7
Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 1 Harold’s Precalculus Rectangular – Polar – Parametric β€œCheat Sheet” 15 October 2017 Rectangular Polar Parametric Point () = (, ) (, ) β€’ ( , ) or ∠ Point (a,b) in Rectangular: () = () = < , > =3 , , with 1 degree of freedom (df) Polar Rect. = cos = = Rect. Polar 2 = 2 + 2 = Β± √ 2 + 2 = βˆ’1 ( ) Line Slope-Intercept Form: = + Point-Slope Form: βˆ’ 0 = ( βˆ’ 0 ) General Form: + + = 0 Calculus Form: () = β€² () + (0) < , > = < 0 , 0 > + < , > < , > = < 0 + , 0 + > where < , > = < 2 βˆ’ 1 , 2 βˆ’ 1 > () = 0 + () = 0 + = βˆ† βˆ† = 2 βˆ’ 1 2 βˆ’ 1 = Plane ( βˆ’ 0 ) + ( βˆ’ 0 ) + ( βˆ’ 0 )=0 Vector Form: ⦁ ( βˆ’ 0 )=0 = 0 + +

Rectangular Polar Parametric - Toomey

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rectangular Polar Parametric - Toomey

Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 1

Harold’s Precalculus Rectangular – Polar – Parametric

β€œCheat Sheet” 15 October 2017

Rectangular Polar Parametric

Point

𝑓(π‘₯) = 𝑦 (π‘₯, 𝑦) (π‘Ž, 𝑏)

β€’

(π‘Ÿ , πœƒ) or π‘Ÿ ∠ πœƒ Point (a,b) in Rectangular: π‘₯(𝑑) = π‘Ž 𝑦(𝑑) = 𝑏 < π‘Ž, 𝑏 >

𝑑 = 3π‘Ÿπ‘‘ π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’, π‘’π‘ π‘’π‘Žπ‘™π‘™π‘¦ π‘‘π‘–π‘šπ‘’,

with 1 degree of freedom (df)

Polar Rect.

π‘₯ = π‘Ÿ cos πœƒ 𝑦 = π‘Ÿ 𝑠𝑖𝑛 πœƒ

π‘‘π‘Žπ‘› πœƒ =𝑦

π‘₯

Rect. Polar

π‘Ÿ2 = π‘₯2 + 𝑦2

π‘Ÿ = Β± √π‘₯2 + 𝑦2

πœƒ = π‘‘π‘Žπ‘›βˆ’1 (𝑦

π‘₯)

Line

Slope-Intercept Form: 𝑦 = π‘šπ‘₯ + 𝑏

Point-Slope Form:

𝑦 βˆ’ 𝑦0 = π‘š (π‘₯ βˆ’ π‘₯0)

General Form: 𝐴π‘₯ + 𝐡𝑦 + 𝐢 = 0

Calculus Form:

𝑓(π‘₯) = 𝑓′(π‘Ž) π‘₯ + 𝑓(0)

< π‘₯, 𝑦 > = < π‘₯0, 𝑦0 > + 𝑑 < π‘Ž, 𝑏 > < π‘₯, 𝑦 > = < π‘₯0 + π‘Žπ‘‘, 𝑦0 + 𝑏𝑑 >

where < π‘Ž, 𝑏 > = < π‘₯2 βˆ’ π‘₯1, 𝑦2 βˆ’ 𝑦1 >

π‘₯(𝑑) = π‘₯0 + π‘‘π‘Ž 𝑦(𝑑) = 𝑦0 + 𝑑𝑏

π‘š =βˆ†π‘¦

βˆ†π‘₯=

𝑦2 βˆ’ 𝑦1

π‘₯2 βˆ’ π‘₯1=

𝑏

π‘Ž

Plane 𝑛π‘₯(π‘₯ βˆ’ π‘₯0)

+𝑛𝑦(𝑦 βˆ’ 𝑦0)

+ 𝑛𝑧(𝑧 βˆ’ 𝑧0) = 0

Vector Form: 𝒏 ⦁ (𝒓 βˆ’ 𝒓0) = 0

𝒓 = 𝒓0 + 𝑠𝒗 + π‘‘π’˜

Page 2: Rectangular Polar Parametric - Toomey

Rectangular Polar Parametric .

Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 2

Conics

General Equation for All Conics:

𝐴π‘₯2 + 𝐡π‘₯𝑦 + 𝐢𝑦2 + 𝐷π‘₯ + 𝐸𝑦 + 𝐹 = 0

where 𝐿𝑖𝑛𝑒: 𝐴 = 𝐡 = 𝐢 = 0 πΆπ‘–π‘Ÿπ‘π‘™π‘’: 𝐴 = 𝐢 π‘Žπ‘›π‘‘ 𝐡 = 0 𝐸𝑙𝑙𝑖𝑝𝑠𝑒: 𝐴𝐢 > 0 π‘œπ‘Ÿ 𝐡2 βˆ’ 4𝐴𝐢 < 0 π‘ƒπ‘Žπ‘Ÿπ‘Žπ‘π‘œπ‘™π‘Ž: 𝐴𝐢 = 0 or 𝐡2 βˆ’ 4𝐴𝐢 = 0 π»π‘¦π‘π‘’π‘Ÿπ‘π‘œπ‘™π‘Ž: 𝐴𝐢 < 0 π‘œπ‘Ÿ 𝐡2 βˆ’ 4𝐴𝐢 > 0 Note: If 𝐴 + 𝐢 = 0, square hyperbola

Rotation: If B β‰  0, then rotate coordinate system:

π‘π‘œπ‘‘ 2πœƒ =𝐴 βˆ’ 𝐢

𝐡

π‘₯ = π‘₯β€² π‘π‘œπ‘  πœƒ βˆ’ 𝑦′ 𝑠𝑖𝑛 πœƒ 𝑦 = 𝑦′ π‘π‘œπ‘  πœƒ + π‘₯β€² 𝑠𝑖𝑛 πœƒ

New = (x’, y’), Old = (x, y)

rotates through angle πœƒ from x-axis

General Equation for All Conics:

π‘Ÿ =𝑝

1 βˆ’ 𝑒 π‘π‘œπ‘  πœƒ

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑝 = { π‘Ž (1 βˆ’ 𝑒2)

2𝑑 π‘Ž (𝑒2 βˆ’ 1)

π‘“π‘œπ‘Ÿ { 0 ≀ 𝑒 < 1

𝑒 = 1𝑒 > 1

p = semi-latus rectum

or the line segment running from the focus to the curve in a direction parallel to the

directrix

Eccentricity: πΆπ‘–π‘Ÿπ‘π‘™π‘’ 𝑒 = 0𝐸𝑙𝑙𝑖𝑝𝑠𝑒 0 ≀ 𝑒 < 1π‘ƒπ‘Žπ‘Ÿπ‘Žπ‘π‘œπ‘™π‘Ž 𝑒 = 1π»π‘¦π‘π‘’π‘Ÿπ‘π‘œπ‘™π‘Ž 𝑒 > 1

Page 3: Rectangular Polar Parametric - Toomey

Rectangular Polar Parametric .

Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 3

Circle

π‘₯2 + 𝑦2 = π‘Ÿ2 (π‘₯ βˆ’ β„Ž)2 + (𝑦 βˆ’ π‘˜)2 = π‘Ÿ2

Center: (β„Ž, π‘˜) Vertices: NA Focus: (β„Ž, π‘˜)

(β„Ž, π‘˜)

Centered at Origin: r = a (constant)

πœƒ = πœƒ [0, 2πœ‹] π‘œπ‘Ÿ [0, 360Β°]

π‘₯(𝑑) = π‘Ÿ π‘π‘œπ‘ (𝑑) + β„Ž 𝑦(𝑑) = π‘Ÿ 𝑠𝑖𝑛(𝑑) + π‘˜

[π‘‘π‘šπ‘–π‘›, π‘‘π‘šπ‘Žπ‘₯] = [0, 2πœ‹)

(β„Ž, π‘˜) = π‘π‘’π‘›π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’

Page 4: Rectangular Polar Parametric - Toomey

Rectangular Polar Parametric .

Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 4

Ellipse

(π‘₯ βˆ’ β„Ž)2

π‘Ž2+

(𝑦 βˆ’ π‘˜)2

𝑏2= 1

Center: (β„Ž, π‘˜)

Vertices: (β„Ž Β± π‘Ž, π‘˜) and (β„Ž, π‘˜ Β± 𝑏) Foci: (β„Ž Β± 𝑐, π‘˜)

Focus length, c, from center:

𝑐 = βˆšπ‘Ž2 βˆ’ 𝑏2

Ellipse:

π‘Ÿ =π‘Ž (1 βˆ’ 𝑒2)

1 + 𝑒 π‘π‘œπ‘  πœƒ π‘“π‘œπ‘Ÿ 0 ≀ 𝑒 < 1

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑒 = 𝑐

π‘Ž=

βˆšπ‘Ž2 βˆ’ 𝑏2

π‘Ž

relative to center (h,k)

Interesting Note: The sum of the distances from each focus

to a point on the curve is constant. |𝑑1 + 𝑑2| = π‘˜

π‘₯(𝑑) = π‘Ž π‘π‘œπ‘ (𝑑) + β„Ž 𝑦(𝑑) = 𝑏 𝑠𝑖𝑛(𝑑) + π‘˜

[π‘‘π‘šπ‘–π‘›, π‘‘π‘šπ‘Žπ‘₯] = [0, 2πœ‹]

(β„Ž, π‘˜) = π‘π‘’π‘›π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝑒𝑙𝑙𝑖𝑝𝑠𝑒

Rotated Ellipse:

π‘₯(𝑑) = π‘Ž π‘π‘œπ‘  𝑑 π‘π‘œπ‘  πœƒ βˆ’ 𝑏 𝑠𝑖𝑛 𝑑 𝑠𝑖𝑛 πœƒ + β„Ž 𝑦(𝑑) = π‘Ž π‘π‘œπ‘  𝑑 𝑠𝑖𝑛 πœƒ + 𝑏 𝑠𝑖𝑛 𝑑 π‘π‘œπ‘  πœƒ + π‘˜

πœƒ = the angle between the x-axis and the

major axis of the ellipse

Page 5: Rectangular Polar Parametric - Toomey

Rectangular Polar Parametric .

Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 5

Parabola

Vertical Axis of Symmetry: π‘₯2 = 4 𝑝𝑦

(π‘₯ βˆ’ β„Ž)2 = 4𝑝(𝑦 βˆ’ π‘˜) Vertex: (β„Ž, π‘˜)

Focus: (β„Ž, π‘˜ + 𝑝) Directrix: 𝑦 = π‘˜ βˆ’ 𝑝

Horizontal Axis of Symmetry:

𝑦2 = 4 𝑝π‘₯ (𝑦 βˆ’ π‘˜)2 = 4𝑝(π‘₯ βˆ’ β„Ž)

Vertex: (β„Ž, π‘˜) Focus: (β„Ž + 𝑝, π‘˜)

Directrix: π‘₯ = β„Ž βˆ’ 𝑝

Parabola:

π‘Ÿ =2𝑑

1 + 𝑒 π‘π‘œπ‘  πœƒ π‘“π‘œπ‘Ÿ 𝑒 = 1

Trigonometric Form:

𝑦 = π‘₯2 π‘Ÿ 𝑠𝑖𝑛 πœƒ = π‘Ÿ2 π‘π‘œπ‘ 2 πœƒ

π‘Ÿ =𝑠𝑖𝑛 πœƒ

π‘π‘œπ‘ 2 πœƒ= π‘‘π‘Žπ‘› πœƒ 𝑠𝑒𝑐 πœƒ

Vertical Axis of Symmetry: π‘₯(𝑑) = 2𝑝𝑑 + β„Ž

𝑦(𝑑) = 𝑝𝑑2 + π‘˜ (opens upwards) or 𝑦(𝑑) = βˆ’π‘π‘‘2 βˆ’ π‘˜ (opens downwards)

[π‘‘π‘šπ‘–π‘›, π‘‘π‘šπ‘Žπ‘₯] = [βˆ’π‘, 𝑐] (h, k) = vertex of parabola

Horizontal Axis of Symmetry: 𝑦(𝑑) = 2𝑝𝑑 + π‘˜

π‘₯(𝑑) = 𝑝𝑑2 + β„Ž (opens to the right) or π‘₯(𝑑) = βˆ’π‘π‘‘2 βˆ’ β„Ž (opens to the left)

[π‘‘π‘šπ‘–π‘›, π‘‘π‘šπ‘Žπ‘₯] = [βˆ’π‘, 𝑐] (h, k) = vertex of parabola

Projectile Motion: π‘₯(𝑑) = π‘₯0 + 𝑣π‘₯𝑑

𝑦(𝑑) = 𝑦0 + 𝑣𝑦𝑑 βˆ’ 16𝑑2 feet

𝑦(𝑑) = 𝑦0 + 𝑣𝑦𝑑 βˆ’ 4.9𝑑2 meters

𝑣π‘₯ = 𝑣 π‘π‘œπ‘  πœƒ 𝑣𝑦 = 𝑣 𝑠𝑖𝑛 πœƒ

General Form:

π‘₯ = 𝐴𝑑2 + 𝐡𝑑 + 𝐢 𝑦 = 𝐷𝑑2 + 𝐸𝑑 + 𝐹

where A and D have the same sign

Page 6: Rectangular Polar Parametric - Toomey

Rectangular Polar Parametric .

Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 6

Hyperbola

(π‘₯ βˆ’ β„Ž)2

π‘Ž2βˆ’

(𝑦 βˆ’ π‘˜)2

𝑏2= 1

Center: (β„Ž, π‘˜)

Vertices: (β„Ž Β± π‘Ž, π‘˜) Foci: (β„Ž Β± 𝑐, π‘˜)

Focus length, c, from center:

𝑐 = βˆšπ‘Ž2 + 𝑏2

Hyperbola:

π‘Ÿ =π‘Ž (𝑒2 βˆ’ 1)

1 + 𝑒 π‘π‘œπ‘  πœƒ π‘“π‘œπ‘Ÿ 𝑒 > 1

Eccentricity:

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑒 = 𝑐

π‘Ž=

βˆšπ‘Ž2 + 𝑏2

π‘Ž= sec πœƒ > 1

relative to center (h,k)

p = semi-latus rectum or the line segment running from the focus

to the curve in the directions πœƒ = Β± πœ‹

2

Interesting Note:

The difference between the distances from each focus to a point on the curve is

constant. |𝑑1 βˆ’ 𝑑2| = π‘˜

Left-Right Opening Hyperbola: π‘₯(𝑑) = π‘Ž 𝑠𝑒𝑐( 𝑑) + β„Ž 𝑦(𝑑) = 𝑏 π‘‘π‘Žπ‘›( 𝑑) + π‘˜

[π‘‘π‘šπ‘–π‘›, π‘‘π‘šπ‘Žπ‘₯] = [βˆ’π‘, 𝑐] (h, k) = vertex of hyperbola

Up-Down Opening Hyperbola: π‘₯(𝑑) = π‘Ž π‘‘π‘Žπ‘›(𝑑) + β„Ž 𝑦(𝑑) = 𝑏 𝑠𝑒𝑐(𝑑) + π‘˜

[π‘‘π‘šπ‘–π‘›, π‘‘π‘šπ‘Žπ‘₯] = [βˆ’π‘, 𝑐] (h, k) = vertex of hyperbola

General Form: π‘₯(𝑑) = 𝐴𝑑2 + 𝐡𝑑 + 𝐢 𝑦(𝑑) = 𝐷𝑑2 + 𝐸𝑑 + 𝐹

where A and D have different signs

Inverse Functions

𝑓(π‘“βˆ’1 (π‘₯)) = π‘“βˆ’1 (𝑓(π‘₯)) = π‘₯

Inverse Function Theorem:

π‘“βˆ’1(𝑏) = 1

𝑓′(π‘Ž)

where 𝑏 = 𝑓′(π‘Ž)

if 𝑦 = 𝑠𝑖𝑛 πœƒ 𝑖𝑓 𝑦 = π‘π‘œπ‘  πœƒ 𝑖𝑓 𝑦 = π‘‘π‘Žπ‘› πœƒ

if 𝑦 = 𝑐𝑠𝑐 πœƒ if 𝑦 = 𝑠𝑒𝑐 πœƒ 𝑖𝑓 𝑦 = π‘π‘œπ‘‘ πœƒ

π‘‘β„Žπ‘’π‘› πœƒ = π‘ π‘–π‘›βˆ’1 𝑦 π‘‘β„Žπ‘’π‘› πœƒ = π‘π‘œπ‘ βˆ’1 𝑦 π‘‘β„Žπ‘’π‘› πœƒ = π‘‘π‘Žπ‘›βˆ’1 𝑦

π‘‘β„Žπ‘’π‘› πœƒ = π‘π‘ π‘βˆ’1 𝑦 π‘‘β„Žπ‘’π‘› πœƒ = π‘ π‘’π‘βˆ’1 𝑦 π‘‘β„Žπ‘’π‘› πœƒ = π‘π‘œπ‘‘βˆ’1 𝑦

πœƒ = arcsin 𝑦 πœƒ = arccos 𝑦 πœƒ = π‘Žπ‘Ÿπ‘π‘‘π‘Žπ‘› 𝑦 πœƒ = π‘Žπ‘Ÿπ‘π‘π‘ π‘ 𝑦 πœƒ = π‘Žπ‘Ÿπ‘π‘ π‘’π‘ 𝑦 πœƒ = π‘Žπ‘Ÿπ‘π‘π‘œπ‘‘ 𝑦

Page 7: Rectangular Polar Parametric - Toomey

Rectangular Polar Parametric .

Copyright Β© 2011-2017 by Harold Toomey, WyzAnt Tutor 7

Arc Length

Circle: 𝐿 = 𝑠 = π‘Ÿπœƒ

Proof:

𝐿 = (π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘’π‘šπ‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’) βˆ™ πœ‹ βˆ™ (π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ)

𝐿 = (πœƒ

2πœ‹) πœ‹ (2π‘Ÿ) = π‘Ÿπœƒ

Perimeter Square: P = 4s

Rectangle: P = 2l + 2w Triangle: P = a + b + c

Circle: C = Ο€d = 2Ο€r Ellipse: 𝐢 β‰ˆ πœ‹(π‘Ž + 𝑏)

Area

Square: A = sΒ² Rectangle: A = lw

Rhombus: A = Β½ ab Parallelogram: A = bh

Trapezoid: 𝐴 =(𝑏1+𝑏2)

2 β„Ž

Kite: 𝐴 = 𝑑1 𝑑2

2

Triangle: A = Β½ bh Triangle: A = Β½ ab sin(C)

Triangle: 𝐴 = βˆšπ‘ (𝑠 βˆ’ π‘Ž)(𝑠 βˆ’ 𝑏)(𝑠 βˆ’ 𝑐),

π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑠 =π‘Ž+𝑏+𝑐

2

Equilateral Triangle: 𝐴 = ¼√3𝑠2

Frustum: 𝐴 =1

3(

𝑏1+𝑏2

2) β„Ž

Circle: A = Ο€rΒ²

Circular Sector: A = Β½ rΒ²πœƒ Ellipse: A = Ο€ab

Lateral Surface

Area

Cylinder: S = 2Ο€rh Cone: S = Ο€rl

Total Surface

Area

Cube: S = 6sΒ² Rectangular Box: S = 2lw + 2wh + 2hl

Regular Tetrahedron: S = 2bh Cylinder: S = 2Ο€r (r + h)

Cone: S = Ο€rΒ² + Ο€rl = Ο€r (r + l)

Sphere: S = 4Ο€rΒ² Ellipsoid: S = (too complex)

Volume

Cube: V = sΒ³ Rectangular Prism: V = lwh

Cylinder: V = Ο€rΒ²h Triangular Prism: V= Bh

Tetrahedron: V= β…“ bh Pyramid: V = β…“ Bh

Cone: V = β…“ bh = β…“ Ο€rΒ²h

Sphere: 𝑉 =4

3πœ‹π‘Ÿ3

Ellipsoid: V = 4

3 Ο€abc