33
Semi-Blind (SB) Multiple- Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Embed Size (px)

Citation preview

Page 1: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel

Estimation

Aditya K. JagannathamDSP MIMO Group, UCSD

ArrayComm Presentation

Page 2: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Semi-Blind MIMO flat-fading Channel estimation.

- Motivation

- Scheme: Constrained Estimators.

- Construction of Complex Constrained Cramer Rao Bound (CC-CRB).

- Additional Applications: Time Vs. Freq. domain OFDM channel estimation.

• Frequency selective MIMO channel estimation.

- Fisher information matrix (FIM) based analysis

- Semi-blind estimation.

Overview of Talk

Page 3: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• A MIMO system is characterized by multiple transmit (Tx) and receive (Rx) antennas

• The channel between each Tx-Rx pair is characterized by a Complex fading Coefficient

• hij denotes the channel between the ith receiver and jth transmitter.

• This channel is represented by the Flat-Fading Channel Matrix H

MIMO System Model

Rx

Transmitter

Receiver

= Antenna

TX

t -

t ran

smit

r - r

ece

ive

Page 4: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

where,

is the r x t complex channel matrix

• Estimating H is the problem of ‘Channel Estimation’

• #Parameters = 2.r.t (real parameters)

MIMO System Model

rtrr

t

t

hhh

hhh

hhh

...

.

...

...

H

21

22221

11211

ry

y

y

y2

1

MIMO

System

H

tx

x

x

x2

1

)()()( kvkHxky

Page 5: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• CSI (Channel State Information) is critical in MIMO Systems.- Detection, Precoding, Beamforming, etc.

• Channel estimation holds key to MIMO gains.

• As the number of channels increases, employing

entirely training data to learn the channel would result in poorer spectral efficiency.- Calls for efficient use of blind and training information.

• As the diversity of the MIMO system increases, the operating SNR decreases.- Calls for more robust estimation strategies.

MIMO Channel Estimation

Page 6: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• One can formulate the Least-Squares cost function,

• The estimate of H is given as

• Training symbols convey no information.

Training Based Estimation

.|||| min 2Fpp H XY

.ˆ ppLS XYH

H(z)Training inputs

Training outputs

Inputs

)](),....,2(),1([ LxxxX p pYLyyy )](),....,2(),1([

Outputs

Page 7: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Uses information in source statistics.

• Statistics:

- Source covariance is known, E(x(k)x(k)H) = σs2It

- Noise covariance is known, E(v(k)v(k)H) = σn2Ir

• Estimate channel entirely from blind information symbols.

• No training necessary.

Blind Estimation

‘Blind’ data inputs

‘Blind’ data outputs

H(z)

Page 8: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Channel Estimation Schemes

• Is there a way to trade-off BW efficiency for algorithmic simplicity and complete estimation.

• How much information can be obtained from blind data?– In other words, how many of the 2rt parameters can be

estimated blind ?

• How does one quantify the performance of an SB Scheme ?

Training

Blind

Increasing Complexity

Decreasing BW Efficiency

Page 9: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Training information

- Xp = [x(1), x(2),…, x(L)] , Yp = [y(1), y(2),…, y(L)]

• Blind information

- E (x(k)x(k)H) = σs2It, E (v(k)v(k)H) = σn

2Ir

• (N-L), the number of blind “information” symbols can be large.

• L, the pilot length is critical.

Semi-Blind Estimation

H(z)Training inputs

‘Blind’ data inputs

Training outputs

‘Blind’ data outputs

N symbols

Page 10: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• H is decomposed as a matrix product, H= WQH.

• For instance, if SVD(H) = P QH, W = P.

Whitening-Rotation

H= WQH

W is known as the “whitening” matrix

W can be estimated using only ‘Blind’ data.

QQH = I

Q is a ‘constrained’ matrix

Q , the unitary matrix, cannot be estimated from Second Order Statistics.

Page 11: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• How to estimate Q ?

• Solution : Estimate Q from the training sequence !

Estimating Q

Unitary matrix Q parameterized by a significantly lesser number of parameters than H.

r x r unitary - r2 parameters

r x r complex - 2r2 parameters

As the number of receive antennas increases, size of H increases while that of Q remains constant

size of H is r x t size of Q is t x t

Advantages

Page 12: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Output correlation :

• Estimate output correlation

• Estimate W by a matrix square root (Cholesky) factorization as,

• As # blind symbols grows ( i.e. N ), .

• Assuming W is known, it remains to estimate Q.

Estimating W

IHHR nH

sy22

N

k

Hy kyky

NR

1

)()(1ˆ

IRWW nys

H 22

ˆ1ˆˆ

WW ˆ

Page 13: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Orthogonal Pilot Maximum Likelihood – OPML

• Goal - Minimize the ‘True-Likelihood’

subject to :

• Estimate:

• Properties

1. Achieves CRB asymptotically in pilot length, L.

2. Also achieves CRB asymptotically in SNR.

Constrained Estimation

) SVD( where,ˆ Hpp

HHH XYWVUVUQ

2||||min pH

pQ

XWQY

IQQH

Page 14: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Estimator :

• For instance - Estimation of the mean of a Gaussian

• Estimator

Parameter Estimation

Observations

parameter

n ,,, 21 p( ; )

),,,(ˆ21 nf

)1,(~);( Np

n

iin

1

Page 15: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Performance of an unbiased estimator is measured by its covariance as

• CRB gives a lower bound on the achievable estimation error.

• The CRB on the covariance of an un-biased estimator is given as

where

Cramer-Rao Bound (CRB)

]) -ˆ )(ˆE[( HC

),(ln),(lnE

ppJ

T

1- JC

Page 16: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Most literature pertains to “unconstrained-real” parameter estimation.

• Results for ‘complex’ parameter estimation ?

• What are the corresponding results for “constrained” estimation?

• For instance, estimation of a unit norm constrained singular vector i.e.

Constrained Estimation

1||||)( 2 Hh

Complex Cons. Par.

Estimator

CRB

Page 17: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Builds on work by Stoica’97 and VanDenBos’93

Let be an n - dim constrained complex parameter vector

The constraints on are given by h( ) = 0

Define the extended constraint set f ()

)(

)()( *

h

hf

*

)()()()(

fff

F

With complex derivatives, define the matrix F () as

*

Define the extended parameter vector as

p(, ) be the likelihood of the observation parameterized by

U span the Null Space of F().

0)( UF

Complex-Constrained Estimation

Page 18: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

*

),(ln),(lnE

pp

JT

J is the complex un-constrained Fischer Information Matrix (FIM) defined as

CRB Result : The CRB for the estimation of the ‘complex-constrained’ parameter is given as HH UJUC 1)U(U

Constrained Estimation(Contd.)

Page 19: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Let Q = [q1, q2,…., qt]. qi is thus a column of Q . The constraints on qi s are given as:

• Unit norm constraints : qiH

qi = ||qi||2 = 1

• Orthogonality Constraints : qiH

qj = 0 for i j

• Constraint Matrix :

• Let SVD( H ) be given as P QH.

• CRB on the variance of the (k,l)th element is

13

12

32

21

11 1

)(

qq

qq

qq

qq

qq

f

H

H

H

H

H

t

i

t

jijki

ji

i

s

nlk qp

LC

1 1

2222

2

2

2

, ||||

Semi-Blind CC-CRB

Page 20: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• has only ‘n’ un-constrained parameters, which can vary freely.

• has only (n = ) 1 un-constrained parameter.

• t x t complex unitary matrix Q has only t2 un-constrained parameters.

• Hence, if W is known, H = WQH has t2 un-constrained parameters.

Unconstrained Parameters

ntttt

t

t

qqq

qqq

qqq

Q

2

1

21

22221

11211

where,

)()()(

)()()(

)()()(

cossin

sincos

Page 21: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Let N be the number of un-constrained parameters

in H.

• Also, Xp be an orthogonal pilot. i.e. Xp XpH I

• Estimation is directly proportional to the number of un-constrained parameters.

• E.g. For an 8 X 4 complex matrix H, N = 64. The

unitary matrix Q is 4 X 4 and has N = 16 parameters. Hence, the ratio of semi-blind to training based MSE of estimation is given as

Semi-Blind CRB

NL

HHs

nF 2

22

2]||ˆ[||E

.dB) 6 (i.e. 416

64

sb

t

MSE

MSE

Page 22: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Simulation Results

• Perfect W, MSE vs. L.

• r = 8, t = 4.

Page 23: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

• Time Vs. Freq. Domain channel estimation for OFDM systems.

• Consider a multicarrier system with

# channel taps = L (10), # sub-carriers = K (32,64)

• h is the channel vector.

• g = Fsh, where Fs is the left K x L submatrix of F (Fourier Matrix).

• Total # constrained parameters = K (i.e. dim. of H ).

• # un-constrained parameters = L (i.e. dim. of h ).

OFDM Channel Estimation

.}ˆ {E

}ˆ {E2

2

L

K

Hg

gg

t

f

Page 24: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

FIR-MIMO System

• H(0),H(1),…,H(L-1) to be estimated.• r = #receive antennas, t = #transmit antennas (r > t).• #Parameters = 2.r.t.L (L complex r X t matrices)

)()1()1(...)1()1()()0()( kLkxLHkxHkxHky

D

+

D Dx(k)

H(1) H(2) H(L-1)

+ y(k)+

H(0)

Page 25: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Fisher Information Matrix (FIM)

• Let p(ω;θ) be the p.d.f. of the observation vector ω.• The FIM (Fisher Information Matrix) of the parameter θ

is given as

• Result: Rank of the matrix Jθ equal to the number of identifiable parameters.– In other words, the dimension of its null space is precisely

the number of un-identifiable parameters.

H

pEJ

);(ln2

Page 26: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

SB Estimation for MIMO-FIR

• FIM based analysis yields insights in to SB estimation.

• Let the channel be parameterized as θ2rtL.

Application to MIMO Estimation:• Jθ = JB + Jt, where JB, Jt are the blind and training CRBs respectively.• It can then be demonstrated that for irreducible MIMO-FIR channels with (r >t), rank(JB) is given as

))0((

))0(( ,

)

*)(

)1(

)1(

)0(

Hvec

HveciH

LH

H

H

22)( trtLJrank B

Page 27: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Implications for Estimation

• Total number of parameters in a MIMO-FIR system is 2.r.t.L . However, the number of un-identifiable parameters is t2.

• For instance, r = 8, t = 2, L = 4. – Total #parameters = 128. – # blindly unidentifiable parameters = 4.

• This implies that a large part of the channel, can be identified blind, without any training.

• How does one estimate the t2 parameters ?

Page 28: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Semi-Blind (SB) FIM

• The t2 indeterminate parameters are estimated from pilot symbols.

• How many pilot symbols are needed for identifiability?

• Again, answer is found from rank(Jθ).

• Jθ is full rank for identifiability.

• If Lt is the number of pilot symbols,

• Lt = t for full rank, i.e. rank(Jθ) = 2rtL.

1 ),2(2)()( 22 tLLtLtrtLJJrankJrank ttttB

Page 29: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

SB Estimation Scheme

• The t2 parameters correspond to a unitary matrix Q.

• H(z) can be decomposed as H(z) = W(z) QH.

• W(z) can be estimated from blind data [Tugnait’00]

• The unitary matrix Q can be estimated from the pilot symbols through a ‘Constrained’ Maximum-Likelihood (ML) estimate.

• Let x(1), x(2),…,x(Lt) be the Lt transmitted pilot symbols.

))()(( where,,ˆ1

0

L

i

HHH iWYiXSVDVUUVQ

Page 30: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Semi-Blind CRB

• Asymptotically, as the number of data symbols increases, semi-blind MSE is given as

• Denote MSEt = Training MSE, MSESB = SB MSE.

– MSESB α t2 (indeterminate parameters)

– MSEt α 2.r.t.L (total parameters).

• Hence the ratio of the limiting MSEs is given as

SBt

nF

L

CRBLimitingtL

HHELimb

2

}||ˆ{|| 22

2

)(log10 32 10 LdBLMSE

MSEtr

SB

t

Page 31: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Simulation

• SB estimation is 32/4 i.e. 9dB lower in MSE

• r = 4, t = 2 (i.e. 4 X 2 MIMO system). L = 2 Taps.

• Fig. is a plot of MSE Vs. SNR.

Page 32: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

Talk Summary

• Complex channel matrix H has 2rt parameters.– Training based scheme estimates 2rt parameters.– SB scheme estimates t2 parameters.– From CC-CRB theory, MSE α #Parameters.– Hence,

• FIR channel matrix H(z) has 2rtL parameters.– Training scheme estimates 2rtL parameters.– From FIM analysis, only t2 parameters are unknown.– Hence, SB scheme can potentially be very efficient.

dBMSE

MSEtr

SB

t 32

Page 33: Semi-Blind (SB) Multiple-Input Multiple-Output (MIMO) Channel Estimation Aditya K. Jagannatham DSP MIMO Group, UCSD ArrayComm Presentation

References

Journal • Aditya K. Jagannatham and Bhaskar D. Rao, "Cramer-Rao Lower

Bound for Constrained Complex Parameters", IEEE Signal Processing Letters, Vol. 11, no. 11, Nov. 2004.

• Aditya K. Jagannatham and Bhaskar D. Rao, "Whitening-Rotation Based Semi-Blind MIMO Channel Estimation" - IEEE Transactions on Signal Processing, Accepted for publication.

• Chandra R. Murthy, Aditya K. Jagannatham and Bhaskar D. Rao, "Semi-Blind MIMO Channel Estimation for Maximum Ratio Transmission" - IEEE Transactions on Signal Processing, Accepted for publication.

• Aditya K. Jagannatham and Bhaskar D. Rao, “Semi-Blind MIMO FIR Channel Estimation: Regularity and Algorithms”, Submitted to IEEE Transactions on Signal Processing.