31
Enhancing Engineering Design and Analysis Interoperability Part 3: Steps toward Multi- Functional Optimization Rod Dreisbach The Boeing Company Computational Structures Technology www.boeing.com First MIT Conference on Computational Fluid and Structural Mechanics Cambridge, Massachusetts USA June 12-15, 2001 Russell Peak Georgia Tech Engineering Information Systems L eislab.gatech.edu

Rod Dreisbach The Boeing Company Computational Structures Technology boeing

Embed Size (px)

DESCRIPTION

First MIT Conference on Computational Fluid and Structural Mechanics Cambridge, Massachusetts USA June 12-15, 2001. Enhancing Engineering Design and Analysis Interoperability Part 3: Steps toward Multi-Functional Optimization. Rod Dreisbach The Boeing Company - PowerPoint PPT Presentation

Citation preview

Page 1: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

Enhancing Engineering Design and Analysis Interoperability

Part 3: Steps toward Multi-Functional Optimization

Rod DreisbachThe Boeing CompanyComputational Structures Technologywww.boeing.com

First MIT Conference on Computational Fluid and Structural MechanicsCambridge, Massachusetts USA

June 12-15, 2001

Russell PeakGeorgia TechEngineering Information Systems Labeislab.gatech.edu

Page 2: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

2Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Maturation of product life cycle knowledge

ProductLifecycle

Knowledge

Virtual Product Definition(CAD)

Constrained Objects (COBs):Multi-Directional, Associative, Computer-Sensible, Knowledge-Based, EngineeringInformation Mapping

Virtual Functional Prototype(CAE)

COMPOSE:Concurrent Optimization ofMultifunctionalProductOperationalSpecificationEnvelopes

Product Design Requirements,Operational Specifications

Develop Product

Build Product

Maintain Product

Design C

onstraints

Des

ign

Con

stra

ints

CA

M D

ataDesign Constraints

Design Intent

(PIM)

Operational Data

Page 3: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

3Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

e

se

tr

Pf

02

21

e

be

ht

PCf

),,( 13 hbrfK

Channel Fitting Analysis

Typical Current Approach: Optimize idealized parameters (vs. detailed design)

Analysis Model (with Idealized Features)

Detailed Design Model

Idealizations

1 : b = cavity3.inner_width + rib8.thickness/2 + rib9.thickness/2

“It is no secret that CAD models are driving more of today’s product development processes ... With the growing number of design tools on the market, however, the interoperability gap with downstream applications, such as finite element analysis, is a very real problem. As a result, CAD models are being recreated at unprecedented levels.” Ansys/ITI press Release, July 6 1999

http://www.ansys.com/webdocs/VisitAnsys/CorpInfo/PR/pr-060799.html

Need

fine-grained

CAD-CAE

associativity

Page 4: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

4Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Functional Optimization (MFO)

Term as coined at Boeing

Multitude of operational functional requirements Concurrent consideration during product design

process Idealized design variables used in optimization

associated directly with product (detailed design)

Page 5: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

5Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Progress onNecessary Components

Design-Analysis Integration– CAD-CAE Associativity– Connect diverse CAE models to same CAD model:

Varying discipline, behavior, fidelity, method, tool– Multi-directional

Object-Oriented View of Optimization Enhanced FEA Modeling for Built-Up Structure

Page 6: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

6Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

X-Analysis Integration Techniquesa. Multi-Representation Architecture (MRA)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

b. Explicit Design-Analysis Associativity

c. Analysis Module Creation Methodology

I n f o r m a l A s s o c i a t i v i t y D i a g r a m

C o n s t r a i n e d O b j e c t - b a s e d A n a l y s i s M o d u l eC o n s t r a i n t S c h e m a t i c V i e w

P l a n e S t r a i n B o d i e s S y s t e m

P W A C o m p o n e n t O c c u r r e n c e

CL

1

m a t e r i a l ,E( , )g e o m e t r y

b o d y

p l a n e s t r a i n b o d y , i = 1 . . . 4P W B

S o l d e rJ o i n t

E p o x y

C o m p o n e n tb a s e : A l u m i n a

c o r e : F R 4

S o l d e r J o i n t P l a n e S t r a i n M o d e l

t o t a l h e i g h t , h

l i n e a r - e l a s t i c m o d e l

A P M A B B

3 A P M 4 C B A M

2 A B Bc

4b o d y 3b o d y

2b o d y

1h oT

p r i m a r y s t r u c t u r a l m a t e r i a l

ii

i

1 S M M

D e s i g n M o d e l A n a l y s i s M o d e l

A B B S M M

s o l d e rs o l d e r j o i n t

p w b

c o m p o n e n t

1 . 2 5

d e f o r m a t i o n m o d e l

t o t a l h e i g h t

d e t a i l e d s h a p e

r e c t a n g l e

[ 1 . 2 ]

[ 1 . 1 ]

a v e r a g e

[ 2 . 2 ]

[ 2 . 1 ]

cT c

T s

i n t e r - s o l d e r j o i n t d i s t a n c ea p p r o x i m a t e m a x i m u m

s j

L s

p r i m a r y s t r u c t u r a l m a t e r i a l

t o t a l t h i c k n e s s

l i n e a r - e l a s t i c m o d e l

P l a n e S t r a i n

g e o m e t r y m o d e l 3

a

s t r e s s - s t r a i nm o d e l 1

s t r e s s - s t r a i nm o d e l 2

s t r e s s - s t r a i nm o d e l 3

B o d i e s S y s t e m

x y , e x t r e m e , 3

T 2

L 1

T 1

T 0

L 2

h 1

h 2

T 3

T s j

h s

h c

L c

x y , e x t r e m e , s jb i l i n e a r - e l a s t o p l a s t i c m o d e l

l i n e a r - e l a s t i c m o d e l

p r i m a r y s t r u c t u r a l m a t e r i a l l i n e a r - e l a s t i c m o d e l

c o m p o n e n to c c u r r e n c e

s o l d e r j o i n ts h e a r s t r a i nr a n g e

[ 1 . 2 ]

[ 1 . 1 ]l e n g t h 2 +

3 A P M 2 A B B 4 C B A M

F i n e - G r a i n e d A s s o c i a t i v i t y

ProductModel Selected Module

Analysis Module Catalogs

MCAD

ECAD

Analysis Procedures

CommercialAnalysis Tools

Ansys

Abaqus

Solder Joint Deformation Model

Idealization/Defeaturization

CommercialDesign Tools

PWB

Solder Joint

Component

APM CBAM ABB SMM

Ubiquitous Analysis(Module Usage)

Ubiquitization(Module Creation)

CAE

Physical Behavior Research,Know-How, Design Handbooks, ...

Page 7: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

7Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 8: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

8Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Test Case Flap Linkage: Analysis Template Reuse of APM

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

Linkage Extensional Model (CBAM)

Flap link (APM)

reusable idealizations

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

stress mos model

Margin of Safety(> case)

allowableactual

MS

x

FF

E, A,

LLo

T, ,

L

Page 9: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

9Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Design Model

Idealized Model

Design-Idealization Relation

flap_linkflap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R3

R2

R3

R2

R1R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

R8

R9

R10

R8

R9

R10

6R6R

R7R7

R12R12

11R11R

1R1R

2

3

4

5

R

R

R

R

2

3

4

5

R

R

R

R

2

3

4

5

R

R

R

R

Product Attribute

Idealized Attribute

Ri Idealization Relation

Ri Product Relation

Product AttributeProduct Attribute

Idealized AttributeIdealized Attribute

Ri Idealization RelationRi Idealization Relation

Ri Product RelationRi Product Relation

Extended Constraint Graph

Flap Link APMImplementation in CATIA v5

Page 10: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

10Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

CATIAModel CATDAK XaiToolsAPI

VBScripts

AnalysisInputs

AnalysisOutputs

(Design Updates)VBScripts

CATDAK OverviewXaiTools CATIA Design-Analysis Knowledge Manager

TraditionalSolvers

AnalysisTemplates

Design & Idealizations(APM)

API = application programming interface

CAD-AnalysisTemplate Coordination

Analysis TemplateUsage (CBAMs)

Page 11: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

11Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Updating CAD Model from Analysis Template Results

m ateria l

e ffec tiv e leng th , L eff

de fo rm ation m ode l

linear e las tic m ode l

L o

E xtens iona l R od(iso the rm a l)

F

L

A

L

E

x2

x1

youngs m odu lus , E

cross sec tion area , A

a l1

a l3

a l2

linkage

m ode: sha ft tens ion

cond ition reaction

a llo w ab le s tress

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Le ff

s

s tress m os m ode l

M arg in o f S a fe ty(> case)

allow ableactua l

M S

x

FF

E , A ,

LL o

T , ,

L

m ateria l

e ffec tiv e leng th , L eff

de fo rm ation m ode l

linear e las tic m ode l

L o

E xtens iona l R od(iso the rm a l)

F

L

A

L

E

x2

x1

L o

E xtens iona l R od(iso the rm a l)

F

L

A

L

E

x2

x1

youngs m odu lus , E

cross sec tion area , A

a l1

a l3

a l2

linkage

m ode: sha ft tens ion

cond ition reaction

a llo w ab le s tress

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Le ff

s

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Le ff

s

s tress m os m ode l

M arg in o f S a fe ty(> case)

allow ableactua l

M S

M arg in o f S a fe ty(> case)

allow ableactua l

M S

x

FF

E , A ,

LL o

T , ,

L

Page 12: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

12Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Progress onNecessary Components

Design-Analysis Integration– CAD-CAE Associativity– Connect diverse CAE models to same CAD model:

Varying discipline, behavior, fidelity, method, tool– Multi-directional

Object-Oriented View of Optimization Enhanced FEA Modeling for Built-Up Structure

Page 13: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

13Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Thesis AbstractObject Oriented Paradigm for Optimization Model Enhancement

Doctoral ThesisGeorgia Institute of Technology, Atlanta.

http://eislab.gatech.edu/Selçuk Cimtalay

Nov. 2000

The modeling process that transforms a detailed product design and its multi-fidelity analysismodels into an optimization model is a non-trivial task requiring large amounts of diverseinformation, engineering theory, and experienced-based heuristics, as well as the support ofoptimization, design, and analysis tools. Engineering optimization can be viewed as aninformation intensive problem that requires engineering information solutions.

This research has focused on developing a new information representation of optimizationmodels, termed Enhanced Optimization Model (EOM). EOM represents an informationframework for an object oriented design methodology for optimization model construction,enhancement, classification and solution. EOM utilizes a combination of constraint graph andobject techniques to provide semantically rich mappings. EOM representation consists of aninformation model structure and protocol, and modeling languages for creating EOM objects.Specifically, EOM representation is developed as an information representation by focusing onthe optimization aspects to partition the optimization area into more trackable and modularobjects. Key distinctions are the explicit representation of the associativity between anoptimization model and its analysis and design models and the ability to support multi-fidelityoptimization models as the design progresses.

EOM concepts have been prototyped in Java in conjunction with optimizers (Bolink, CONMINetc.), analyzers (Ansys FE) and symbolic solvers (Mathematica). Structural analysis andelectronic packaging test cases illustrate the different characteristics and help to evaluate theEOM representation with respect to the thesis objectives. Results show that EOM representationenables the enhancement ability to capture optimization model building information, to modifythe models easily, and provide flexibility to designers.

Page 14: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

14Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Nf

p

f

c

12

2

1

'

Design ToolsAnalysis Tools

Printed Wiring Assembly (PWA)

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Solution Method Model

Enhanced Optimization Model (EOM)

Math Opt ModelEngineeringOpt. Model

Find

Design variable Notation

solder joint height (h)

PWB material type

Maximize

Solder Fatigue life:

Solution Method Model

Analysis Building Block

Context-Based Analysis Model

Solder Joint

Component

PWB

body3

body2

body1

body4

T0

Previous work [Peak et al. 2000, Tamburini 1999, Wilson, 2000]

THESIS FOCUS

Partition of Engineering Entities

Nf

p

f

c

12 2

1

'

Maximize/ Minimize

f x pj( , )Xj design variablesp Constants design parameters

Subject to

h (x,p)i0

i=1,.........,n

g x pi ( , ) 0 i=n+1,......,q

Side constraints

x x xlow j up j= 1,........,n

x x u p1

X 1

X 2

F e a s i b l e R e g i o n

x x u p2

x xl o w 2

g x p1 0( , )

g x p2 0( , )

T1 T3

T2

one variable

T4 T5

multi variable

unconstrained

T6

one-variable

T7 T8

multi variable

constarint

Optimization Methods

Optimization tools

Optimization Methods

Page 15: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

15Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Optimization Model Diversity

Min Weight

g (x)<0h(x) =0

subject toStressDesign variablesArea

Min Weight

OPTIMIZATION MODEL CLASS

Optimization Object 1 Optimization Object 2

Min Weight

subject to

X(H)

Min Weight

subject to

X(H,LL,LR)

OPTIMIZATION MODEL CLASS

Optimization Object 1 Optimization Object 2

Min Weight, Cost

subject to

Optimization Object 3

X(H,LL,LR,Mat)

g (x)<0h(x) =0

g (x)<0h(x) =0

2D PLANE STRAIN MODEL

1D EXTENSIONAL STRESS MODEL

Analysis Model(s)Enhancement and/or Addition

subject toStressBucklingDesign variablesArea, Material

y

xPP

E, A

LLeff

,

L

Objective, design variable, and/or constraint function enhancement

Page 16: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

16Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Optimization Model Enhancement

MinimizeLAf

1 WeightSubject to

0)(1 AMSg stress Normal Stress Margin of Safety

Design variables

X={A}

MinimizeLAf

1 WeightSubject to

0)(1 AMSg stress Normal Stress Margin of Safety

Design variables

X={A, material}

OPTIMIZATION MODEL I

OPTIMIZATION MODEL II

Page 17: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

17Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area) subject to (extensional stress)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stressMargin of Safety

(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraint

Design VariableA

weight,WW AL

MS 0

density,

MSstress

1

allowablestressMS

Page 18: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

18Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area, material) subject to (extensional stress)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stressMargin of Safety

(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraint

Design Variablearea,A

weight,WW AL

MS 0

density,

MSstress

1

allowablestressMS

material

Page 19: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

19Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Optimization Model Enhancement

M i n i m i z eLAf 1 W e i g h t

S u b j e c t t o0)(1 AMSg stress N o r m a l S t r e s s M a r g i n o f S a f e t y

0)(2 AMSg buckling B u c k l i n g M a r g i n o f S a f e t yD e s i g n v a r i a b l e s

X = { A }

MinimizeLAf

1 WeightSubject to

0)(1 AMSg stress Normal Stress Margin of Safety

0)(2 AMSg buckling Buckling Margin of SafetyDesign variables

X={A, material}

OPTIMIZATION MODEL III

OPTIMIZATION MODEL IV

Page 20: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

20Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area) subject to (extensional stress, buckling load)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal, buckling)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stress

Margin of Safety(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraints

Design VariablesA

weight,W W AL

MS 0MSstress

Margin of Safety(> case)

allowableactual

MS

moment of inertia, I

L

EIPcr

2

1

allowablestressMS

1F

PcrMSbuckling

load,P

MSbuckling

Lo

Extensional Rod(Buckling)

PcrI

E

density,

Page 21: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

21Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Minimization of Weight of a LinkageX(area, material) subject to (extensional stress, buckling load)

Leff

product structure: linkage

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal, buckling)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

analysis context

goal: optimization

mode: shaft tension

condition: flaps down

linkage reaction

allowable stress

Margin of Safety(> case)

allowableactual

MS

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

y

xPP

E, A

LLeff

,

L

minimize weight

constraints

Design Variables A

weight,W W AL

MS 0MSstress

Margin of Safety(> case)

allowableactual

MS

moment of inertia, I

L

EIPcr

2

1

allowablestressMS

1F

PcrMSbuckling

load,P

MSbuckling

Lo

Extensional Rod(Buckling)

PcrI

E

density,

material

Page 22: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

22Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Progress onNecessary Components

Design-Analysis Integration– CAD-CAE Associativity– Connect diverse CAE models to same CAD model:

Varying discipline, behavior, fidelity, method, tool– Multi-directional

Object-Oriented View of Optimization Enhanced FEA Modeling for Built-Up Structure

Page 23: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

23Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Chip Package Products Shinko

Plastic Ball Grid Array (PBGA) Packages

Quad Flat Packs (QFPs)

Page 24: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

24Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Traditional VTMB FEA Model CreationManually Intensive: 6-12 hours

FEA Model Planning Sketches - EBGA 600 Chip Package

VTMB = variable topology multi-body

Page 25: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

25Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Advanced Product Information-Driven FEA Modeling: Challenges

Main challenges» Differences between design & analysis geometries» Variable topology multi-body geometries» FEA requirements: node matching,

aspect ratio» Relative body sizes

Degree of indirect inter-body coupling

» Mixed analytical bodies » Idealized inter-body interfaces» Loads & interfaces on non-explicit boundaries» Idealization-induced anomalies

Ex. - Shell mid-/outer-face matching

» Arbitrary shapes (complex 3D surfaces …)

Page 26: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

26Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Representation Architecture Context

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Composed of four representations (information models) Provides flexible, modular mapping between design & analysis models Creates automated, product-specific analysis modules (CBAMs) Represents design-analysis associativity explicitly

Page 27: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

27Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Approach Outline: Test Cases

Benchmark test cases– “diving board”– eWidget– simplified PBGA

Production test cases(representative production-like problems for industry)– Chip package (Shinko)

» Thermal analysis - Phase 2» Thermomechanical (stress) analysis - after Phase 2

– Air frame structural analysis (Boeing)– PWA/B (JPL/NASA,…)

» Thermomechanical, ...

Page 28: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

28Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Chip Package Test Cases (for Shinko)

Light Comunication module Pre-Mold PKG Pre-Mold PKG

FC-BGA (Flip Chip BGA) QFP Exposed DPH PBGA with Heat Spreader

Light Comunication module Pre-Mold PKG Pre-Mold PKG

FC-BGA (Flip Chip BGA) QFP Exposed DPH PBGA with Heat Spreader

Page 29: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

29Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Airframe Structural Analysis Radar Support Structure (for Boeing)

Automatic FEA Pre/Post-processing & Solution (in vendor-specific Solution Method Model)

Design Model

Page 30: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

30Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

PWA Thermomechanical Analysis(for JPL/NASA, ...)

Goal: Generalization of previous work [Zhou, 1997]

Page 31: Rod Dreisbach The Boeing Company Computational Structures Technology boeing

31Georgia Tech Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

SummaryProgress … Design-Analysis Integration (maturing)

– CAD-CAE Associativity– Connect diverse CAE models to same CAD model:

Varying discipline, behavior, fidelity, method, tool– Multi-directional

Object-Oriented View of Optimization (initial progress) Enhanced FEA Modeling for Built-Up Structure (in-progress)

Further work needed … High-level operational criteria,

such as Product Design Requirements and Objectives Need to leverage recent optimization tools

– Ex. iSIGHT, ProductCenter, etc.– Provide enhanced modularity & knowledge capture