnace

Top Gas Scrubber

Midrex Reformer

Main Air Ejector Stack

Iron Ore

Iron Briquettes

Compressor

Fuel Gas

Recycle1.

2.

3.

4.

5.

6.

7.

9.10.

11.

12. 21.

14.

15.

16.

17.

18.

19.

20.

13.

22.

23.

24.

8.

28

Stream Names 1 2 3 4 5 6 7 8 9 10 11 Methane process feedDesulfurized methane to processMethane and recycle process streamHeated process gasReformed process gasTemperature boosted process gasTop gas Scrubbed top gas60% recycle gas split with waterCompressed recycle gasAir to combustion

Fe2O3 million mols/day - - - - - - - - - - - Fe - - - - - - - - - - - CH4 45 45 47 47 9 3 3 3 2 2 - H2 - - 4 4 82 88 6 6 4 4 - CO - - 2 2 57 59 4 4 2 2 - CO2 1 1 36 36 3 3 59 59 35 35 - H2O - - 82 82 - - 82 82 82 82 - N2 2 2 3 3 2 2 2 2 1 1 334

H2S - - - - - - - - - - - C - - - - - - - - - - - o2 - - - - - - - - - - 94 C3+ 3 3 3 3 - - - - - - - Total flow 50 50 176 176 154 155 155 155 126 126 428

12 13 14 15 16 17 18 19 20 21 22 23 24 Heated air to combustionFuel gas to combustionMethane to combustionOxygen to OXY fuel boosterMethane to OXY fuel booster40% top gas split to combustionCO2 removalOre feed DRI productMixed streams to combustionCombustion productsCooled exhaust productsExhaust

- - - - - - - 98 7 - - - - - - - - - - - - 182 - - - - - 1 45 - 3 1 - - - 46 - - - - 2 - - - 2 - - - 2 - - - - 2 - - - 2 - - - 2 - - - - - 1 - 0 23 23 - - 1 48 48 48 - - - - - - - - - - 92 92 92

334 1 2 - 0 1 - - - 337 337 337 337

- - - - - - - - - - - - - - - - - - - - - - - - - -

94 - - 2 - - - - - 94 - - - - - 3 - 0 - - - 3 - - -

428 6 50 2 4 30 23 98 189 484 477 477 477