24
REFRENCES REFRENCES 190

REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

REFRENCES

190

Page 2: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the bioleaching of copper ores. Bioprocess Engineering. 4,223-229. Acevedo F. 2000. The use of reactors in biomining processes. Electronic Journal of Biotechnology, 3, No.3, 1-11 Acevedo F. 2002, Present and future of bioleaching in developing countries. Electronic Journal of Biotechnology, 5, No.2, 196-199 Acosta M, Beard S, Ponce J, Vera M, Mobarec JC, Jerez CA. 2005, Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins. OMICS;9;13–28. Ahonen L, Tuovinen OH. 1990, Silver catalysis of the bacterial leaching of chalcopyrite containing ore materials in column reactors. Min Eng 3, 437–445. Amaro AM, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez C A. 1991 Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol, 173(2), 910–915. Apel AW, Dugan RP. 1978 Hydrogen ion utilization by iron grown Thiobacillus ferrooxidans: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena. Eds. Murr EL, Torma AE, Brierley AJ, Academic Press, New York, San Francisco, London, 45–58. Babij T, Madgwick JC. 1993, High yield bacterial leaching of copper concentrate, Proc Aust Inst Min Met 287, 61–64. Baillet, F., Magnin, J. P., Cheruy, A. & Ozil, P. 1997. Cadmium tolerance and uptake in Thiobacillus ferrooxidans biomass. Environ Technol 18, 631–637. Baillet, F., Magnin, J. P., Cheruy, A. & Ozil, P. 1998. Chromium precipitation by the acidophilic bacterium Thiobacillus ferrooxidans. Biotechnol Lett 20, 95–99. Ballester A, Gonzalev F, Blazquez ML, Gomez C, Mier JL. 1992 The use of catalytic ions in bioleaching. Hydromet 29, 145–160. Barr DW, Jordan MA, Norris PR, Phillips CV. 1992 An investigation into bacterial cell, Fe(II), pH and Eh interactions during thermophilic leaching of copper concentrate, Miner Eng 5, 557–567. Barros, M. E. C., D. E. Rawlings, and D. R. Woods. 1984. Mixotrophic growth of a Thiobacillus ferrooxidans strain. Appl. Environ. Microbiol. 47:593-595.

191

Page 3: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Bayat. O, Server E., Bayat B., Arsalan V., Poole C. 2008. Bioleaching of Zinc and Iron from steel plant waste using Acidithiobacillus ferrooxidans. Appl. Biochem. Biotechnol. In Press. Bderley, J. A., Lockwood, S. J. 1977. FEMS Microbiol. Lett. 2:163-65 Beck, J. V. 1967. BiotechnoL Bioeng. 9:487-97 Bhattacharya S, Das A, Chakrabarti BK, Banerjee PC 1992 A comparative study of characteristic properties of Thiobacillus ferrooxidans strains, Folia Microbiol 37, 169–175. Blake RC, Sasaki K, Ohmura N. 2001. Does aporusticyanin mediate the adhesion of Thiobacillus ferrooxidans to pyrite? Hydrometallurgy 59:357–72. Bond, P. L., Druschel, G. K. & Banfield, J. F. 2000. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66, 4962–4971. Bond PL, Smriga SP, Banfield JF. 2000. Phylogeny of microorganisms populating a thick, subaerial predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66: 3842–49. Boon, M., Ras, C. & Heijnen, J. J. 1999a. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures. Appl Microbiol Biotechnol 51, 813–819. Boon, M., Meeder, T. A., Thione, C., Ras, C. & Heijnen, J. J. 1999b. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in continuous culture. Appl Microbiol Biotechnol 51, 820–826. Booth, J. E. & Williams, J. W. 1984. The isolation of a mercuric ionreducing flavoprotein from Thiobacillus ferrooxidans. J Gen Microbiol 130, 725–730. Bosecker. K. 1997, Bioleaching: meal solubilization by microorganisms. FEMS Microbiology Reviews. 20, 591-604. Bouchal, P., Zdnahal Z., Helanova S., Janiczek, O, Hallberg K.B., Mandl M. 2006. Proteomic and bioinformatics analysis of iron and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry. Proteomics, 6 (15): 4278-4285 Boyer, A., Magnin, J. P. & Ozil, P. 1998. Copper ion removal by Thiobacillus ferrooxidans biomass. Biotechnol Lett 20, 187–190.

192

Page 4: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Bradford, M. M. 1976, A rapid and sensitive method for the quantification of microgram quantities for protein utilizing the principal of protein-dye binding, Anal. Biochem. 72, 248-254. Bridge TAM, Johnson DB. 2000. Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiol. J. 17: 193–206. Brierley CL. 1978. Bacterial leaching. Crit. Rev. Microbiol. 6:207–62. Brierley CL. 1982. Microbiological mining. Sci. Am. 247(2):42–51. Brierley CL. 1997. Mining biotechnology: research into commercial development and beyond. Rawlings DE, ed. 1997. Biomining: Theory, Microbes and Industrial Processes. Berlin: Springer-Verlag, pp. 3–17. Brierley JA. 1997. Heap leaching of goldbearing deposits: theory and operational description. Rawlings DE, ed. 1997. Biomining: Theory, Microbes and Industrial Processes. Berlin: Springer-Verlag, pp. 103–15. Brierley CL, Brans R. 1994 Selection of Bactech’s thermophilic bio-oxidation process for Youanmi Mine, Biomine-94. Brierley JA, Brierley CL. 1999. Present and future commercial applications of biohydrometallurgy. Amils R, Ballester A, eds. 1999. Biohydrometallurgy and the Environment Towardsm the 21st Century. Part A. Amsterdam: Elsevier, pp. 81–89. Bruins, M. R., Kapil, S. & Oehme, F. W. 2000. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45, 198–207. Butcher, B. G. & Rawlings, D. E. 2002. The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148, 3983–3992. Butcher, B. G., Shelly, M. D. & Rawlings, D. E. 2000. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66, 1826–1833. Butterworth. P. H. W.. Jacob. E. J.. Dorsey. J. A.. AND Porter, J. W., 1967, Fed. Prdc., 26, 671. Canterford JH, Davey PT, Tsambourakis T. 1985, Gangue mineral dissoloution and jarosite formation in copper solution mining, Hydromet. 13, 327- 343.

193

Page 5: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Carlin, A., Shi, W., Dey, S. & Rosen, B. P. 1995. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177, 981–986. Cerruti, C., Curutchet, G. & Donati, E. 1998. Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. J Biotechnol 62, 209–219. Chisholm, I. A., Leduc, L. G. & Ferroni, G. D. 1998. Metal resistance and plasmid DNA in Thiobacillus ferrooxidans. Antonie van Leeuwenhoek 73, 245–254. Choi WK, Torma Ae, Ohiline RW, Ghali E. 1993. Electrochemical aspects of zinc sulphide leaching by Thiobacillus ferrooxidans. Hydrometallurgy, 33,137-152 Clark DA, Norris PR. 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed–culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142: 785–90. Colmer AR, Hinkel ME. 1947. The role of microorganisms in acid mine drainage: a preliminary report. Science 106:253–56. Coram NJ, Rawlings DE. 2002. Molecular relationship between two groups of Leptospirillum and the finding that the world and the Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 400C. Appl. Environ. Microbiol. 68:838– 45. Corrick, J. D., Sutton, J. A. 1965. US Dep. Inter. Bur. Mines gep. No. 6714. 22 pp. Curutchet, G., Pogliani, C., Donati, E. & Tedesco, P. 1992. Effect of iron (III) and its hydrolysis products (jarosites) on Thiobacillus ferrooxidans growth and on bacterial leaching. Biotechnol Lett 14, 329–334. Das A, Mishra AK, Roy P. 1993, Inhibition of thiosulfate and tetrathionate oxidation by ferrous iron in Thiobacillus ferrooxidans. FEMS Microbiol Lett;112;67– 72. Das, A., Modak, J. M. & Natarajan, K. A. 1997. Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans. Miner Eng 10, 743–749. Das, A., Modak, J. M. & Natarajan, K. A. 1998. Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie van Leeuwenhoek 73, 215–222. De, G. C., Oliver, D. J. & Pesic, B. M. 1997. Effect of heavy metals on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans. Hydrometallurgy 44, 53–63. De Groot, P., Deane, S. M. & Rawlings, D. E. 2001. A transposonlocated arsenic resistance mechanism within the chromosome of the biomining bacterium,

194

Page 6: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Acidithiobacillus caldus. In International Biohydrometallurgy Symposium, pp. 271–281. Edited by V. S. T. Ciminelli & O. Garcia, Jr. Ouro Preto, Brazil: Elsevier. Delgardo M, Toledo H, Jerez CA. 1998. Molecular cloning, sequencing and expression of a chemoreceptor gene from Leptospirillum ferrooxidans. Appl. Environ. Microbiol. 64:2380–85. DeShazer D, Waag DM, Fritz DL, Woods DE. 2001, Identification of a Burkholderia mallei polysaccharide gene cluster by substractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathog;30;253– 69 Devasia P, Natarajan KA, Sathyanarayana DN, Ramananda Rao G. 1993. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Appl. Environ. Microbiol. 59:4051–55. Deveci, H., Akcil, A. and Alp, I.. 2003 Parameters for control and optimisation of bioleaching of sulphide minerals . In : Kongoli, F , Thomas , B ., Sawamiphakdi , K . (Eds) , Materials Science and Technology 2003 Symposium : Process Copntrol and Optimization in Ferrous and Non ferrous Industry. TMS, Warrendale , PA, pp. 77-90. Deveci, H., Akcil, A. and Alp, I. 2004 Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy 73, 293-303. Dew DW, Lawson EN, Broadhurst JL. 1997. The BIOX® process for biooxidation of gold-bearing ores or concentrates., Rawlings DE, ed. 1997. Biomining: Theory, Microbes and Industrial Processes. Berlin: Springer-Verlag pp. 45–80. Dew DW, Miller DM. 1997. The BioNIC process, bioleaching of mineral sulphide concentrates for the recovery of nickel. In International Biohydrometallurgy Symposium, IBS97, pp. M7.1.1–7.1.9. Glenside, South Aust.: Aust. Mineral Found. Dew, D. W., Muhlbauer, R. & van Buuren, C. 1999. Bioleaching of copper sulphide concentrates with mesophiles and thermophiles. In Alta Copper 99. Brisbane, Australia. De Wulf-Durand P, Bryant LJ, Sly LI. 1997. PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl. Environ. Microbiol. 63:2944–48. Dispiroto, A. A., Talnagi, J. W. & Tuovinen, O. H. 1983. Accumulation and cellular-distribution of uranium in Thiobacillus ferrooxidans. Arch Microbiol 135, 250–253. DiSpirito, A. A., and 0. H. Touvinen. 1982. Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans.Arch. Microbiol. 133:28-32.

195

Page 7: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Douglas E. Rawlings, David Dew and Chris du Plessis. 2003. Biomineralization of metal-containing ores and concentrates. TRENDS in Biotechnology Vol.21 No.1 38-45 Dopson, M., Lindstro¨ m, E. B. & Hallberg, K. B. 2001. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremophiles 5, 247–255. Drobner, E., H. Huber, and K. 0. Stetter. 1990. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microbiol. 56:2922-2923. Edwards KJ, Bond PL, Gihring TM, Ban- field JF. 2000. An Archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 279:1796–99. Edwards KJ, Hu B, Hamers RJ, Banfield JF. 2001.A new look at microbial leaching patterns on sulfide minerals.FEMSMicrobiol. Ecol. 34:197–206. Ehrlich H.L. 1999, Past, present and future of biohydrometallurgy. Hydrometallurgy 95:127-134. Elovson J., Vagelos R., 1986. Acyl Carrier Protein. J. Biological Chemistry. 243, 3603-3611 Elzeky M, Attia YA 1995, Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. Chem Eng J, 56(2), B115-B125. Espejo RT, Romero J. 1997. Bacterial community in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant. Appl. Environ. Microbiol. 63:1344–48. Espejo RT, Romero P. 1987, Growth of Thiobacillus ferrooxidans on elemental sulfur. Appl Environ Microbiol 1907– 12. Falco, L., Pogliani, C., Curutchet, G., Donati, E., 2003. A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71, 31–36. Fowler TA, Holmes PR, Crundwell FK. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 65:2987– 93. Fowler TA, Holmes PR, Crundwell FK. 2001. On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans. Hydrometallurgy 59:257–70.

196

Page 8: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Fraser GM. 1993 Mixing and oxygen transfer in mineral bioleaching, Biomine’ 93, 16.1–16.11. Friedrich CG. 1998, Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol;39;235– 89. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. 2005, Prokaryotic sulfur oxidation. Curr Opin Microbiol;8;253– 9. Garcia, O. and Silva, L. 1991, Differences in growth and iron oxidation among Thiobacillus frrooxidans cultures in the presence of some toxic metals. Biotechnology Letters., 13, 567-570.. Gehrke T, Telegdi J, Thierry D, Sand W. 1998. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 64:2743–47 Gehrke T, Hallmann R, Kinzler K, Sand W. 2001, The EPS of Acidithiobacillus ferrooxidans— a model for structure–function relationships of attached bacteria and their physiology. Water Sci Technol;43;159– 67. Ghosh, S., Mahapatra, N. R. & Banerjee, P. C. 1997. Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl Environ Microbiol 63, 4523–4527. Ghosh, S., Mahapatra, N. R., Ramamurthy, T. & Banerjee, P. C. 2000. Plasmid curing from an acidophilic bacterium of the genus Acidocella. FEMS Microbiol Lett 183, 271–274. Gihring, T. M., Bond, P. L., Peters, S. C. & Banfield, J. F. 2003. Arsenic resistance in the archaeon Ferroplasma acidarmanus: new insights into the structure and evolution of the ars genes. Extremophiles 7, 123–130. Goebel BM, Stackebrandt E. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 60:1614–21. Gomez, E., Ballester, A., Gonzalez, F. & Blazquez, M. L. 1999. Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti. Hydrometallurgy 52, 349–366. Golovacheva RS, Karavaiko GI. 1979. Sulfobacillus—anewgenusofspore-forming thermophilic bacteria. Microbiology (Mikrobiologiya) 48:658–65.

197

Page 9: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Golyshina OV, Pivovarova TA, Karavaiko G, Kondrat’eva TF, Moore ERB, et al. 2000. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmacaea fam. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol. 50:997–1006. Gormely L. 1990 Mathematical modeling of oxygen transfer in a stirred tank bioreactor, Adv. Gold and Silver Processing, Nevada, USA, 217–223. Gormely L. 1992 Mechanical agitation and aeration in hydrometallurgical reactors. Hydromet 29, 217–230. Grishin SI, Tuovinen OH. 1988. Fast kinetics of Fe(II) oxidation in packed bed reactors. Appl Environ Microbiol 54, 3093–3110. Guiliani N, Jerez C. A (2000) Molecular coloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans. Appl. Environ Miocrobiol 66:2318-2324 Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. 2000. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A;97;9390–5. Hallberg, K. B. 1995. Role of arsenic toxicity to and arsenic resistance of thermophilic bioleaching microorganisms. Thesis. Department of Applied Cell and Molecular Biology, Umea° University. Hallberg, K. B., Dopson, M. & Lindstro¨ m, E. B. 1996. Arsenic toxicity is not due to a direct effect on the oxidation of reduced sulfur compounds by Thiobacillus caldus. FEMS Microbiol Lett 145, 409–414. Hallberg KB, Johnson DB. 2001. Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 49:37–84. Hallberg KB, Lindstr¨om EB. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–56. Hallmann R, Friedrich A, Koops H-P, Pommerening-R¨oser A, Rohde K, et al. 1992. Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiol. J. 10:193–206. Harrison AP. 1982. Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and a genomic comparison with Thiobacillus thiooxidans. Arch. Microbiol. 131:68–76.

198

Page 10: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Harrison, A. P., Jr. 1984. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu. Rev. Microbiol. 38:265-292. Harvey, P. I. & Crundwell, F. K. 1996. The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potential. Min Eng 9, 1059–1068. Hippe H. 2000. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972) nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int. J. Syst. Evol. Microbiol. 50:501–3. Hiroyoshi, N., Hirota, M. Hirajima, T. and Tsunekawa, M. 1999. Inhibitory effect of iron-oxidizing bacteria on ferrous-promoted chalcopyrite leaching. Biotechnol Bioeng 64, 478-483. Hirt WE, Vestal JR. 1975. Physical and chemical studies of Thiobacillus ferrooxidans, lipopolysaccharides, J. Bacteriol, 123, 642–650. Hiskey JB, Bhapu R. 1987. Role of oxygen in dump leaching, Proc Int Symp Impact Oxygen Production Non-ferrous Metall Proces, Edts Kachaniwsky G, Newman CJ, 165–183. Hoffman W, Batterham R, Conochie D. 1993. Design of a reactor bioleach process for refractory gold treatment, FEMS Microbiol Rev 11, 221–230. Hoffman, L.E. and Hendrix, J.L 1976. Inhibition of Thiobacillus ferrooxidans by soluble silver. Biotechnol. Bioeng. 18, 1161-1165 Holmes DS, Barreto M, Valdes J, Dominguez C, Nayibe M, et al. 2001. Whole genome sequence of Acidithiobacillus ferrooxidans: metabolic reconstruction, heavy metal resistance and other characteristics. Ciminelli VST, Garcia O Jr, eds. 2001. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, Part A. Amsterdam: Elsevier, pp. 237–51. Holmes PR, Fowler TA, Crundwell FC. 1999. The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. J. Electrochem. Soc. 146: 2906–12. Holmes, D. S., and R. Ul Haq. 1989. Adaptation of Thiobacillus ferrooxidans for industrial applications, p. 115-127. In J. Salley, R. G. L. McCready, and P. L. Wichlacz (ed.), Biohydrometallurgy- 1989. CANMET, Ottawa, Canada. Hossain SM, Das M, Gegum, MM, Anantharaman N. 2004, Bioleaching of zinc sulphide ore using Thiobacillus ferrooxidans. IE Journal-CH, 85, 7-11

199

Page 11: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Huber G, Spinnler C, Gambacorta A, Stetter KO. 1989. Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst. Appl. Microbiol. 12:38–47. Huber G, Stetter KO. 1991. Sulfolobus metallicus, new species, a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers. Syst. Appl. Microbiol. 14:372–78. Hutchins, S.R., Davidson, M.S., Brierley, J.A. and Brierley, C.L. 1986. Microorganisms in reclamation of metals. Ann. Rev. Microbiol. 40, 311-336 Imai, K., Sugio, T., Tsuchida, T. & Tano, T. 1975. Effect of heavy metal ions on growth and iron-oxidizing activity of Thiobacillus ferrooxidans. Agric Biol Chem 39, 1349–1354. Inoue, C., Sugawara, K. & Kusano, T. 1991. The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol Microbiol 5, 2707–2718. Itoh, S., Iwaka, M., Wakao, N., Yoshizu, K., Aoki, A. & Tazaki, K. 1998. Accumulation of Fe, Cr and Ni metals inside cells of acidophilic bacterium Acidiphilum rubrum that produces Zncontaining bacteriochlorophyll a. Plant Cell Physiol 39, 740–744. Jerez CA, Seeger M, Amaro AM 1992. Phosphate starvation affects the synthesis of outer memberane proteins in Thiobacillus ferrooxidans. FEMS Microbiol Lett 98:29-34 Jin SM, Yan WM,Wang ZN. 1992. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl. Environ. Microbiol. 58:429–30. Johnson DB. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J. Microbiol. Methods 23:205– 18. Johnson DB. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27:307–17. Johnson DB. 2001. Genus II Leptospirillum Hippe 2000 (ex Markosyan 1972, 26). In Bergey’s Manual of Comparative Bacteriology, ed.GGarrity, 1:443–47. Berlin: Springer. Johnson, D. B., Ghauri, M. A. & Said, M. F. 1992. Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron. Appl Environ Microbiol 58, 1423–1428. Johnson DB, Roberto FF. 1997. Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. Rawlings DE, ed. 1997. Biomining: Theory, Microbes and Industrial Processes. Berlin: Springer-Verlag, pp. 259–79.

200

Page 12: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Johnson DB, McGinness. 1991. An efficient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria. J. Microbiol. Method 13:113–22. Jyothi N, Sudha KN, Natarajan KA. 1989. Electrochemical aspects of selectivity bioleaching of sphalerite and chalcopyrite from mixed sulfides. Int J Min Proc 27,189–203 Kalyaeva, E. S., Kholodii, G. Y., Bass, I. A., Gorlenko, Z. M., Yureiva, O. V. & Nikiforov, V. G. 2001. Tn5037, a Tn21-like mercury resistance transposon from Thiobacillus ferrooxidans. Russ J Genet 37, 972–975. Kar RN, Roy Chaudhury G, Sukla LB, Das RP. 1991. Kinetics of iron oxidation as well as precipitation by Thiobacillus ferrooxidans.in presence and absence of various metal ions. Erzmetal 44, 212–215. Karamanev, D. G. & Nikolov, L. N. 1988. Influence of some physiochemical parameters on bacterial activity of biofilm: ferrous iron oxidation by Thiobacillus ferrooxidans. Biotechnol Bioeng 31, 295–299. Karavaiko, GI 1988 Microorganisms & their significance for biotechnology of metals: Biogeotechnology of Metals. Manual. Edts. Karavaiko GI, Rossi G, Agate AD, Groudev SN, Avakyan ZA, Centre for International Projects GKNT, Moscow. Kelly DP, Norris PR, Brierley CL. 1979. Microbiological methods for the extraction and recovery of metals. In Microbial Technology: Current State and Future Prospects, ed. AT Bull, DG Ellwood, C Ratledge, pp. 263–308. Cambridge: Cambridge Univ. Press. Kelly DP, Wood AP. 2000. Re-classifi- cation of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 50:511–16. Kinnunen, P.H.-M., Heimala, S., Riekkola-Vanhanen, M.-L., Puhakka, J.A., 2006. Chalcopyrite concentrate leaching with biologically produced ferric sulphate. Bioresource Technology 97, 1727–1734. Kishimoto N, Fukaya F, Inagaki K, Sugio T, Tanaka H, Tano T. 1995. Distribution of bacteriochlorophyll-a among aerobic and acidiphilic bacteria and light enhanced CO2-incorporation in Acidiphilium rubrum. FEMS Microbiol. Ecol. 16: 291–96. Kondratyeva, T. F., Muntyan, L. N. & Karavaiko, G. I. 1995. Zinc and arsenic-resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistance genes. Microbiology 141, 1157–1162. Koshini Y, Kubo H, Asai S.1992, Bioleaching of zinc concentration by Thiobacillus ferrooxidans. Biotechnol Bioeng. 39. 66-74.

201

Page 13: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Kusano T, Sugawara K, Inoue C, Takeshima T, Numata M, Shiratori T. 1992. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant as the selective marker by electroporation. J. Bacteriol. 174:6617– 23 . Laemmli, U. K. 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680-685. Lacey DT, Lawson F. 1970. Kinetics of the liquid phase oxidation of acid ferrous sulphate by the bacterium Thiobacillus ferrooxidans. Biotechnol. Bioeng. 12:29– 50. Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, et al. 1992. Evolutionary relationships among sulfur- and ironoxidizing bacteria. J. Bacteriol. 174:269– 78. Lane, D. J., D. A. Stahl, G. J. Olsen, D. J. Heller, and N. R. Pace. 1985. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by SS rRNA sequences. J. Bacteriol. 163:75-81. Leathen, W., Kinsel, N. and Braley, I. 1956 ‘‘Ferrobacillus ferrooxidans: A Chemosynthetic Autotrophic Bacterium, J. Bacteriology, 72 , 700-704. Leduce LG, Ferroni GD. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMSMicrobiol. Rev. 14:103– 20. Leduce L. G, Ferroni G. D, Trevors J. K. 1997 Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World J Microbiol Biotechnol 13, 453-455 Liao, M.X. and Deng, T.L. 2004 Zinc and Lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Mineral Engineering. 17, (1), p 17-22. Liu MS, Branion RMR, Duncan DW. 1987 Oxygen transfer in Thiobacillus cultures. Biohydrometall Proc Int Symp Edts. Norris PR, Kelly DP 375–384. Liu Z, Guiliani N, Appia-Ayme C, Borne F, Ratouchnaik J, BonnefoyV. 2000. Construction and characterization of a recA mutant of Thiobacillus ferrooxidans by marker exchange mutagenesis. J. Bacteriol. 182:2269–76. Lizama, H.M., Suzuki, I., 1989. Bacterial leaching of a sul.de ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans part II: column leaching studies. Hydrometallurgy 22, 301–310. Lundgren DG, Silver M. 1980. Ore leaching by bacteria. Annu. Rev. Microbiol. 34: 263–83. Lundgren, D. G. 1975. Ohio J. ScL 75:280-87

202

Page 14: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Lusk J, Scott SD, Ford CE. 1993, Phase relation in the Fe-Zn-S system to 5 Kbars and temperature between 325o and 150o C. Econ. Geol, 88, 1880-18903. Mackintosh, M. E. 1978. Nitrogen fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol. 105:215-218 Maeda, T., Negishi, A., Nogami, Y. & Sugio, T. 1996. Nickel inhibition of the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. Biosci Biotechnol Biochem 60, 626–629. Mahapatra, S.S.R. and Mishra, A.K. 1984, Inhibition of iron oxidation in Thiobacillus ferrooxidans by roxic metals and its alleviation by EDTA.. Curr. Microbiol. 11, 1-16 Mahapatra, N. R. & Banerjee, P. C. 1996. Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains. Lett Appl Microbiol 23, 393–397. Mahapatra, N. R., Ghosh, S., Deb, C. & Banerjee, P. C. 2002. Resistance to cadmium and zinc in Acidiphilium symbioticum KM2 is plasmid mediated. Curr Microbiol 45, 180–186. Malhotra. S, Tankhiwale, A.S., Rajvaidya, A.S., Pandey, R.A., 2002, Optimal condition for biooxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Bioresource Technology. 85, 225-234. Marehlenwitz, B., Schwartz, W. 1961. Z Allg. Mikrobiol. 1:100-14 Martin, P. A. W., P. R. Dugan, and 0. H. Tuovinen. 1983. Uranium resistance of Thiobacillus ferrooxidans. Eur. J. Appl. Microbiol. Biotechnol. 18:392-395. Mason J, Kelly DP, Wood AP. 1987, Chemolithotrophic and autotrophic growth of Thiobacillus thiooxidans and some Thiobacilli on thiosulphate and polythionates and a reassessment of growth yields of Thiobacillus thiooxidans in chemostat culture, J Gen Microbiol 133, 1249–1256. Menon AG, Dave SR. 1995, Growth behavior of various Thiobacillus ferrooxidans isolates on different substrates. Trans Ind Inst Met 48(2), 135–138. Meruane, G. and Vargas, T. 2003, Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH ranges 2.5 -7. Hydrometallurgy; 71, 149-58. Mier, J. L., Ballester, A., Gonzalez, F., Blazquez, M. L. & Gomez, E. 1996. The influence of metallic ions on the activity of Sulfolobus BC. J Chem Technol Biotechnol 65, 272–280.

203

Page 15: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Miller, K. W., Risanico, S. S. & Risatti, J. B. 1992. Differential tolerance of Sulfolobus strains to transition-metals. FEMS Microbiol Lett 93, 69–73. Miller, PC. 1997. The design and operating practice of bacterial oxidation plant using moderate thermophiles (the BacTech process). Rawlings DE, ed. 1997. Biomining: Theory, Microbes and Industrial Processes. Berlin: Springer-Verlag pp. 81–102. Miller, P. C., Rhodes, M. K., Winby, R., Pinches, A. & van Staden, P. J. 1999. Commercialization of bioleaching for base-metal extraction. Miner Metallurg Process 16, 42–50. Modak, J.M and Natarajan, K.A: 1995, Development of special strains of Thiobacillus Ferrooxidans for enhanced bioleaching of sulphide minerals. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (Eds) Biohydrometallurgical processing (pp 33-46). University of Chile, Santiago Morita R., Ishikawa H., Nakagawa N., Kuramitsu S., and Masui R., 2008, Crystal structure of a putative DNA methylase TTHA0409 from Thermus thermophilus HBB, Published online 10 July 2008 in Wiley InterScience (www.intersience.wiely.com) Mousavi, S. M., Yaghmaei, S. Salimi, F. and Jafari, A. 2006, Influence of Process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flask experiments. Fuel, 85, 2555-2560. Mousavi, S.M., Yaghmaei, S., Vossoughi, M., Jafari, A., Roostaazad, R., Turunen, I., 2007. Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains. Hydrometallurgy 85 (1), 59–65. Muller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A. 2004, Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membranebound thiosulphate:quinone oxidoreductase. Mol Microbiol;53;1147–60. Murayama T, Konna Y, Sakata T, Imaizumi T. 1987 Application of immobilised Thiobacillus ferrooxidans for large scale treatment of acid mine drainage. Methods Enzymol 136, 530–540. Murr, L. E., Torma, A.E. and Brierley, J.A. 1978, Metallurgical applications of the bacterial leaching and related microbiological phenomena. Academic Press. New York, USA, 526 p. Natarajan KA. 1992 Electrobioleaching of base metal sulfides, Met Trans 23B, 5–11. Natarajan KA. 1992 Application of applied potential and growth of Thiobacillus ferrooxidans, Biotech Bioeng 39, 907–913.

204

Page 16: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Natarajan KA. 1988 Electrochemical aspects of multisul- fide minerals. Miner Metall Process, 5, 61–65. Nemati M, Harrison STL. 2000, A comparative study on thermophilic and mesophilic biooxidation of ferrous iron. Miner Eng;13(1):19–24. Nicholson HM, Smith GR, Stewart RJ, Kock FW, Marais HJ. 1994, Design and commissioning of Ashati’s Sansu BIOX plant , Biomine-94. Nies, D. H. 1999. Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51, 730–750. Nogami, Y., Maeda, T., Negishi, A. & Sugio, T. 1997. Inhibition of sulfur oxidizing activity by nickel ion in Thiobacillus ferrooxidans NB1-3 isolated from the corroded concrete. Biosci Biotechnol Biochem 61, 1373–1375. Norris PR, Barr. DW, 1985, Growth and iron oxidation by acidophilic thermophiles. FEMS Microbiology Letters, 28, 221-224. Norris PR. 1997. Thermophiles and bioleaching. Rawlings DE, ed. 1997. Biomining: Theory, Microbes and Industrial Processes. Berlin: Springer-Verlag, pp. 247–58. Norris PR, Burton NP, FoulisNAM. 2000. Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76. Norris PR, Clark DA, Owen JP, Waterhouse S. 1996. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide- oxidizing bacteria. Microbiology 142:775–83. Novo, M. T., da Silva, A. C., Moreto, R., Cabral, P. C., Costacurta, A., Garcia, O., Jr & Ottoboni, L. M. 2000. Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation. Antonie van Leeuwenhoek 77, 187–195. Novo MT, Garcia Junior O, Ottoboni LM. 2003, Protein profile of Acidithiobacillus ferrooxidans exhibiting different levels of tolerance to metal sulfates. Curr Microbiol ;47;492– 6. Nyavor K, Egiebor NO, Fedorak PM. 1996, the effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans. Appl. Microbial. Biotechnol. 45(5), 688–691. Ohmura N, Kitamura K, Saiki H. 1993. Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl. Environ. Microbiol. 59:4044–50.

205

Page 17: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Okereke, A. and Stevens S.E. 1991, Kinetics of ferrous iron oxidation by Thiobacillus ferrooxidans, Appl. Environ. Microbiol. 57, (4) 1052-1056. Oolman T, Nagpal S, Dahlstrom DA. 1990, Oxygen and carbon dioxide consumption with steady state continuous flow bioleaching. Adv Gold and Silver Proccessing, Nevada, USA, 237–245. Olson, G. J., Porter, F. D., Rubenstein, J. & Silver, S. 1982. Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J Bacteriol 151, 1230–1236. Osborn, A. M., Bruce, K. D., Strike, P. & Ritchie, D. A. 1997. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19, 239–262. Pani CK, Swain S, Kar RN, Chaudhary GR, Sukla LB, Misra VN. 2003, Biodissolution of zinc sulfide concentrate in 160l, 4-stage contious bioreactor. Miner Eng, 16,1019-1021 Pantelis G, Ritchie AIM. 1992 Rate -limiting factors in dump leaching of pyrite ores, Appl Math Modelling 16, 553–560. Pantelis G, Ritchie AIM. 1991 Macroscopic transport mechanism as a rate limiting factor in dump leaching of pyrite ores. Appl Math Modelling 15,136–143 Paulino, L. C., de Mello, M. P. & Ottoboni, L. M. 2002. Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction. Electrophoresis 23, 520–527. Peng J-B,YanW-M, Bao X-Z. 1994. Plasmid and transposon transfer to Thiobacillus ferrooxidans. J. Bacteriol. 176:2892– 97. Pesic B, Kim I. 1993 Electrochemistry of Thiobacillus ferrooxidans interactions with pyrite. Metallurgical Transactions 24B, 717–727. Pizarro J, Jedlicki E, Orellana O, Romero J, Espejo RT. 1996. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl. Environ. Microbiol. 62:1323–28. Pogliani, C., Donati, E., 2000. Immobilisation of Thiobacillus ferrooxidans: importance of jarosite formation. Process Biochemistry 35, 997–1004.

206

Page 18: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Pramila, T., Ramananda, R., Natarajan, K. A. & Durga Rao, C. 1996. Differential influence of ions on the copy number of plasmids in Thiobacillus ferrooxidans. Curr Microbiol 32, 57–63. Pronk JT, Liem K, Bos P, Kuenen JG. 1991. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 57:2063–68. Pronk JT, Meijer WM, HaseuW, van Dijken JP, Bos P,Kuenen JG. 1991. Growth of Thiobacillus ferrooxidans on formic acid. Appl. Environ. Microbiol. 57:2057–62. Ralph BJ. 1985 Biotechnology applied to raw mineral processing, Comprehensive Biotechnology, Vol. IV, Edt. Moo-Young M, Pergamon. Ramirez P, Toledo H, Guiliani N, Jerez CA. 2002, An exported rhodanese like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds. Appl Environ Microbiol ;68;1837– 45. Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004, Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol; 70;4491– 8. Rao SR, Finch JA. 1988 Galvanic interaction studies on sulfide minerals, Can Metll Q 27, 253–259. Rawlings DE, Kusano T. 1994. Molecular genetics of Thiobacillus ferrooxidans. Microbiol. Rev. 58:39–55. Rawlings DE, ed. 1997. Biomining: Theory, Microbes and Industrial Processes. Berlin: Springer-Verlag . Rawlings, D. E., Tributsch, H. & Hansford, G. S. 1999. Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 5–13. Rawlings, DE, Coram NJ, Gardner MN, Deane SM. 1999. Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of metal containing ores and concentrates. Amils R, Ballester A, eds. 1999. Biohydrometallurgy and the Environment Towardsm the 21st Century. Part A. Amsterdam: Elsevier. 1, pp. 777–786. Rawlings DE. 2001. The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron- or sulfur-oxidizing bacteria. Hydrometallurgy 59:187–201.

207

Page 19: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Rawlings DE, Pretrins IM, Woods DR. 1986 Expression of Thiobacillus ferrooxidans, plasmid, functions and the development of genetic system for the Thiobacilli. Biotechnol Bioeng Symp. 16, 281–287. Renman, R., Jiankang, W., Jinghe, C., 2006. Bacterial heap-leaching: practice in Zijinshan copper mine. Hydrometallurgy 83, 77–82. Renata, P.R., Barreira, Luciene D. Villar and Oswaldo Garcia Jr. 2005 Tolerance to copper and zinc of Acidithiobacillus thiooxidans isolated from sewage sludge. World Journal of Microbiology & Biotechnology, 21, 89-91. Rodriguez-Leiva M, Tributsch H. 1988. Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on pyrite. Arch. Microbiol. 149:401–5. Rodriguez M, Campos S, Gomez-Silva B 1986, Studies on native strain of Thiobacillus ferrooxidans, III, Studies on the outer membrane of Thiobacillus ferrooxidans. Characterization of the lipopolysaccharide and some proteins. Biotechno Appl Biochem 8:292-299 Rohwerder T, Sand W. 2003, The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology;149;1699– 709. Rojas J, Giersig M, Tributsch H. 1995. Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation. Arch. Microbiol. 163: 352–56. Rojas-Chapana JA, Tributsch H. 2001. Biochemistry of sulfur extraction in bio-corrosion of pyrite by Thiobacillus ferrooxidans. Hydrometallurgy 59:291– 300. Rossi G. 1990. Biohyrometallurgy. Hamburg, McGraw Hill book Company, GMBH. Rudolfs W. 1922. Oxidation of iron pyrites by sulfur-oxidation organisms and their use for making mineral phosphates available. Soil Science 14:135-147. Rudolfs W., Helbronner A. 1922. Oxidation of zinc sulfides by microorganisms. Soil Science 14:459-464. Ruepp A, Graml W, Santos-Martinez M-L, Koretke KK, Volker C, et al. 2000. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–13. Sakaguehi, H., Silver, M., Torma, A. E. 1976. Biotechnol. Bioeng. 18:1091-1101 Salkield L.U. 1987. A technical history of the Rio Tinto mines: some notes on explotation from pre-Phonicain times to the 1950s. Institution of Mining and Metallurgy, London, UK

208

Page 20: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Sampson, M. I. & Phillips, C. V. 2001. Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophiles. Miner Eng 14, 317–340. Sampson, M.I., Van der Merwe, J.W., Harvey, T.J., Bath, M.D., 2005. Testing the ability of a low-grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching. Minerals Engineering 18, 427–437. SandW, GehrkeT, Hallmann R, Schippers A. 1995. Sulfur chemistry, biofilm, and the (in)direct attack mechanism—critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol. 43:961–66. Sand W, Gehrke T, Jozsa P-G, Schippers A. 2001. (Bio)chemistry of bacterial leaching direct vs. indirect process. Hydrometallurgy 59:159–75. Schippers A, Jozsa P-G, Sand W. 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol. 62: 3424–31. Schippers A, Sand W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 65:319–21. Seeger M, Jerez CA. 1993, Response of Thiobacillus ferrooxidans to phosphate limitation. FEMS Microbiol Rev;11;37– 42. Segerer A, Neuner A, Kristjansson JK, Stetter KO. 1986. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfurmetabolizing archaebacteria. Int. J. Syst. Bacteriol. 36:559–64. Sehlin, H. M. & Lindstro¨ m, E. B. 1992. Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93, 87–92. Selkov E, Overbeek R, Kogan Y, Chu L, Vonstein V, et al. 2000. Functional analysis of gapped genomes: amino acid metabolism of Thiobacillus ferrooxidans. Proc. Natl. Acad. Sci. USA 97:3509–14. Silver M, Lundgren DG. 1968, The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem;46;1215– 20. Silverman, M.P. and Lundgren, D.G. 1959 ‘‘studies on the Chemolithotrophic Iron Bacterium Ferrobacillus ferrooxidans :I. An Improved Medium and Harvesting Procedure for Securing High Cell Yields, ۥۥ J.Bacteriology, 77, 642-677.

209

Page 21: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Shi S, Fang Z. 2004, Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans. Hydrometallurgy 75,1-10. Shi. S, Fang Z. and Ni. J. 2006, Comparative study on the bioleaching of zinc sulphides. Process Biochemistry. 41, 438-446. Shrihari, R. K. & Gandhi, K. S. 1990. Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 33, 524–528. Smith, J.R., Luthy, G.R. and Middleton, A.C. 1988, Microbial ferrous iron oxidation in acidic solution, J. Water Pollut. Control Fed. 60, (4) 518-530. Sohn HY, Wadsworth ME. 1979 In Rate processes of extractive metallurgy, Edts. Sohn H Y, Wadsworth M E, Plenum. Sugio, T., Iwahori, K., Takeuchi, F., Negishi, A., Maeda, T. & Kamimura, K. 2001. Cytochrome c oxidase purified from a mercury-resistant strain of Acidithiobacillus ferrooxidans volatizes mercury. J Biosci Bioeng 92, 44–49. Sugio, T., K. Hirayama, K. Inagaki, H. Tanaka, and T. Tano. 1992. Molybdenum oxidation by Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 58:1768-1771. Sugio, T., C. Domatsu, 0. Munakata, T. Tano, and K. Imai. 1985. Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 49:1401-1406. Sukla LB, Roy Chaudhury G, Das RP. 1990 Effect of silver ion on kinetics of biochemical leaching of chalcopyrite concentrate. Trans Inst Min Met 90, C43-C46. Summers AO, Roy P, Davidson MS, 1986 Current techniques for the genetic manipulation of bacteria and their application to the study of sulfur-based autotrophy in Thiobacillus. Biotechnol Bioeng Symp. 16, 267–279. Suzuki, K., Wakao, N., Kimura, T., Sakka, K. & Ohmiya, K. 1998. Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64, 411–418. Suzuki, K., Wakao, N., Sakurai, Y., Kimura, T., Sakka, K. & Ohmiya, K. 1997. Transformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance. Appl Environ Microbiol 63, 2089–2091. Tabita R, Silver M, Lundgren DG. 1969, The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem;47;1141–5.

210

Page 22: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Takeuchi, F., Iwahori, K., Kamimura, K. & Sugio, T. 1999. Isolation and some properties of Thiobacillus ferrooxidans strains with differing levels of mercury resistance from natural environments. J Biosci Bioeng 88, 387–392. Takeuchi, F., Iwahori, K., Kamimura, K., Negishi, A., Maeda, T. & Sugio, T. 2001. Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG 2-2. Biosci Biotechnol Biochem 65, 1981–1986. Torma AE. 1977. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. In Advances in Biochemical Engineering, ed. TK Ghose, A Fretcher, N Blackebrough, 6:1–37. New York: Springer. Torma AE, 1988 Use of Biotechnology in Mining and Metallurgy, Biotech Adv. 6,1–8. Torma AE. 1991 In: New Trends in Biohydrometallurgy, Proc Min Bioproc. California, 43–55. Torma, A. E., Walden, C. C., Branion, R. M. R. 1970. Biotechnol. Bioeng. 12:501-17 Trevors, J. T., Oddie, K. M. & Belliveau, B. H. 1985. Metal resistance in bacteria. FEMS Microbiol Rev 32, 39–54. Tributsch H. 2001. Direct vs. indirect bioleaching. Hydrometallurgy 59:177–85. Tuovinen OH, Niemel¨a SI, Gyllenberg HG. 1971. Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 13:517–27. Tuovinen, O.H. and Kelly, D.P. 1973, Studies on the growth of Thiobacillus ferrooxidans I. Use of membrane filters and ferrous iron agar to determine viable numbers, and Comparison with 14 CO2 –fixation and iron oxidation as measures of growth. Arch. Microbiol .88, 285-298 . Tuovinen OH, Puhakka J, Hiltunen P, Dolan KM. 1985, Silver toxicity to Fe(II) iron and pyrite oxidation and its alleviation by yeast extract in cultures of Thiobacillus ferrooxidans. Biotech Lett. 7, 389–394. Tuovinen, O. H. & Bhatti, T. M. 1999. Microbiological leaching of uranium ores. Miner Metallurg Process 16, 51–60. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. 2004, Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature;428;37– 43.

211

Page 23: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Vagelos, P. R., Majerus, P. W., Alberts, A. W., Larrabee, A. R., AND Ailhaud, G. P., 1966 Fed. Proc., 26, 1485. Valentyne, J. R. 1967. Ann. NYAcad. Sc£ 108:342-53 Varela P, Jerez CA. 1992 Identification and characterization of GroEL and DnaK homologues in Thiobacillus ferrooxidans. FEMS Microbiol Lett;77;149–53. Van Scherpenzel, D. A., Boon, M., Ras, C., Hansford, G. S. & Heijnen, J. J. 1988. Kinetics of ferrous iron oxidation by Leptospirillium bacteria in continuous culture. Biotechnol Prog 14, 425–433. Vartanyan, N. S., Karavaiko, G. I., Pivovarova, T. A. & Dorofeev, A. G. 1990. Resistance of Sulfobacillus thermosulfidooxidans subspecies asporogenes to Cu2+, Zn2+ and Ni2+ ions. Microbiology (English translation of Mikrobiologiya) 59, 399–404. V´asquez M, Espejo RT. 1997. Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Appl. Environ. Microbiol. 63:332–34. V´asquez M, Moore ERB, Espejo RT. 1999. Detection by polymerase chain reaction-amplification sequencing of an archaeon in a commercial-scale copper bioleaching plant. FEMS Microbiol. Lett. 173:183–87. Velasco, A., Acebo, P., Flores, N. & Perera, J. 1999. The mer operon of the acidophilic bacterium Thiobacillus T3.2 diverges from its Thiobacillus ferrooxidans counterpart. Extremophiles 3, 35–43. Vera M, Guiliani N, Jerez CA. 2003, Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy;71;125–32. Vestal JR, Lundgren DG, Milner KG. 1973 Toxic and Immunological differences among lipopolysaccharides from Thiobacillus ferrooxidans, grown autotrophically and heterotrophically, Can. J.Microbiol. 19, 1335–1339. Vian M, Creo C, Dalmastri C, Gionni A, Palazzolo P, Levi G. 1986. Thiobacillus ferrooxidans selection in continuous culture. In Fundamental and Applied Biohydrometallurgy, ed. RW Lawrence, RMR Branion,HGEbner, pp. 395–406. Amsterdam: Elsevier. Weisener CG, Smart RS, Gerson AR. 2004, A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron. Int. J. Miner Process, 40,273-285.

212

Page 24: REFRENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/2561/14/14... · 2012. 6. 21. · REFRENCES Acevedo, F. and Gentina, J.C. 1989. Process engineering aspects of the

REFRENCES

Wichlacz PC, Unz RF, Langworthy TA, 1986 Acidiphilum anguslum, A. facilis and A. rubrum : acidophilic heterotrophic bacteria isolated from acidic coal mine drainage, Int. J. Syst. Bacteriol, 36, 197–201. Winogradsky S. 1887. Ueber Schwefelbacterien. Botanische Zeitung 45:489-610. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221- 271. Wong, C., Silver, M. & Kushner, D. J. 1982. Effects of chromium and manganese on Thiobacillus ferrooxidans. Can J Microbiol 28, 536–544. Xu, C., Zhou, T., Kuroda, M. & Rosen, B. P. 1998. Metalloid resistance mechanisms in prokaryotes. J Biochem (Tokyo) 123, 16–23. Yarzabal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V. 2004, Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology;150;2113– 23. Yong, N. K., Oshima, M., Blake, R. C. & Sugio, T. 1997. Isolation and some properties of an iron-oxidizing bacterium Thiobacillus ferrooxidans resistant to molybdenum ion. Biosci Biotechnol Biochem 61, 1523–1526. Zimmerley S.R., Wilson D.G., Prater J.D. 1958. US Patent 2,829,964.

213