32
Reaction Mechanism: Chicken Egg White Lysozyme QuickTime™ and a YUV420 codec decompressor are needed to see this picture. • Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and NAG

Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Embed Size (px)

Citation preview

Page 1: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Reaction Mechanism: Chicken Egg White Lysozyme

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

• Enzyme responsible for degrading bacterial cell walls

• Hydrolyzes the glycosidic linkage between NAM and NAG

Page 2: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Mechanism: Chicken Egg White Lysozyme

• Substrate fits in groove in enzyme

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Binding Site

Page 3: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Mechanism: Chicken Egg White Lysozyme

1) Glu35 acts as a Gen Acid, donating a proton to the glycosidic oxygen

2) The carbocation intermediate is stabilized by Asp52

3) The oxygen from a water molecule attacks the carbocation, finishing the mechanism with reprotonation of Glu35

Page 4: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Paul D. Adams • University of Arkansas

Mary K. CampbellShawn O. Farrellhttp://academic.cengage.com/chemistry/campbell

Chapter EightLipids and Proteins Are Associated in

Biological Membranes

Page 5: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

What is a Lipid

• Lipids:Lipids: a heterogeneous class of naturally occurring organic compounds classified together on the basis of common solubility properties• insoluble in water, but soluble in aprotic organic solvents

including diethyl ether, chloroform, methylene chloride, and acetone

• Amphipathic in nature• Lipids include:

• Open Chain forms• fatty acids, triacylglycerols, sphingolipids,

phosphoacylglycerols, glycolipids, • lipid-soluble vitamins• prostaglandins, leukotrienes, and thromboxanes

• Cyclic forms• cholesterol, steroid hormones, and bile acids

Page 6: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Fatty Acids

• Fatty acid:Fatty acid: an unbranched-chain carboxylic acid, most commonly of 12 - 20 carbons, derived from hydrolysis of animal fats, vegetable oils, or phosphodiacylglycerols of biological membranes

• In the shorthand notation for fatty acids

• the number of carbons and the number of double bonds in the chain are shown by two numbers, separated by a colon

Page 7: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Fatty Acids (Cont’d)

Length of fatty acid plays a role in its chemical character

• Usually contain even numbers of carbons (can contain odd, depending on how they are biosynthesized)

• FA that contain C=C, are unsaturated: If contain only C-C bonds, they are saturated

Page 8: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Fatty Acids (Cont’d)

• In most unsaturated fatty acids, the cis isomer predominates; the trans isomer is rare

• Unsaturated fatty acids have lower melting points than their saturated counterparts; the greater the degree of unsaturation, the lower the melting point• Why is this?

Page 9: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Triacylglycerols

• Triacylglycerol (triglyceride):Triacylglycerol (triglyceride): an ester of glycerol with three fatty acids

• natural soaps are prepared by boiling triglycerides (animal fats or vegetable oils) with NaOH, in a reaction called saponification (Latin, sapo, soap)

Page 10: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Soaps

• Soaps form water-insoluble salts when used in water containing Ca(II), Mg(II), and Fe(III) ions (hard hard waterwater)• The salt rinses off

• Reactions with acids/bases as catalysts

• Salts formed by Saponification• Base-catalyzed hydrolysis

with salts formed

Page 11: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Phosphoacylglycerols (Phospholipids)

• When one alcohol group of glycerol is esterified by a When one alcohol group of glycerol is esterified by a phosphoric acid rather than by a carboxylic acid, phosphoric acid rather than by a carboxylic acid, phosphatidic acidphosphatidic acid produced produced

• PhosphoacylglycerolsPhosphoacylglycerols (phosphoglycerides) are the second most abundant group of naturally occurring lipids, and they are found in plant and animal membranes

Page 12: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Waxes

• A complex mixture of esters of long-chain carboxylic acids and alcohols

• Found as protective coatings for plants and animals

Parrafin chains on either side of ester

Page 13: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Sphingolipids

• Contain sphingosine, a long-chain amino alcohol

• Found in plants and animals

• Abundant in nervous system

• Has structural similarity to phospholipids• Ceramide tells cells to

undergo apoptosis• Sphingosine tells cells to

grow, divide and migrate

Remove Phosphoethanolamine

Page 14: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Glycolipids

• Glycolipid:Glycolipid: a compound in which a carbohydrate is bound to an -OH of the lipid

• In most cases, sugar is either glucose or galactose• many glycolipids are

derived from ceramides

• Glycolipids with complex carbohydrate moiety that contains more than 3 sugars are known as gangliosides (Fig. 8.8, p. 207)

Ceramide

Page 15: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Steroids

• Steroids:Steroids: a group of lipids that have fused-ring structure of 3 six-membered rings, and 1 five-membered ring.

Page 16: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Steroids

Page 17: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Cholesterol

• The steroid of most interest in our discussion of biological membranes is cholesterol

Page 18: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Biological Membranes

• Every cell has a cell membrane (plasma membrane)• Eukaryotic cells also have membrane-enclosed organelles

(nuclei, mitochondria…etc)• Molecular basis of membrane structure is in lipid

component(s):• polar head groups are in contact with the aqueous

environment• nonpolar tails are buried within the bilayer• the major force driving the formation of lipid bilayers is

hydrophobic interaction• the arrangement of hydrocarbon tails in the interior can be

rigid (if rich in saturated fatty acids) or fluid (if rich in unsaturated fatty acids)

Page 19: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Lipid Bilayers

• The polar surface of the bilayer contains charged groups

• The hydrophobic tails lie in the interior of the bilayer

Page 20: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Biological Membranes

• Plant membranes have a higher percentage of unsaturated fatty acids than animal membranes

• The presence of cholesterol is characteristic of animal rather than plant membranes

• Animal membranes are less fluid (more rigid) than plant membranes

• The membranes of prokaryotes, which contain no appreciable amounts of steroids, are the most fluid

Page 21: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Membrane Layers

• Both inner and outer layers of bilayer contain mixtures of lipids

• Compositions on inside and outside of lipid bilayer can be different

• This is what distinguishes the layers

Page 22: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Effect of Double Bonds on the Conformations of Fatty Acids• Kink in hydrocarbon

chain

• Causes disorder in packing against other chains

• This disorder causes greater fluidity in membranes with cis-double bonds vs...... saturated FA chains

Page 23: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Cholesterol reduces Fluidity

• Presence of cholesterol reduces fluidity by stabilizing extended chain conformations of hydrocarbon tails of FA

• Due to hydrophobic interactions

Page 24: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Temperature Transition in Lipid Bilayer

• With heat, membranes become more disordered; the transition temperature is higher for more rigid membranes; it is lower for less rigid membranes

• Mobility of the lipid chains increases dramatically with increasing temperature.

Why? What is happening?

Page 25: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Membrane Proteins

• FunctionsFunctions: transport substances across membranes; act as receptor sites, and sites of enzyme catalysis

• Peripheral proteins (Protein 3 in figure below)• bound by electrostatic interactions• can be removed by raising the ionic strength (Why?)

• Integral proteins (Proteins 1, 2 and 4 in figure below)• bound tightly to the interior of the membrane• can be removed by treatment with detergents or ultrasonification• removal generally denatures them (Why?)

Page 26: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Proteins Can be Anchored to Membranes

• N-myristoyl- and S-palmitoyl anchoring motifs

• Anchors can be:• N-terminal Gly

• Thioester linkage with Cys

Page 27: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Fluid Mosaic Model

• FluidFluid: there is lateral motion of components in the membrane;

• proteins, for example, “float” in the membrane and can move along its plane

• MosaicMosaic: components in the membrane exist side-by-side as separate entities

• the structure is that of a lipid bilayer with proteins, glycolipids, and steroids such as cholesterol embedded in it

• no complexes, as for example, lipid-protein complexes, are formed

Page 28: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Fluid Mosaic Model of Membrane Structure

What benefits does this model provide to the cell?

Page 29: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Membrane Function: Membrane Transport

Passive transportPassive transport• driven by a concentration gradient • simple diffusionsimple diffusion:: a molecule or ion moves through

an opening• facilitated diffusionfacilitated diffusion:: a molecule or ion is carried

across a membrane by a carrier/channel protein• Active transport Active transport

• a substance is moved AGAINST a concentration gradient

• primary active transportprimary active transport:: transport is linked to the hydrolysis of ATP or other high-energy molecule; for example, the Na+/K+ ion pump

• secondary active transportsecondary active transport:: driven by H+ gradient

Page 30: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Passive Transport

• Passive diffusion of species (uncharged) across membrane dependent on concentration and the presence of carrier protein

Page 31: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

1˚ Active transport

• Movement of molecules against a gradient directly linked to hydrolysis of high-energy yielding molecule (e.g. ATP)

Page 32: Reaction Mechanism: Chicken Egg White Lysozyme Enzyme responsible for degrading bacterial cell walls Hydrolyzes the glycosidic linkage between NAM and

Membrane Receptors

• Membrane receptors

• generally oligomeric proteins

• binding of a biologically active substance to a receptor initiates an action within the cell