22
Recent results from MINERvA Jonathan Miller for the MINERvA Collaboration Universidad Tecnica Federico Santa Maria 1 PANIC NOW

Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Recent results from MINERvA

Jonathan Miller for the MINERvA Collaboration Universidad Tecnica Federico Santa Maria

1 PANIC NOW

Page 2: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

OutlineIntroduction to MINERvA

Recent important results:

charged pion production

coherent pion production

inclusive charged current scattering

quasi-elastic scattering arXiv:1305.2243 and arXiv:1305.2234

Conclusions and Future

2

Page 3: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

MINERvA Collaboration

David"Schmitz,"UChicago" Fermilab"Joint"Experimental=Theore?cal"Seminar"="May"10,"2013" 25"

MINERνA"More than just a detector…"

~80"collaborators"from"par?cle"and"nuclear"physics""

University of Athens University of Texas at Austin Centro Brasileiro de Pesquisas Físicas Fermilab University of Florida Université de Genève Universidad de Guanajuato Hampton University Inst. Nucl. Reas. Moscow Mass. Col. Lib. Arts Northwestern University University of Chicago

Otterbein University Pontificia Universidad Catolica del Peru

University of Pittsburgh University of Rochester

Rutgers University Tufts University

University of California at Irvine University of Minnesota at Duluth

Universidad Nacional de Ingeniería Universidad Técnica Federico Santa María

William and Mary

• Located underground at Fermilab, near Chicago USA.

• Institutions from 9 countries with over 60 collaborators.

David"Schmitz,"UChicago" Fermilab"Joint"Experimental=Theore?cal"Seminar"="May"10,"2013" 25"

MINERνA"More than just a detector…"

~80"collaborators"from"par?cle"and"nuclear"physics""

University of Athens University of Texas at Austin Centro Brasileiro de Pesquisas Físicas Fermilab University of Florida Université de Genève Universidad de Guanajuato Hampton University Inst. Nucl. Reas. Moscow Mass. Col. Lib. Arts Northwestern University University of Chicago

Otterbein University Pontificia Universidad Catolica del Peru

University of Pittsburgh University of Rochester

Rutgers University Tufts University

University of California at Irvine University of Minnesota at Duluth

Universidad Nacional de Ingeniería Universidad Técnica Federico Santa María

William and Mary

3

Page 4: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

NuMI Beam

4

figure courtesy Z. Pavlović

• 120 GeV/c protons from Main Injector.

• Graphite target • ME run started

September 2013.

Page 5: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Backup

Page 6: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

MINERvA Detector

6Nucl. Inst. and Meth. A743 (2014) 130

• 120 modules for tracking and colorimetry (32k readout channels) • Completion in Spring 2010,. • The MINOS near detector serves as a muon spectrometer.

Page 7: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Neutrino Event Generator (GENIE)

Includes a lot of physics: electron scattering, final state interaction (FSI) models, and nuclear physics models

Provides framework for realising physics analysis for neutrino (especially oscillation) experiments

NOvA, IceCube, MINERvA

7

D. Schmitz

Neutrino Energy (GeV)1 10

/ per

nuc

leus

2 c

0246810121416182022

-3910×

MINERvA <A> =12 <A> =121SciBooNE

<A> =122K2K <A> =123T2K

<A> =204BEBC II <A> =215CHARM

<A> 306SKAT <A> =407ArgoNeuT

v2.6.29GENIE

+ A+π + -µ → + A µν

43August 1st, 2014

Coherent Cross Section

[1] SciBooNE Collaboration (K. Hiraide et al.), Phys. Rev. D 78, 112004 (2008) [2] K2K Collaboration (M. Hasegawa et al.), Phys. Rev. Lett. 95, 252301 (2005) [3] T2K Collaboration NuInt 2014 preliminary result [4] BEBC WA59 Collaboration (P. Marage et al.), Z. Phys. C 31, 191 (1986) [5] CHARM II Collaboration (P. Vilain et al.), Phys. Lett. B 313, 267 (1993)

[6] SKAT Collaboration (H.J. Grabosh et al.), Z. Phys. C 31, 203 (1986) [7] ArgoNeuT Collaboration NuInt 2014 preliminary result [8] BEBC WA59 Collaboration (P. Marage et al.), Z. Phys. C 43, 523 (1989) [9] GENIE Collaboration (C. Andreopoulos et al.), Nucl. Instrum. Methods A 614, 87 (2010)

Neutrino Energy (GeV)1 10

/ per

nuc

leus

2 c

0246810121416182022

-3910× + A-π + +µ → + A µν

MINERvA <A> =12

<A> =208BEBC

II <A> =215CHARM

<A> =306SKAT

<A> =407ArgoNeuT

v2.6.29GENIE

A. Higuera, Joint Experimental-Theoretical Physics Seminar

Why understand ⌫A cross sections?

I For ⌫ oscillations, infer P⌫↵!⌫� (E⌫) from measured Nevt, kinematicsI Eg, T2K ⌫µ spectrum at SuperK:

Energy (GeV)ν Reconstructed 0 1 2 3 4 5

0

0.5

1

1.5 MC Best-fit

Rat

io t

o n

oosc

illa

tions

>

0 1 2 3 4 5

Even

ts/0

.10 G

eV

0

2

4

6

8

10

12

14

16

DATA CCQEµν+µν

CC non-QEµν+µν

CCeν+eν

NC

0

arXiv:1403.1532 and Patrick de Perio’s talk

���•� 2

Phys. Rev. Lett. 112, 181801, 2014

T2K

Page 8: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Results: Charged Pion Production

3.04e20 POT neutrinos

8

Publication forthcoming on arXiv:1406.6415

p(n)

⌫µ µ

W

p(n)

Page 9: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Event selection

Events contain one muon matched in MINOS.

Events contain at least one hadron track.

Only tracks which stop in the Ecal or tracker region are accepted.

Pions are identified by dE/dx, and the existence of a Michel electron at the end of the pion track.

9

Proton Score 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eve

nts

0

5

10

15

20

25310×

Data

Coh Pion

Pion

Proton

Other

A PreliminaryνMINER

POT Normalized3.05e+20 POT

+ A+π + -µ → + A µν

Proton Score 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eve

nts

0

1

2

3

4

5

6

310×Data

Coh Pion

Pion

Proton

Other

A PreliminaryνMINER

POT Normalized2.01e+20 POT

+ A-π + +µ → + A µν

Page 10: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Resultsn pions 1 pion 1 pion

10

MC

scal

ed by

0.70

Page 11: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Take awayMeasurements constrains interaction rate and final state interactions in pion production.

The contribution from Final State Interaction (FSI) is significant.

Needed to improve signal and background predictions for oscillation experiments.

Agreement with GENIE.

11

Page 12: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Results: Coherent Pion Production

12

Publication forthcoming

3.04e20 POT neutrinos 2.01e20 POT antineutrinos

A

q2

t

A

W+_

μ+_

π+_

νμ

( )_

Existence of pion and muon with no nucleon breakup (quiet vertex) and low momentum

transferred between nucleus and pion.

Page 13: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Event selection

2 (GeV/c)2)π

Reconstructed |t| = (q-p0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2Ev

ents

/ 0.

025

(GeV

/c)

0

0.2

0.4

0.6

0.8

1

310×DATACOHQERES W<1.41.4<W<2.0W> 2.0Other

A PreliminaryνMINER

POT Normalized3.05e+20 POT

All Background Tuned

+ A+π + -µ → + A µν

2 (GeV/c)2)π

Reconstructed |t| = (q-p0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2Ev

ents

/ 0.

025

(GeV

/c)

0

0.2

0.4

0.6

0.8

1

1.2310×

Data

Monte Carlo

Tuned Bkgd

A PreliminaryνMINERPOT Normalized3.05e+20 POT

+ A+π + -µ → + A µν

2 (GeV/c)2)π

Reconstructed |t| = (q-p0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2Ev

ents

/ 0.

025

(GeV

/c)

0

100

200

300

400

500

600

700 DATACOHQERES W<1.41.4<W<2.0W> 2.0Other

A PreliminaryνMINER

POT Normalized2.01e+20 POT

All Background Tuned

+ A-π + +µ → + A µν

2 (GeV/c)2)π

Reconstructed |t| = (q-p0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2Ev

ents

/ 0.

025

(GeV

/c)

0

100

200

300

400

500

600

700 Data

Monte Carlo

Tuned Bkgd

A PreliminaryνMINERPOT Normalized2.01e+20 POT

+ A-π + +µ → + A µν

antineutrino neutrino

13

• Events have almost no vertex energy.

• Separation of coherent scattering from incoherent background by slope of |t| due to the slope being different for diffractive and resonant processes.

• Sideband is selected as the incoherent background, is tuned to MC to minimize χ2

Page 14: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Results: Cross section

w/r to Beam (Degrees)πθ

0 10 20 30 40 50 60 70 80 90

)12

/Deg

ree/

C2

(cm

πθdσd

0

0.05

0.1

0.15

0.2-3910×

A PreliminaryνMINER

POT Normalized3.05e+20 POT

+ A+π + -µ → + A µν

DATAGENIE v2.6.2

Neutrino Energy (GeV) 0 2 4 6 8 10 12 14 16 18 20

)12

/C2 (c

0

5

10

15

20

25-3910× + A+π + -µ → + A µν

A PreliminaryνMINER

POT Normalized3.05e+20 POT

DATAGENIE v2.6.2

Pion Energy (GeV) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

)12

/GeV

/C2

(cm

πdEσd

00.5

11.5

22.5

33.5

44.5

-3910×A PreliminaryνMINER

POT Normalized3.05e+20 POT

+ A+π + -µ → + A µν

DATAGENIE v2.6.2

14

Pion Energy (GeV) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

)12

/GeV

/C2

(cm

πdEσd

00.5

11.5

22.5

33.5

44.5

-3910×A PreliminaryνMINER

POT Normalized2.01e+20 POT

+ A-π + +µ → + A µν

DATAGENIE v2.6.2

Neutrino Energy (GeV) 0 2 4 6 8 10 12 14 16 18 20

)12

/C2 (c

0

5

10

15

20

25-3910× + A-π + +µ → + A µν

A PreliminaryνMINER

POT Normalized2.01e+20 POT

DATAGENIE v2.6.2

w/r to Beam (Degrees)πθ

0 10 20 30 40 50 60 70 80 90

)12

/Deg

ree/

C2

(cm

πθdσd

0

0.05

0.1

0.15

0.2-3910×

A PreliminaryνMINER

POT Normalized2.01e+20 POT

+ A-π + +µ → + A µν

DATAGENIE v2.6.2

antin

eutr

inone

utrin

o

Page 15: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Take awayData shows a harder and more forward pion distribution than GENIE.

The selection of low |t| events allows a model independent measurement of coherent pion production.

Can be used to set systematic for oscillation experiments.

In the NuMI ME configuration, multiple passive targets (Pb, Fe, C) will allow a measurement of A dependence.

15

Page 16: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Results: Inclusive Charged Current

Scattering

Published arXiv:1403.2103

16

2.94e20 POT neutrinos

Reconstructed Bjorken x-110 1

2 (G

eV/c

)2

Rec

onst

ruct

ed Q

-110

1

10

0

100

200

300

400

500

600

700

800

W = 1.3 GeVW = 2 GeV

Data

Page 17: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Event SelectionEvents must have a muon in MINOS.

Target vertex must be in passive target or neighbouring scintillator.

Neutrino energy between 2 and 20 GeV.

Muon angle < 17 deg.

17

Adjusted Vertex Z (cm)450 500 550 600 650 700 750 800 850

N E

vent

s / M

odul

e

0

2

4

6

8

10

12

14

310×

DataCarbonIronLeadScintillator

Each Bunch Area-Normalized

True Event Origins - Reconstructed Vertex ZTarget 2

Target 5Target 4

Target 3

Gives MINOS acceptance (restricts kinematics). Gives estimate of contamination from scientillator.

1” Pb / 1” Fe 266kg / 323kg

3” C / 1” Fe / 1” Pb 166kg / 169kg / 121kg

0.3” Pb 228kg

.5” Fe / .5” Pb 161kg/ 135kg

Page 18: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Ratio Results

18

No tension between data and MC Te

nsion

betw

een d

ata a

nd M

C

Neutrino Energy (GeV)2 4 6 8 10 12 14 16 18 20

CH

σ / C

σ

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5DataSimulation/ndf = 11.31/8 = 1.412χ

CHσ : CσRatio of

Neutrino Energy (GeV)2 4 6 8 10 12 14 16 18 20

CH

σ /

Feσ

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5DataSimulation/ndf = 9.76/8 = 1.222χ

CHσ : FeσRatio of

Neutrino Energy (GeV)2 4 6 8 10 12 14 16 18 20

CH

σ /

Pbσ

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5DataSimulation/ndf = 5.03/8 = 0.632χ

CHσ : PbσRatio of

Reconstructed Bjorken x0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

dxCH

σd /

dxC

σd

0.8

1.0

1.2

1.4

1.6

1.8

2.0

DataSimulation

/ndf = 6.05/6 = 1.012χ dx

CHσd : dxCσdRatio of

Reconstructed Bjorken x0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

dxCH

σd /

dxFe

σd

0.8

1.0

1.2

1.4

1.6

1.8

2.0

DataSimulation

/ndf = 25.87/6 = 4.312χ dx

CHσd : dxFeσdRatio of

Reconstructed Bjorken x0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

dxCH

σd /

dxPb

σd

0.8

1.0

1.2

1.4

1.6

1.8

2.0

DataSimulation

/ndf = 58.46/6 = 9.742χ dx

CHσd : dxPbσdRatio of

Page 19: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Take awayThis is not deep inelastic scattering.

Theory input needed!

Data is not reproduced by simulation.

Can be used to improve estimate of systematic for oscillation experiments.

Unexpected excess at high x and deficit at low x points to improvements needed in models ( fermi motion + ? and shadowing).

19

Reconstructed Bjorken x-110 1

2 (G

eV/c

)2

Rec

onst

ruct

ed Q

-110

1

10

0

100

200

300

400

500

600

700

800

W = 1.3 GeVW = 2 GeV

Data

Page 20: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Results:Quasi-Elastic Scattering

Published in PRL and arXiv:1305.2243 and arXiv:

1305.2234

3.98e20 POT neutrinos 1.70e20 POT antineutrinos

⌫µ

p(n)

µ

W

n(p)

Page 21: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Event Selection, Results and Take away

Simple event selection requires single track with matching track in MINOS.

Requires no more than 1(2) additional blobs for anti-ν(ν)

Basic relativistic fermi gas model disfavored.

Increasing axial mass disfavored.

Page 22: Recent results from MINERvA · charged pion production coherent pion production inclusive charged current scattering quasi-elastic scattering arXiv:1305.2243 and arXiv: 1305.2234

Conclusions and FutureMINERvA is important in developing neutrino generators (GENIE), required for oscillation experiments.

MINERvA ME data run has begun.

Possibilities to extend the MINERvA program.

Many analyses in progress, expect CCPi0, K production, NuE elastic in the coming months.

Some results show broad agreement with model predictions and others significant disagreement. No need to PANIC, NOW we have observation.

22