23
Recursive methods for two- dimensional risk processes with common shocks Lan Gong – University of Toronto (joint work with Andrei L. Badescu and Eric C.K. Cheung)

Recursive methods for two-dimensional risk processes with common shocks

  • Upload
    dalmar

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

Recursive methods for two-dimensional risk processes with common shocks. Lan Gong – University of Toronto (joint work with Andrei L. Badescu and Eric C.K. Cheung). Summary. Introduction A recursive approach A Gerber Shiu function at claim instants Numerical illustrations Conclusions. - PowerPoint PPT Presentation

Citation preview

Page 1: Recursive methods for two-dimensional risk processes with common shocks

Recursive methods for two-dimensional risk processes with common shocks

Lan Gong – University of Toronto(joint work with Andrei L. Badescu and Eric C.K. Cheung)

Page 2: Recursive methods for two-dimensional risk processes with common shocks

Summary

•Introduction•A recursive approach•A Gerber Shiu function at claim instants•Numerical illustrations•Conclusions

Page 3: Recursive methods for two-dimensional risk processes with common shocks

Introduction• Chan et al. (2003) , Dang et al. (2009)

• - the initial capital of the i-th class of business;• - the premium rate of the i-th class of business;• - the k-th claim amount in the i-th risk process, with common cdf

and pdf ; • - the counting process for the i-th risk process. are common shock correlated Poisson processes occurring at rates respectively.

where are independent Poisson

processes with rates ;

(1) 2,1 ;0 ,)()(

1

tN

k

ikiii

i

itXtcutU

iuicikX )(iF

)(if)(tNi

)( and )( 21 tNtN21 and

)()( )( 12111 tNtNtN )()( )( 12222 tNtNtN

)( and )(),( 122211 tNtNtN

122211 and ,

Page 4: Recursive methods for two-dimensional risk processes with common shocks

Introduction

),min(}0)}(),(min{|0inf{ 2121 tUtUtTor

}0)}(),(max{|0inf{ 21 tUtUtTsim

),max( 21 andT

}0)()(|0inf{ 21 tUtUtTsum

Page 5: Recursive methods for two-dimensional risk processes with common shocks

References• Chan et al. (2003)

• Cai and Li (2005)

• Yuen et al. (2006)

• Li et al. (2007)

• Dang et al. (2009)

Page 6: Recursive methods for two-dimensional risk processes with common shocks

Introduction• Chan et al. (2003) for

• Dang et al. (2009)

(2) )()(),(),(),(),( 1 2

0 0 112222111221122

212

1

211

u uzdFzdFzuzuuu

uuuc

uuuc

1),(point startingwith

),(

(3) ),(

),({),(

210

21

])([)()(

0 21

12

])([)()(

0 21

12)()(

0 0 21221112

2112211

11222

1122

2

12

2

1222

1

22111

2211

1

12

1

2111

2

2221111 2

uu

dadaeeaa

dadaeeaa

dadaeeaacc

uu

auuaccau

c

u

uuacc

n

auuaccau

c

u

uuacc

n

uauau u

nn

02211

Page 7: Recursive methods for two-dimensional risk processes with common shocks

An alternative recursive approach

221211

21

])([)()(

0 212

111

2211

2112

12

])([)()(

0 211

222

2211

2112

12)()(

0 0 212211

2112211

where

),(

(5) ),(

),(),(

11222

1122

2

2

1222

1

22111

2211

1

1

2111

2

2221111 2

s

auuaccau

c

u

uuacc

nS

auuaccau

c

u

uuacc

nS

uauau u

nS

n

dadaeeaaccc

dadaeeaaccc

dadaeeaacc

uu

s

s

dtdxdxexfxfxtcuxtcu

dtdxexfxtcutcu

dtdxexftcuxtcuuu

dtdxdxexfxf

dtdxexfdtdxexfuu

uu

ttcu tcu

n

ttcu

n

ttcu

nn

ttcu tcu

ttcuttcu

21)(

1222110 0 0 222111

2)(

22220 0 22211

1)(

11110 0 22111211

21)(

1222110 0 0

2)(

22220 01)(

11110 0211

210

12221122 11

12221122

12221111

12221122 11

12221122

12221111

)()(),(

)(),(

(4) )(),(),(

,)()(

)()(),(

,1),(

Page 8: Recursive methods for two-dimensional risk processes with common shocks

Phase-type claims – survival probability

• Let follow independent PH distributions with parameters (α, T) and (β, Q).

21)]([)]([

))](()([1

21121221

)(

0

12)]([)]([

))](()([1

21121221

)(

0

12)]([)]([

1211212210 0211

)(

)]()()[(),(

)(

(6) )]()()[(),(

)(

)]()()[(),(),(

2211

2

222112

2

1222

1

2211

1

112112

1

2111

2

2211

1 2

dadaqte

eQcTcaa

dadaqte

eQcTcaa

dadaqte

QcTcaauu

auQauT

cuaQcTc

u

uuacc

n

auQauT

cuaQcTc

u

uuacc

n

auQauT

u u

nn

1

21

1 }{ and }{ kkkk XX

Page 9: Recursive methods for two-dimensional risk processes with common shocks

Gerber Shiu function•

• is a penalty function that depends on the surplus

levels at time Tor in both processes.

• Here are few choices of the penalty functions1. 2. 3.

4.

(7) )]())(),(([),( 21),(21 21

orororT

uu TITUTUweEuum or

),( w

(8) )())(),((

)())(),(()())(),(())(),((

212112

12212

21211

21

ITUTUw

ITUTUwITUTUwTUTUw

oror

orororororor

1),(),(),( 1221 www1),( and 0),(),( 0, 1221 www

zyzywzzywyzyw ),( and ),(,),( 1221

(9) )];(|)(|[)];(|)(|[ 21222),(12111),(2

21

1

21 IUeEIUeE uuuu

0),(),( and ),( 1221 wwzyzyw(10) )]())()(([ 212211),(

1

21 IUUeE uu

Page 10: Recursive methods for two-dimensional risk processes with common shocks

Where correspond to the cases {τ1<τ2}, {τ2<τ1} and {τ1=τ2} respectively.

(11) )]())(),(([),( 21),(21 21 norororT

uun STITUTUweEuum or

(12) ),(),( 211

21 uumuum nn

(13) ),(),(),(),( 2112121

2121

11211 uumuumuumuum

),( and ),(),,( 2112121

2121

11 uumuumuum

Gerber Shiu function for ruin at n-th claim instant

Page 11: Recursive methods for two-dimensional risk processes with common shocks

Expected discounted deficit• Considering the first case when ruin occurs at the first claim

instant in {U1(t)} only and using a conditional argument gives

• By similar method, one immediately has . Hence by adding

, we obtain the starting point of recursion.

• If , and , the three integrals reduce to

dzdydteztcufytcufzyw

dydteytcuftcuywuum

ttcu

t

s

s

)(122221110 0 0

1

)(11111220 0

121

11

)()(),(

(14) )(),(),(

22

121

21 and mm

121

21

11 and , mmm

.)()(),(

(15) ,)]()[(),(

,)]()[(),(

1)(

12111222110 021121

)(11112222220 021

21

)(22212111110 021

11

11

11

dydtdxexytcutcufxfyuum

dydtetcuFytcufyuum

dydtetcuFytcufyuum

tytcu

tcu

t

t

s

s

s

zzywyzyw ),( ,),( 21 zyw 12

Page 12: Recursive methods for two-dimensional risk processes with common shocks

Exponential claims-Expected discounted deficit•

• The idea that we use to find a computational tractable solution of (16) is based on mathematical induction.

• Therefore, the expected discounted deficit when ruin happens at the instant of the first claim is given by

.)11(),(

(17) ,)()(

),(

,)()(

),(

)(

2211

12

2121

121

)(

22112

12

222

122221

21

)(

22111

12

111

121121

11

2211

221122

221111

uu

s

uu

s

u

s

uu

s

u

s

ecc

uum

ecc

ec

uum

ecc

ec

uum

(18) )()(

),( 2211

222

1222

111

1211211

u

s

u

s

ec

ec

uum

dtdxdxexfxfxtcuxtcum

dtdxexfxtcutcum

dtdxexftcuxtcumuum

s

s

s

tcu tcu

n

tcu

n

tcu

nn

21)(

1222110 0 0 222111

2)(

22220 0 22211

1)(

11110 0 22111211

)()(),(

(16) )(),(

)(),(),(

22 11

22

11

Page 13: Recursive methods for two-dimensional risk processes with common shocks

Expected discounted deficit

.any for 0 assume that weNote

.0 ,)(

,)(

bygiven ispoint starting The . ,,,1,0, ;,2,1

,)(!!

!!12

)(!!!!1

)(!!!!1

))(!

!)(!

!)(0(

))(!

!)(!

!)(0(

,)(!

!)(!

!

,)(!

!)(!

!

with,,1,0for

,),(

k

ji

]0,0,1[222

1222]0,1[

111

1211]0,1[

2211

12

32211

12

112112],,[

1

)0,1max(

1

)0,1max(

22211

21

1111],,[1 1

)0,1max(

22211

121222],,[

1 1

)0,1max(

1

)0,1max(

1

12211

2],[111

2211

12],[2

1

)0,1max(

1

12211

1],[221

2211

11],[1

],,1[

1

)0,1max(

1

122

2],[111

22

12],[

22]0,1[

],1[

1

)0,1max(

1

111

1],[221

11

11],[

21]0,1[

],1[

)(21

0],,1[

02

0],1[1

0],1[211n

22112211

kj

ec

bc

a

ccwherenkjnfor

cckjccqie

kqkjqi

cckjccqie

kqkjqi

cckjccqie

jikjqi

cckicb

cckicb

jI

ccjica

ccjica

kIe

cjcib

cjcibb

b

cjcia

cjciaa

a

n

euueeubeuauum

ss

s

kjqis

kqjiqin

n

kq

n

ji

kjqis

kqjiqin

n

kq

n

ji

kjqis

kqjiqin

n

ji

n

kq

n

ki

n

jiki

s

kiin

kis

kiin

n

ji

n

jiji

s

jiin

jis

jiin

kjn

n

ji

n

jiji

s

jiin

jis

jiin

jn

n

ji

n

jiji

s

jiin

jis

jiin

jn

uukjn

jkjn

n

k

ujn

jjn

ujn

jjn

Page 14: Recursive methods for two-dimensional risk processes with common shocks

Mixture of Erlangs claims - Survival probability

• Using equation (4) for n=0 and λ11=λ22=0 along with the trivial condition

, we obtain

.1,,1,0,for

,)(!!!!

,)()!(!

,)()!(!

where

,1),(

1

1

12211

2121

1

1

],,1[

1

1

122

22],1[

1

1

111

11],1[

1

0

)(21

1

0],,1[

1

02],1[

1

01],1[211

22112211

mvscclkvs

ccqpsk

vslke

cskscp

b

cskscqa

euueeubeuauu

m

si

i

skvslk

lkvlskij

m

vj

j

vlvs

m

sj

j

sksk

kskj

s

m

si

i

sksk

kski

s

m

s

uuvsm

vvs

m

s

uss

m

s

uss

,)!1(

)(111

11

111

i

exqxfxiim

ii

)!1(

)(221

22

122

j

expxfxjjm

ij

1),( 210 uu

Page 15: Recursive methods for two-dimensional risk processes with common shocks

.1)1(,,1,0,,2,1for

,)(!!)!1()!1(

)!()!()1(

))((

))((!!)!1()!()1(

)10(

))((!!)!1()!()1(

)10(

)10,10(

,))((!)!(!)!1(

!)!()1(

)10(

,))((!)!(!)!1(

!)!()1(

)10( with,,1,0for

,1),(

)u,(ulim),(

12211

2121

)1,1max(

1

)0,max( 0 )1,1max(

1

)0,max( 0

],,[

12211

2121

)1,1max(

1

)0,max( 0],[

1

1

12211

2121

)1,1max(

1

)0,max( 0],[

1

1

],,1[],,1[

)1,1max(1

22

221

)0,max( 0],[

],1[],1[

)1,1max(1

11

111

)0,max( 0],[

],1[],1[

)(21

1)1(

0],,1[

1)1(

02

1)1(

0],1[1

1)1(

0],1[211n

21n21

22112211

mnymccywji

jviscczv

vgs

swis

ywjvis

zjvgiseqpccjgsywj

jsccgs

syjs

ywkjs

bqpmwI

ccigsywiiscc

gss

wisywkis

bqpmyI

mymwIeecjgswgsgjsjscbp

mwIbbcigswgsgisiscaq

mwIaan

euueeubeuauu

uu

ywjivs

jiyjvwiszgvs

m

mnwi

nm

iws

s

g

m

mnyj

nm

jyv

v

z

vsnij

ywsjk

jkyjswkgs

m

mnwi

nm

iws

s

gsnij

m

wi

i

wk

ywlis

jkylwisgs

m

mnwi

nm

iws

s

gsnij

m

wi

i

wk

ywywn

m

mnwjwjs

wjsjgsnm

jws

s

gsnj

wwn

m

mnwiwis

wisigsnm

iws

s

gsni

wwn

uuywmn

yywn

mn

w

uwmn

wwn

uwmn

wwn

n

Page 16: Recursive methods for two-dimensional risk processes with common shocks

Survival probability for Tand

• We denote the survival probability associated to the time of ruin Tand, by .

21212121 ,|or ,|),( uuPuuTPuu andand

. ),()()(),( 2122

11

21 uuuuuu ornnn

andn

dtetcudtdxexfxtcuu t

n

ttcu

nnss

2211

1

011211111110 0

11

11 )())(()()( 11

. ispoint starting The .,,1,0;,2,1for

,)(!

!)(!

!)0(

with,0,1,nfor

,1)(

tionrepresenta theadmits eventsclaimth -1)(n theincluding and toup )(y probabilit survival univariate The

11

12111]0,1[

1

111

1221

],[1

)0,1max(2

11

11

1],[1

1]0,1[1

]0,1[1

],1[

10

1],1[1

11n

11

1n

11

canjn

cjica

cjicaa

jIaa

euau

u

s

n

jiji

s

jiin

n

jiji

s

jiin

jn

ujn

jjn

Page 17: Recursive methods for two-dimensional risk processes with common shocks

Numerical illustrations

• u1=2 ,u2=10, c1=3.2, c2=30, 1/µ1=1 and 1/µ2=10.

• Case 1: Independent model — λ11=λ22=2; λ12=0. Case 2: Three-states common shock model — λ11=λ22=1.5;

λ12=0.5. Case 3: Three-states common shock model — λ11=λ22=0.5;

λ12=1.5. Case 4: One-state common shock model — λ11 = λ22 = 0;

λ12 = 2.

• Note that λ1 = λ2 = 2, and θ1 = 0.6 and θ2 = 0.5.

Page 18: Recursive methods for two-dimensional risk processes with common shocks

Numerical illustrations

• In Case 1, after 100 iterations we obtain a ruin probability of 0.6306428 that is very close to the exact value of 0.6318894.

)()(

)()(

),(} )(),(max{

22

11

22

11

21

22

11

uu

uu

uuuu

or

Page 19: Recursive methods for two-dimensional risk processes with common shocks

Numerical illustrations

• Cai and Li (2005, 2007) provided simple bounds for Ψand(u1, u2) given by

)}(),(min{

),()()(

22

11

21

22

11

uu

uuuu

and

Page 20: Recursive methods for two-dimensional risk processes with common shocks

Numerical illustrations

• δ = 0.05

Page 21: Recursive methods for two-dimensional risk processes with common shocks

Numerical illustrations

• This quantity is achieved by letting w1(y, z) = y+z and w2(.,. ) = w12(.,.) =0

Page 22: Recursive methods for two-dimensional risk processes with common shocks

Numerical illustrations

• This quantity is achieved by letting w2(y, z) = y+z and w1(.,. ) = w12(.,.) =0

Page 23: Recursive methods for two-dimensional risk processes with common shocks

Conclusions

• Several extensions:

1. Correlated claims

2. Correlated inter-arrival times and the resulting claims

3. Renewal type risk models