1
Distance (km) 80 70 60 50 40 30 20 10 0 Elevation (mamsl) 6,000 5,750 5,500 5,250 5,000 4,750 4,500 4,250 4,000 3,750 3,500 3,250 3,000 2,750 6,000 5,750 5,500 5,250 5,000 4,750 4,500 4,250 4,000 3,750 3,500 3,250 3,000 2,750 S NE Carchi Pampa to Cerro Galan Carachipampa Salar El Penon Cerro Galan Laguna Diamante Laguna Grande Laguna Cabi 0% 10% 3 H, R mod : 20% 30% 40% 50% Vega ? Streams Springs Salars Lakes Watershed boundary -8.0 -7.8 -7.6 -7.4 -7.2 -7.0 -6.8 -6.6 -6.4 -6.2 10 100 1000 10000 100000 δ 18 O (‰) Cl - (mg/l) δ 18 O δ 2 H - VSMOW (‰) δ 18 O - VSMOW (‰) Hombre Muerto Caro Antofalla Grande/Diamante Carachipampa N Carachipampa NE 3Q Los Aparejos Rio Chaschuil Rio Vilavil Brendan J. Moran 1 , David F. Boutt 1 , LeeAnn Munk 2 , Joshua Fisher 3 , Felicity Arengo 4 , Patricia Marconi 5 , Diego Frau 6 1 Univeristy of Massachusetts, Amherst; [email protected]. 2 University of Alaska, Anchorage. 3 Advanced Consortium on Cooperation, Conflict, and Complexity, Earth Institute, Columbia University, 4 Center for Biodiversity and Conservation, American Museum of Natural History, 5 Fundacion Yuchan, Salta, Argentina, 6 Instituto Nacional de Limnologia/CONICET, Universidad del Litoral, Santa Fe, Argentina Revealing Paleo-Groundwater and Interbasin Flow as Fundamental to Resource Sustainability on the Arid Altiplano-Puna Plateau Conclusions References Discussion Results Background Conceptual Framework - Motivation & Objective 67°0'0"W 68°0'0"W 69°0'0"W 25°0'0"S 26°0'0"S 27°0'0"S 28°0'0"S 0 20 40 60 80 10 Kilometers 0.70786 - 0.70866 0.70866 - 0.71076 0.71076 - 0.71373 0.71373 - 0.71749 0.71749 - 0.72057 50.1 - 59% 40.1 - 50% 30.1 - 40% 20.1 - 30% 10.1 - 20% 0 - 10% 87 Sr/ 86 Sr 3 H, R mod δ 18 O, δ 2 H Samples Major Dissolved Ions Samples Carachipampa Salar Antofagasta de la Sierra Tres Quebradas Salar Salar de Antofalla Laguna Grande Laguna Los Aparejos Rio Aguas Calientes Rio Chaschuil Limit of Interally Drained Area Major Fault Systems Watersheds Major Drainges Salars Lagoons Salar de Hombre Muerto Laguna Caro El Penon Rio Vilavil ? Cerro Galan Rio Los Patos ? 66°0'0"W 67°0'0"W 68°0'0"W 69°0'0"W 24°0'0"S 25°0'0"S 26°0'0"S 27°0'0"S 28°0'0"S 0 25 50 75 100 12.5 Kilometers Watersheds Major Drainges Salars Lagoons Limit of Interally Drained Area Major Fault Systems Salar de Atacama Groundwater Spring Stream Lagoon Thermal water Brine Precipitation El Penon Antofagasta de la Sierra Laguna Grande Laguna Caro Salar de Hombre Muerto Salar de Antofalla Tres Quebradas Salar Laguna Los Aparejos CarachiPampa Salar Bookhagen, B. (in review): High resolution spatiotemporal distribution of rainfall seasonality and extreme events based on a 12-year TRMM time series, in review. Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Re- search, 68(16), 4795–4812. https://doi.org/10.1029/jz068i016p04795 Moran, B. J., Boutt, D., & Munk, L. A. (2019). Stable and Radioisotope Systematics Reveal Fossil Water as Funda- mental Characteristic of Arid Orogenic-Scale Groundwater Systems. Water Resources Research,. https://- doi.org/10.1029/2019WR026386. Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D., Pingel, H., … Montero, C. (2014). Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth and Planetary Science Letters, 407, 187–195. https://doi.org/10.1016/j.epsl.2014.09.021. Godfrey, L. V., Jordan, T. E., Lowenstein, T. K., & Alonso, R. L. (2003). Stable isotope constraints on the transport of water to the Andes between 22° and 26°S during the last glacial cycle. In Palaeogeography, Palaeoclimatology, Palaeo- ecology (Vol. 194, pp. 299–317). Elsevier B.V. https://doi.org/10.1016/S0031-0182(03)00283-9. Lindsey, B.D., Jurgens, B.C., and Belitz, K., 2019, Tritium as an indicator of modern, mixed, and premodern ground- water age: U.S. Geological Survey Scientific Investigations Report 2019–5090, 18 p., https://doi.org/10.3133/ sir20195090. Meixner, A., Sarchi, C., Lucassen, F., Becchio, R., Caffe, P. J., Lindsay, J., … Kasemann, S. A. (2019). Lithium con- centrations and isotope signatures of Palaeozoic basement rocks and Cenozoic volcanic rocks from the Central Andean arc and back-arc. Mineralium Deposita. https://doi.org/10.1007/s00126-019-00915-2 We seek to address the following questions: 1. What is the nature of hydrogeologic connectivity within the plateau; between topographically closed basins and between modern infiltration (<60 yrs.) and the paleo-groundwater system? 2. How connected are surface water bodies (wetlands, lakes, salt lakes and salars) on the Puna to the groundwater (aquifers) and what is distribution and magnitude of these connections? 3. What are the dynamic response times of surface and groundwaters to perturbations from climate change and groundwater extractions? Water resources on the arid high-Andean plateau are critical to sustaining both indigenous communities and fragile Ramsar World Heritage ecosystems yet accelerating demand for mineral resources and the effects of climate change have led to concerns about the sustainability of these resources. Persistent and fundamental questions regarding the source and movement of groundwaters, which sustain most surface waters here make managing these resources particularly difficult. Left: Regional map of Altiplano Puna plateau, basins discussed in this work, sample locations in this work and location of profiles presented herein. Below: Percent modern water in 86 sam- ples determined by 3 H decay. The salar nucleus and sub-watersheds are shaded. 66°0'0"W 67°0'0"W 68°0'0"W 69°0'0"W 23°0'0"S 24°0'0"S 25°0'0"S 26°0'0"S 27°0'0"S 0 30 60 90 120 15 Kilometers -13.9 - -10.9 -10.89 - -9.4 -9.39 - -8.1 -8.09 - -6.7 -6.69 - -4.8 -4.79 - -0.6 δ 18 O ‰ Springs & Gw (lc-excess filtered) TRMM2b31 Precipitation mm/year 500 250 0 SALLJ Chaco Chaco 67°0'0"W 67°30'0"W 68°0'0"W 68°30'0"W 22°30'0"S 23°0'0"S 23°30'0"S 24°0'0"S 24°30'0"S 0 25 50 75 100 12.5 km Peine Block S NE N Northern Plateau Southern Plateau SE δ 18 O δ 18 O δ 18 O δ 18 O (rainout) Transition Zone Nucleus 2,300 m a.s.l. Altiplano/Puna ~4,200 m a.s.l. Topographic Watershed LGM water table Contributions from hydrogeologic watershed GWR P Plateau GWR Modern water table (falling) P Divide Peine Block δ 18 O P local Hyper-arid to the west. Negligible recharge and inflow to the system δ 18 O δ 18 O Vertically exaggerated, water table depths not to scale (b) (a) Distance from Transitional Pools (km) 50 45 40 35 30 25 20 15 10 5 0 Elevation (mamsl) 4,200 4,000 3,800 3,600 3,400 3,200 3,000 2,800 2,600 2,400 2,200 5 0.06 [SC:1] 0.37 [SC 19] 0.03 [SC:8] 0.04 [SC:29] 0.30 [SC:237] 0.18 [SC:60] Large MRTs Non-modern Water 0.23 [SC:239] 0.09 [SC:230] (a) (b) 3 H (TU) Nucleus Brine n=12 Marginal Brine n=10 Trans. Pools n=10 Lagoons n=4 Trans. Zone n=8 South Inflow n=9 East Inflow n=25 n=2 High Elev. Lakes n=2 25%~75% Range within 1.5IQR Median Line Mean Outliers 1.8 1.6 1.0 0.8 0.6 0.4 0.2 0.0 1.2 1.4 High Elev. Inflow W E High Elevation Lakes & Lagoons High Elevation Inflow Low Elevation Inflow Transition Zone Lagoons Transitional Pools Marginal Brine Nuclues Brine Below: Average precipitation region-wide 1998-2009 from the TRMM satellite, reanalyzed by Bookhagen at al., (in review). Data points are lc-excess filtered δ 18 O values from groundwater and spring waters. Left: Conceptual model of the hydrogeologic flow regime of the Salar de Atacama (SdA) basin from Moran et al., 2019; in profile view below. Watershed is solid black outline, sub-watersheds are colored. 3000-3500 3500-4000 4000-4600 0.70600 0.70800 0.71000 0.71200 0.71400 0.71600 0.71800 0.72000 0.72200 Elevation (mamsl) 87 Sr/ 86 Sr 25%~75% Range within 1.5IQR Median Line Mean Outliers Snow Thermal Spring Spring Vega Stream Lagoon Brine 0.70600 0.70800 0.71000 0.71200 0.71400 0.71600 0.71800 0.72000 0.72200 87 Sr/ 86 Sr 25%~75% Range within 1.5IQR Median Line Mean Outliers SdA Brines Puna Ignimbrites & Ashes Puna Basement Rocks 122 5 (n=2) 8 (n=3) 11 12 13(n=2) 84 7 (n=2) 9 (n=2) 187 185 188 & 190 SDA216 Talabre Spring Toro Blanco Spring Pena Blanca (n=2) 76 Avg. Nucleus Brine (n=11) Avg. Trans. Pools (n=10) Avg. Lagoons (n=4) 69 70 NE 78 (n=2) 83 & 3 Pena Blanca Spring Lejía gw (n=3) Lejía laguna (n=2) MP-09 (n=2) 180 (n=2) 195 MP-12 PP-03 PP-01 MP-07 MP-08 Avg. Trans. Zone (n=8) Avg. Marginal Brine (n=10) Cerro Toco N 197 186 2 139 81 82 Laguna Lejía Laguna Miñiques Laguna Miscanti 102 68° W 23° S 24° S 0 10 20 30 40 5 km 0.0 - 0.06 0.07 - 0.13 0.14 - 0.20 0.20 - 0.26 0.27 - 0.59 SE South Plateau Nucleus R modern Content Precipitation Grosjean et al. 1995 Gw Sw N NE SE S Plateau June 2011 June 2012 February 2018 February 2019 -9 -8 -7 -6 -5 18 Date Wet Period Wet Period Salar de Atacama to Laguna Blanca NW SE Distance (km) Elevation (mamsl) 0 50 100 150 200 250 300 350 400 5,000 4,500 4,000 3,500 2,000 3,000 2,500 5,500 Salar de Atacama Lg. Grande Rio Punilla Salar de Antofalla Laguna Blanca - 12 - 11 - 10 -9 -8 -7 -6 -5 -4 δ 18 O (‰) 0% 10% 3 H, R mod : 20% 30% 40% 50% Lakes Vega ? Rio Vilavil δ 18 O δ 18 O Rainout 0.1 1 10 100 1000 10000 100000 Distance (km) Elevation (mamsl) Carachi Pampa to Hombre Muerto S N 0 20 40 60 80 100 120 5,000 4,750 4,500 4,250 4,000 3,750 3,500 3,250 3,000 2,750 5,000 4,750 4,500 4,250 4,000 3,750 3,500 3,250 3,000 2,750 Rio Punilla Headwaters Laguna Alumbrera Carachi Pampa Salar Salar de Hombre Muerto Rio Trapiche Antofagasta de la Sierra 0% 10% 3 H, R mod : 20% 30% 40% 50% Vega Streams Springs Salars Lakes Watershed boundary -7.6 -7.4 -7.2 -7.0 -6.8 -6.6 -6.4 δ 18 O (‰) Cl - (mg/l) δ 18 O Rainout SO 4 -- + Cl - Ca ++ + Mg ++ HCO 3 - + CO 3 -- Na + + K + 80 80 60 60 40 40 20 20 20 20 20 40 40 40 60 60 60 80 80 80 Mg ++ Ca ++ 20 20 20 40 40 40 60 60 60 80 80 80 SO 4 -- Cl - # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # + + + + + + + + + , , , , , , , , , , , , , , , , , , - - - 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ' ' ' * * * * * * " " " " " " " " " " " " " " " " " " " " " " " " " " ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! $ $ % meq/kg Streams Springs Lagoons Groundwater Snow High Elevation Basins Low Elevation Basins Hombre Muerto Carachipampa Tres Quebradas # # # # 1 Ca-HCO3 Na-HCO3 Carachipampa high elevation basins Northern Carachipampa NE Carachipampa Ca-SO4 # Major Basins Water Types ! " Carachipampa brines Tres Quebradas brines Na-Cl Left: 87 Sr/ 86 Sr data from this work. Potential end-member signatures indicted by dashed lines. Right: O and H isotope data from each basin, each with different color/shape. Local Evaporation Lines indicate predicted signature of source waters. Above & Right: Cross-sections through study region, labeled 1-4 and on map. Red circle size relative to R mod content in waters. Blue arrows indicate modern water transport, green arrows indicate interbasin flow. δ 18 O and Cl - along transect are plotted above. Above right: Major hydrochemical facies within SdA catchment. Colors correspond to sub-watersheds. Below: Same data as at right, presented along transect through SE (blue) zone. Tothian interbasin flow regime [1] [2] [3] [4] [1] [2] [4] 1000 1500 2000 2500 3000 3500 4000 4500 5000 -14.0 -13.0 -12.0 -11.0 -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 Sample Elevation (mamsl) δ18O - VSMOW (‰) Rain Snow Hombre Muerto Caro Antofalla Grande/Diamante Carachipampa N Carchipampa NE 3Q Los Aparejos Rio Chaschuil Rio Vilavil Estimated Lapse rate (Rohrmann et al., 2014) Tres Quebradas Inflow Above: Predominately fossil waters (values below ~10% R mod ) are related to their δ 18 O signatures. Waters with high percentage of modern water and relatively low δ 18 O values indicate a high elevation source (likely snow-melt) while rainwater has higher δ 18 O values. Potential mixing between these waters can be identified. Depletion Enrichment Spring Vega Stream Lagoon Brine 0.0 0.1 0.2 0.3 0.4 0.5 0.6 3 H, R mod 25%~75% Range within 1.5IQR Median Line Mean Outliers 3000-3500 3500-4000 4000-4600 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Elevation (mamsl) 3 H, R mod 0.70600 0.70800 0.71000 0.71200 0.71400 0.71600 0.71800 0.72000 0.72200 0 2 4 6 8 10 12 87 Sr/ 86 Sr 1/Sr (ppm) Stream Spring Vega Lagoon Laguna Grande Spring Puna Basement Puna Ignimbrites & Ashes El Penon Springs Evaporation Mineral Precipitation Hombre Muerto major streams Carachipampa Spring Thermal waters Left: 87 Sr/ 86 Sr v. 1/Sr from water across the study area. Signature from major rock types (Meixner et al, 2019) in this region and general end-member mixing lines noted. Major distinctions in water-rock interactions along flow paths are identifiable here. Right: δ 18 O data vs elevation of sampling. Lapse rate estimated for this region from Rohrmann et al., 2014. Ellipses indicate waters at similar elevation with distinct signatures. Blue arrows are potential connections with waters down-gradient. 1. An exhaustive set (~350) of environmental tracer data (δ 18 O, δ2H, 3H, 87 Sr/ 86 Sr), and dissolved major ions in waters across this integrated system reveals substantial spatial heterogeneity in both interbasin and modern, shallow flow regimes; controlled by geologic structure and topographic features. 2. Pre-modern ‘fossil’ groundwater is fundamental in this system, most of the water discharging to large basin floors is composed of fossil water. The modern and fossil flow systems have very distinct transit time distributions and therefore sharp disconnects over short distances exists between them. 3. Our conceptual model of this integrated hydrologic system characterizes spatiotemporal connections. Using this understanding, potential impacts on critical and threatened wetland ecosystems and water resources from development or climate change scenarios can be greatly improved Great Basin, USA Central Plains, USA Altiplano-Puna Plateau Avg. = 0.23 Avg. = 0.21 Avg. = 0.14 Above: R mod statistics from this study by water type grouping and elevation of sampling. Left: R mod in waters calculated from 3 H. Statistics are from three regions of comparable size. The Great Basin and Central Plains data are groundwaters. Data extracted from NWIS dataset and this study (including Salar de Atacama region) from Moran et al., 2019. R mod in precipitation value used is from Lindsey et al., 2014 Laguna Grande Left: Time series of δ 18 O in spring and stream waters. Color of line corresponds to basin (same as plot above) and arrows to map indicate location of notable stream sites. Distance (km) 60 50 40 30 20 10 0 5,000 4,750 4,500 4,250 4,000 3,750 3,500 3,250 3,000 2,750 3Q to Cortaderas Elevation (mamsl) 5,000 4,750 4,500 4,250 4,000 3,750 3,500 3,250 3,000 2,750 3Q Salar Laguna Los Aparejos Laguna Negra Rio Chaschuil 0% 10% 3 H, R mod : 20% 30% 40% 50% Vega Streams Springs Salars Lakes Watershed boundary W E 10 100 1000 10000 100000 δ 18 O (‰) Cl - (mg/l) -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 δ 18 O δ 18 O Low Elevation Pampa moisture High Elevation Pacific moisture ? Right: Piper diagram of data collected in this study and available published data. Data shapes identify basin, colors are water type. Important water group and evolutionary pathways are labeled and colored by basin. [3] Left: Site map of study area. Topographic watersheds are outlined in red. Important basins, rivers and communities are labeled; colors of basin labels correspond to data across this work. Transects presented below are numbered. 3H percent modern content of water shown as relative circle size; 87 Sr/ 86 Sr data shown on color scale. Blue arrows show major modern flow paths, green hollow arrows are major interbasin or paleo-groundwater flow path. Left: Conceptualization of regional flow from Toth (1963). These flow regimes commonly develop long, interbasin flow paths in arid mountainous areas. 0.00 0.10 0.20 0.30 0.40 0.50 0.60 -16.00 -14.00 -12.00 -10.00 -8.00 -6.00 -4.00 -2.00 3 H, R mod H 2 O-δ 18 O (‰) Springs Vegas Streams Snowmelt Mixing Mixing Rain Mixing Rio Los Patos

Revealing Paleo-Groundwater and Interbasin Flow as ... · and Conservation, American Museum of Natural History, 5Fundacion Yuchan, Salta, Argentina, 6Instituto Nacional de Limnologia/CONICET,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Revealing Paleo-Groundwater and Interbasin Flow as ... · and Conservation, American Museum of Natural History, 5Fundacion Yuchan, Salta, Argentina, 6Instituto Nacional de Limnologia/CONICET,

Distance (km)80706050403020100

Ele

vatio

n (m

amsl

)

6,000

5,750

5,500

5,250

5,000

4,750

4,500

4,250

4,000

3,750

3,500

3,250

3,000

2,750

6,000

5,750

5,500

5,250

5,000

4,750

4,500

4,250

4,000

3,750

3,500

3,250

3,000

2,750

S NECarchi Pampa to Cerro Galan

CarachipampaSalar

El Penon

Cerro Galan

LagunaDiamante

LagunaGrande

LagunaCabi

0% 10%3H, Rmod: 20% 30% 40% 50%

Vega

?

Streams

SpringsSalarsLakes

Watershedboundary

-8.0-7.8-7.6-7.4-7.2-7.0-6.8-6.6-6.4-6.2

10

100

1000

10000

100000

δ18O

(‰)

Cl- (

mg/

l)

δ18Oδ2

H -

VSM

OW

(‰)

δ18O - VSMOW (‰)Hombre Muerto Caro Antofalla Grande/Diamante Carachipampa N Carachipampa NE 3Q Los Aparejos Rio Chaschuil Rio Vilavil

Brendan J. Moran1, David F. Boutt1, LeeAnn Munk2, Joshua Fisher3, Felicity Arengo4, Patricia Marconi5, Diego Frau6

1Univeristy of Massachusetts, Amherst; [email protected]. 2University of Alaska, Anchorage. 3Advanced Consortium on Cooperation, Conflict, and Complexity, Earth Institute, Columbia University, 4Center for Biodiversity and Conservation, American Museum of Natural History, 5Fundacion Yuchan, Salta, Argentina, 6Instituto Nacional de Limnologia/CONICET, Universidad del Litoral, Santa Fe, Argentina

Revealing Paleo-Groundwater and Interbasin Flow as Fundamental to Resource Sustainability on the Arid Altiplano-Puna Plateau

Conclusions

References

DiscussionResults

Background

Conceptual Framework

- Motivation & Objective

67°0'0"W68°0'0"W69°0'0"W

25°0

'0"S

26°0

'0"S

27°0

'0"S

28°0

'0"S

0 20 40 60 8010Kilometers

0.70786 - 0.70866

0.70866 - 0.71076

0.71076 - 0.71373

0.71373 - 0.71749

0.71749 - 0.72057

50.1 - 59%

40.1 - 50%

30.1 - 40%

20.1 - 30%

10.1 - 20%

0 - 10%

87Sr/86Sr 3H, Rmod

δ18O, δ2H Samples Major Dissolved Ions Samples

CarachipampaSalar

Antofagastade la Sierra

Tres QuebradasSalar

Salar deAntofalla

Laguna Grande

Laguna LosAparejos

RioAguasCalientes

RioChaschuil

Limit of Interally Drained Area

Major FaultSystems WatershedsMajor Drainges Salars Lagoons

Salar deHombre Muerto

Laguna Caro

El Penon

RioVilavil

?

Cerro Galan

RioLos Patos

?

66°0'0"W67°0'0"W68°0'0"W69°0'0"W

24°0

'0"S

25°0

'0"S

26°0

'0"S

27°0

'0"S

28°0

'0"S

0 25 50 75 10012.5Kilometers

Watersheds

Major DraingesSalars Lagoons

Limit of Interally Drained Area

Major FaultSystems

Salar de Atacama

GroundwaterSpringStreamLagoon

Thermal waterBrine

Precipitation

El Penon

Antofagastade la Sierra Laguna Grande

Laguna Caro

Salar de Hombre Muerto

Salar de Antofalla

Tres QuebradasSalar

Laguna Los Aparejos

CarachiPampaSalar

Bookhagen, B. (in review): High resolution spatiotemporal distribution of rainfall seasonality and extreme events based on a 12-year TRMM time series, in review.

Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Re-search, 68(16), 4795–4812. https://doi.org/10.1029/jz068i016p04795

Moran, B. J., Boutt, D., & Munk, L. A. (2019). Stable and Radioisotope Systematics Reveal Fossil Water as Funda-mental Characteristic of Arid Orogenic-Scale Groundwater Systems. Water Resources Research,. https://-doi.org/10.1029/2019WR026386.

Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D., Pingel, H., … Montero, C. (2014). Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth and Planetary Science Letters, 407, 187–195. https://doi.org/10.1016/j.epsl.2014.09.021.

Godfrey, L. V., Jordan, T. E., Lowenstein, T. K., & Alonso, R. L. (2003). Stable isotope constraints on the transport of water to the Andes between 22° and 26°S during the last glacial cycle. In Palaeogeography, Palaeoclimatology, Palaeo-ecology (Vol. 194, pp. 299–317). Elsevier B.V. https://doi.org/10.1016/S0031-0182(03)00283-9.

Lindsey, B.D., Jurgens, B.C., and Belitz, K., 2019, Tritium as an indicator of modern, mixed, and premodern ground- water age: U.S. Geological Survey Scientific Investigations Report 2019–5090, 18 p., https://doi.org/10.3133/ sir20195090.

Meixner, A., Sarchi, C., Lucassen, F., Becchio, R., Caffe, P. J., Lindsay, J., … Kasemann, S. A. (2019). Lithium con-centrations and isotope signatures of Palaeozoic basement rocks and Cenozoic volcanic rocks from the Central Andean arc and back-arc. Mineralium Deposita. https://doi.org/10.1007/s00126-019-00915-2

We seek to address the following questions:1. What is the nature of hydrogeologic connectivity within the plateau; between topographicallyclosed basins and between modern infiltration (<60 yrs.) and the paleo-groundwater system?2. How connected are surface water bodies (wetlands, lakes, salt lakes and salars) on the Puna to thegroundwater (aquifers) and what is distribution and magnitude of these connections?3. What are the dynamic response times of surface and groundwaters to perturbations from climatechange and groundwater extractions?

Water resources on the arid high-Andean plateau are critical to sustaining both indigenous communities and fragile Ramsar World Heritage ecosystems yet accelerating demand for

mineral resources and the effects of climate change have led to concerns about the sustainability of these resources. Persistent and fundamental questions regarding the source

and movement of groundwaters, which sustain most surface waters here make managing these resources particularly difficult.

Left: Regional map of Altiplano Puna plateau, basins discussed in this work, sample locations in this work and location of profiles presented herein.

Below: Percent modern water in 86 sam-ples determined by 3H decay. The salar nucleus and sub-watersheds are shaded.

66°0'0"W67°0'0"W68°0'0"W69°0'0"W

23°0

'0"S

24°0

'0"S

25°0

'0"S

26°0

'0"S

27°0

'0"S

0 30 60 90 12015Kilometers

-13.9 - -10.9

-10.89 - -9.4

-9.39 - -8.1

-8.09 - -6.7

-6.69 - -4.8

-4.79 - -0.6

δ18O ‰Springs & Gw(lc-excess filtered)

TRMM2b31Precipitationmm/year

500 250 0

SALLJ

Chaco

Chaco

67°0'0"W67°30'0"W68°0'0"W68°30'0"W

22°3

0'0"

S23

°0'0

"S23

°30'

0"S

24°0

'0"S

24°3

0'0"

S

0 25 50 75 10012.5km

Peine Block

S

NE

N

Northern Plateau

Southern PlateauSE

δ18O

δ18O

δ18O

δ18O (rainout)

TransitionZone

Nucleus2,300 m a.s.l.

Altiplano/Puna~4,200 m a.s.l.

Topographic Watershed

LGM water table

Contributions fromhydrogeologic watershed

GWR

PPlateau

GWR

Modern water table (falling)

PDivide

Peine Block

δ18O

Plocal

Hyper-arid to the west.Negligible recharge and inflow to the system

δ18O δ18O

Vertically exaggerated, water table depths not to scale

(b)

(a)

Distance from Transitional Pools (km)50454035302520151050

Elev

atio

n (m

amsl

)

4,200

4,000

3,800

3,600

3,400

3,200

3,000

2,800

2,600

2,400

2,2005

0.06 [SC:1]

0.37 [SC 19]

0.03 [SC:8]0.04 [SC:29]

0.30 [SC:237]0.18 [SC:60]

Large MRTsNon-modern Water

0.23 [SC:239]

0.09 [SC:230]

(a) (b)

3 H(T

U)

NucleusBrinen=12

MarginalBrinen=10

Trans.Poolsn=10

Lagoons

n=4

Trans.Zonen=8

SouthInflown=9

EastInflown=25 n=2

High Elev.Lakesn=2

25%~75%Range within 1.5IQRMedian LineMeanOutliers

1.8

1.6

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.4

High Elev.Inflow

W EHigh Elevation Lakes & Lagoons

High Elevation Inflow

Low Elevation InflowTransition

Zone

LagoonsTransitional Pools

Marginal BrineNuclues Brine

Below: Average precipitation region-wide 1998-2009 from the TRMM satellite, reanalyzed by Bookhagen at al., (in review). Data points are lc-excess filtered δ18O values from groundwater and spring waters.

Left: Conceptual model of the hydrogeologic flow regime of the Salar de Atacama (SdA) basin from Moran et al., 2019; in profile view below. Watershed is solid black outline, sub-watersheds are colored.

3000-3500 3500-4000 4000-46000.70600

0.70800

0.71000

0.71200

0.71400

0.71600

0.71800

0.72000

0.72200

Elevation (mamsl)

87Sr

/86Sr

25%~75%Range within 1.5IQRMedian LineMeanOutliers

Snow ThermalSpring

Spring Vega Stream Lagoon Brine0.70600

0.70800

0.71000

0.71200

0.71400

0.71600

0.71800

0.72000

0.72200

87Sr

/86Sr

25%~75%Range within 1.5IQRMedian LineMeanOutliers

SdA Brines

Puna Ignimbrites & Ashes

Puna Basement Rocks

122

5 (n=2)

8 (n=3)11

12

13(n=2)

84

7 (n=2)

9 (n=2)

187

185

188 & 190SDA216

Talabre Spring

Toro Blanco Spring

Pena Blanca (n=2)

76

Avg. Nucleus Brine (n=11)

Avg. Trans. Pools (n=10)

Avg. Lagoons(n=4)

6970

NE

78 (n=2)

83 & 3

Pena Blanca Spring

Lejía gw (n=3)

Lejía laguna (n=2)

MP-09 (n=2)180 (n=2)

195

MP-12

PP-03

PP-01MP-07

MP-08

Avg. Trans. Zone(n=8)

Avg. Marginal Brine (n=10)

Cerro Toco N

197

186

2

139

8182

Laguna Lejía

Laguna Miñiques

Laguna Miscanti

102

68° W

23° S

24° S

0 10 20 30 405km

0.0 - 0.06

0.07 - 0.13

0.14 - 0.20

0.20 - 0.26

0.27 - 0.59

SE

SouthPlateau

Nucleus

Rmodern ContentPrecipitation

Grosjean et al. 1995Gw Sw

NNESESPlateau

June 2011 June 2012 February 2018 February 2019-9

-8

-7

-6

-5

18

Date

Wet Period Wet Period

Salar de Atacama to Laguna BlancaNW SE

Distance (km)

Elev

atio

n (m

amsl

)

0 50 100 150 200 250 300 350 400

5,000

4,500

4,000

3,500

2,000

3,000

2,500

5,500

Salar de Atacama

Lg.Grande

RioPunilla

Salar deAntofalla Laguna

Blanca

-

12

-

11

-

10

-9

-8

-7

-6

-5

-4

δ18O

(‰)

0% 10%3H, Rmod: 20% 30% 40% 50%

Lakes

Vega?

RioVilavil

δ18O

δ18O

Rainout0.1

110

1001000

10000100000

Distance (km)

Elev

atio

n (m

amsl

)

Carachi Pampa to Hombre MuertoS N

0 20 40 60 80 100 120

5,000

4,750

4,500

4,250

4,000

3,750

3,500

3,250

3,000

2,750

5,000

4,750

4,500

4,250

4,000

3,750

3,500

3,250

3,000

2,750

RioPunilla

Headwaters

LagunaAlumbrera

Carachi PampaSalar

Salar deHombreMuerto

RioTrapiche

Antofagasta de la Sierra

0% 10%3H, Rmod: 20% 30% 40% 50%

VegaStreams

SpringsSalarsLakes

Watershedboundary

-7.6-7.4-7.2-7.0-6.8-6.6-6.4

δ18O

(‰)

Cl- (

mg/

l)

δ18O Rainout

SO4-- +

Cl-

Ca ++ + Mg ++

HCO 3- +

CO 3--

Na + + K +

80

80

60

60

40

40

20

20

20

20

20

40

40

40

60

60

60

80

80

80

Mg+

+

Ca++

20

20

20

40

40

40

60

60

60

80

80

80

SO4 --

Cl-

# #

#

#

#

#

#

#

#

##

#

##

#

##

#

#

#

#

##

#

##

#

# #

#

# #

#

#

#

#

#

#

#

##

#

++

+

+

+

+

+

+

+

, ,

,

,,

,

,,

,

,

,

,

,,

,

,

,

,

-

-

-

0 0

0

0 0

0

0

0

0

1

1

1

1 1

1

'

'

'

*

*

*

* *

*

"

"

"

"

"

"

" "

"

"

"

"

""

""

"

"

"

"

" "

"

"

"

"

)

)

)

)

)

)

)

)

)

)

)

)

))

)

!

!

!

!!

!

!!

!

!!

!

!!

!

! !

!

! !

!

!!

!

!

!

!

!!

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

!!

!

! !

!

!!

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

!!

!

!!

!

!!

!

! !

!

!!

!

! !

!

! !

!

! !

!

! !

!

!!

!

! !

!

! !

!

! !

!

! !

!

! !

!

! !

!

!!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!!

!

$ $

% meq/kg

StreamsSpringsLagoonsGroundwaterSnowHigh Elevation BasinsLow Elevation Basins

Hombre MuertoCarachipampaTres Quebradas

#

##

#

1

Ca-HCO3

Na-HCO3

Carachipampa high elevation basins

Northern Carachipampa

NE Carachipampa

Ca-SO4

#Major Basins

Water Types

!"

Carachipampabrines

Tres Quebradasbrines

Na-Cl

Left: 87Sr/86Sr data from this work. Potential end-member signatures indicted by dashed lines.Right: O and H isotope data from each basin, each with different color/shape. Local Evaporation Lines indicate predicted signature of source waters.

Above & Right: Cross-sections through study region, labeled 1-4 and on map. Red circle size relative to Rmod content in waters. Blue arrows indicate modern water transport, green arrows indicate interbasin flow. δ18O and Cl- along transect are plotted above.

Above right: Major hydrochemical facies within SdA catchment. Colors correspond to sub-watersheds.

Below: Same data as at right, presented along transect through SE (blue) zone.

Tothian interbasin flow regime

[1]

[2]

[3]

[4]

[1] [2] [4]

1000

1500

2000

2500

3000

3500

4000

4500

5000

-14.0 -13.0 -12.0 -11.0 -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0

Sam

ple

Elev

atio

n (m

amsl

)

δ18O - VSMOW (‰)

Rain Snow Hombre Muerto Caro Antofalla Grande/DiamanteCarachipampa N Carchipampa NE 3Q Los Aparejos Rio Chaschuil Rio Vilavil

Estimated Lapse rate(Rohrmann et al., 2014)

Tres Quebradas Inflow

Above: Predominately fossil waters (values below ~10% Rmod) are related to their δ18O signatures. Waters with high percentage of modern water and relatively low δ18O values indicate a high elevation source (likely snow-melt) while rainwater has higher δ18O values. Potential mixing between these waters can be identified.

Depletion

Enrichment

Spring Vega Stream Lagoon Brine0.0

0.1

0.2

0.3

0.4

0.5

0.6

3 H,R

mod

25%~75%Range within 1.5IQRMedian LineMeanOutliers

3000-3500 3500-4000 4000-46000.0

0.1

0.2

0.3

0.4

0.5

0.6

Elevation (mamsl)

3 H,R

mod

0.70600

0.70800

0.71000

0.71200

0.71400

0.71600

0.71800

0.72000

0.72200

0 2 4 6 8 10 12

87Sr/8

6 Sr

1/Sr (ppm)

Stream Spring Vega Lagoon

Laguna Grande Spring

PunaBasement

Puna Ignimbrites& Ashes

El Penon Springs

Evaporation Mineral Precipitation

Hombre Muerto major streams

Carachipampa Spring

Thermal waters

Left: 87Sr/86Sr v. 1/Sr from water across the study area. Signature from major rock types (Meixner et al, 2019) in this region and general end-member mixing lines noted. Major distinctions in water-rock interactions along flow paths are identifiable here.

Right: δ18O data vs elevation of sampling. Lapse rate estimated for this region from Rohrmann et al., 2014. Ellipses indicate waters at similar elevation with distinct signatures. Blue arrows are potential connections with waters down-gradient.

1. An exhaustive set (~350) of environmental tracer data (δ18O, δ2H, 3H, 87Sr/86Sr), and dissolved major ions in waters across this integrated system reveals substantial spatial heterogeneity in both interbasin and modern, shallow flow regimes; controlled by geologic structure and topographic features.2. Pre-modern ‘fossil’ groundwater is fundamental in this system, most of the water discharging to large basin floors is composed of fossil water. The modern and fossil flow systems have very distinct transit time distributions and therefore sharp disconnects over short distances exists between them.3. Our conceptual model of this integrated hydrologic system characterizes spatiotemporal connections. Using this understanding, potential impacts on critical and threatened wetland ecosystems and water resources from development or climate change scenarios can be greatly improved

Great Basin, USA Central Plains, USA Altiplano-Puna Plateau

Avg. = 0.23 Avg. = 0.21Avg. = 0.14

Above: Rmod statistics from this study by water type grouping and elevation of sampling.Left: Rmod in waters calculated from 3H. Statistics are from three regions of comparable size. The Great Basin and Central Plains data are groundwaters. Data extracted from NWIS dataset and this study (including Salar de Atacama region) from Moran et al., 2019. Rmod in precipitation value used is from Lindsey et al., 2014

Laguna Grande

Left: Time series of δ18O in spring and stream waters. Color of line corresponds to basin (same as plot above) and arrows to map indicate location of notable stream sites.

Distance (km)6050403020100

5,000

4,750

4,500

4,250

4,000

3,750

3,500

3,250

3,000

2,750

3Q to Cortaderas

Ele

vatio

n (m

amsl

)

5,000

4,750

4,500

4,250

4,000

3,750

3,500

3,250

3,000

2,750

3QSalar

LagunaLos AparejosLaguna

Negra

RioChaschuil

0% 10%3H, Rmod: 20% 30% 40% 50%

Vega

Streams

Springs

Salars

Lakes

Watershedboundary

W E

10

100

1000

10000

100000

δ18O

(‰)

Cl- (

mg/

l)

-13-12-11-10-9-8-7-6-5-4

δ18Oδ18O Low ElevationPampa moistureHigh Elevation

Pacific moisture

?

Right: Piper diagram of data collected in this study and available published data. Data shapes identify basin, colors are water type. Important water group and evolutionary pathways are labeled and colored by basin.

[3]Left: Site map of study area. Topographic watersheds are outlined in red. Important basins, rivers and communities are labeled; colors of basin labels correspond to data across this work. Transects presented below are numbered. 3H percent modern content of water shown as relative circle size; 87Sr/86Sr data shown on color scale. Blue arrows show major modern flow paths, green hollow arrows are major interbasin or paleo-groundwater flow path.

Left: Conceptualization of regional flow from Toth (1963). These flow regimes commonly develop long, interbasin flow paths in arid mountainous areas.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

-16.00 -14.00 -12.00 -10.00 -8.00 -6.00 -4.00 -2.00

3 H, R

mod

H2O-δ18O (‰)

Springs Vegas Streams

Snowmelt

Mixing Mixing

Rain

Mixing

Rio Los Patos