113
DESIGN AND FABRICATION OF INTEGRATED INDIUM MICROMIRRORS Raul Broto Cervera Master Thesis (Projecte Final de Carrera) September 2012 New Jersey Institute of Technology, Dr. PérezCastillejos Universitat Politècnica de Catalunya, ETSETB

Raul Broto Master Thesis

Embed Size (px)

Citation preview

Page 1: Raul Broto Master Thesis

DESIGN AND FABRICATION

OF INTEGRATED INDIUM

MICROMIRRORS                

             

         

   

Raul  Broto  Cervera  

Master  Thesis  (Projecte  Final  de  Carrera)  

September  2012  

New  Jersey  Institute  of  Technology,  Dr.  Pérez-­‐Castillejos  

Universitat  Politècnica  de  Catalunya,  ETSETB  

Page 2: Raul Broto Master Thesis

   

2  

   

Page 3: Raul Broto Master Thesis

   

3  

INDEX        CHAPTER  1  –  INTRODUCTION  ………………………………………………………………………..…..    5    CHAPTER  2  –  MIRRORS,  THEORETICAL  DESCRIPTION  ……………………………………....  21    CHAPTER  3  –  DESIGN  OF  THE  MIRROR,  SIMULATION  ……………………………………....    40    CHAPTER  4  –  FABRICATION  DESIGN  ……………………………………………………………..…    58    CHAPTER  5  –  FABRICATION  TECHNOLOGY  …………………………………………………..…      73    CHAPTER  6  –  RESULTS  ……………………………...…………………………………………………….      84    CONCLUSIONS  ……………………..………………………………………………………………….………  106    REFERENCES  …………………………………………………………………………………………………    108    ACKNOWLEDGEMENTS  ……..………………………………………….……………………………….    111        

Page 4: Raul Broto Master Thesis

   

4  

   

Page 5: Raul Broto Master Thesis

   

5  

CHAPTER  1:  INTRODUCTION      1.1  Analytical  Lab-­‐on-­‐a-­‐chip      In   the   20th   century   there   has   been   a   trending   into   the   miniaturization   in   all  electronic   components   and   electronic   integrated   systems.   All   these   advances   in  microfabrication  technologies  had  soon  started  being  applied  to  other  fields,  such  as  pressure   sensors   and   accelerometers,   enabling   development   of   complex   Micro  Electro  Mechanical  Systems  (MEMS),  and  at  the  end  of  the  century,  microfabricated  devices   for   chemical   or   biological   analysis   and   synthesis,   that   are   called   labs-­‐on-­‐chips  (LOCs).                        

Figure  1.1:  Lab-­‐on-­‐a-­‐chip  made  of  glass  Source:  http://www.gizmag.com/music-­‐lab-­‐on-­‐a-­‐chip-­‐device/12402/  

 Microelectromechanical  systems  (MEMS)  is  the  technology  of  very  small  mechanical  devices  driven  by  electricity.  MEMS  are  separate  and  distinct  from  the  old  vision  of  molecular  nanotechnology  or  molecular  electronics,   they  are  made  of   components  between  1  to  100  micrometres  in  size  and  the  devices  generally  range  in  size  from  20  micrometres  to  a  millimetre.      They  usually   consist  of   a   central  unit   that  processes  data,   the  microprocessor  and  several   components   that   interact  with   the   outside   such   as  microsensors.   At   these  size   scales,   the   standard   constructs   of   classical   physics   are   not   always   useful.  Because  of   the   large  surface  area   to  volume  ratio  of  MEMS,  surface  effects  such  as  electrostatics  and  wetting  dominate  volume  effects  such  as  inertia  or  thermal  mass.    More   specifically,   Bio-­‐MEMS   refers   to   a   special   class   of   MEMS   where   biological  matter   is   manipulated   to   analyze   and   measure   its   activity   under   any   class   of  scientific   study.   This   class   of   devices   belongs   to   one   of   the   areas   of   development  based   on   microtechnology.   Some   of   the   applications   based   in   Bio-­‐MEMS   are:  biological   and   biomedical   analysis   and   measurements,   and   micro   total   analysis  systems  (μTAS).    Lab-­‐on-­‐a-­‐chip  devices  are  a  subset  of  MEMS  devices  and  often  indicated  by  "Micro  Total  Analysis  Systems"   (µTAS)  as  well.  The   term  "Lab-­‐on-­‐a-­‐Chip"  was   introduced  later   on  when   it   turned   out   that   µTAS   technologies  were  more  widely   applicable  than   only   for   analysis   purposes.   Lab-­‐on-­‐a-­‐Chip   indicates   generally   the   scaling   of  

Page 6: Raul Broto Master Thesis

   

6  

single  or  multiple  lab  processes  down  to  chip-­‐format,  whereas  "µTAS"  is  dedicated  to   the   integration   of   the   total   sequence   of   lab   processes   to   perform   chemical  analysis.      But  before  entering  completely   to  our  main   topic   (LOCs)   it   is  necessary   to  make  a  brief  introduction  on  Microfluidics.    1.1.1 Microfluidics  

 Microfluidics  is  a  broader  term  that  describes  also  mechanical  flow  control  devices  like   pumps   and   valves,   or   sensors   like   flowmeters   and   viscometers.   Microfluidics  deals   with   the   behavior,   precise   control   and   manipulation   of   fluids   that   are  geometrically  limited  to  a  small  scale  (typically  sub-­‐millimeter).    The  behavior  of   fluids   at   the  microscale   can  differ   from   'macrofluidic'   behavior   in  that   factors  such  as  surface  tension,  energy  dissipation,  and  fluidic  resistance  start  to  dominate  the  system.  Microfluidics  studies  how  these  behaviors  change,  and  how  they  can  be  worked  around,  or  exploited  for  new  uses.  High  specificity  of  chemical  and  physical  properties  (concentration,  pH,  temperature,  shear  force,  etc.)  can  also  be  ensured  resulting  in  more  uniform  reaction  conditions  and  higher  grade  products  in  single  and  multi-­‐step  reactions.                                  

Figure  1.2:  Microfluidic  System  Source:  http://medgadget.com/2009/04/separating_chirality_with_microfluidics.html  

 Microfluidics   is   a   multidisciplinary   field   intersecting   engineering,   physics,  chemistry,   microtechnology   and   biotechnology,   with   practical   applications   to   the  design  of  systems  in  which  such  small  volumes  of  fluids  will  be  used.  Microfluidics  emerged   in   the   beginning   of   the   1980s   and   is   used   in   the   development   of   inkjet  printheads,   DNA   chips,   lab-­‐on-­‐a-­‐chip   technology,   micro-­‐propulsion,   and   micro-­‐thermal  technologies.    One   of   the   most   important   key   application   area   is   continuous-­‐flow  microfluidics.  These  technologies  are  based  on  the  manipulation  of  continuous  liquid  flow  through  microfabricated  channels.  Actuation  of  liquid  flow  is  implemented  either  by  external  

Page 7: Raul Broto Master Thesis

   

7  

pressure   sources,   external  mechanical  pumps,   integrated  mechanical  micropumps,  or  by  combinations  of  capillary  forces  and  electrokinetic  mechanisms.      Continuous-­‐flow  microfluidic   operation   is   the  mainstream   approach   because   it   is  easy  to   implement  and   less  sensitive  to  protein   fouling  problems.  Continuous-­‐flow  devices   are   adequate   for  many  well-­‐defined   and   simple   biochemical   applications,  and  for  certain  tasks  such  as  chemical  separation,  but  they  are  less  suitable  for  tasks  requiring  a  high  degree  of   flexibility  or   ineffect   fluid  manipulations.  These   closed-­‐channel   systems   are   inherently   difficult   to   integrate   and   scale   because   the  parameters  that  govern  flow  field  vary  along  the  flow  path  making  the  fluid  flow  at  any  one  location  dependent  on  the  properties  of  the  entire  system.      An  extense  variety  of  microfluidics  applications  can  be  found1,  such  as  flow  control  methods,  DNA  analysis  systems  or  biosensors,  with  the  corresponding  information  about  all  the  theoretical  aspects.    1.1.2 Lab-­‐on-­‐a-­‐Chip    A  lab-­‐on-­‐a-­‐chip  (LOC)  is  a  device  that  integrates  one  or  several  laboratory  functions  on  a  single  chip  of  only  millimeters   to  a   few  square  centimeters   in  size.  LOCs  deal  with  the  handling  of  extremely  small  fluid  volumes  down  to  less  than  pico  liters.                                        

Figure  1.3:  Lab-­‐on-­‐a-­‐Chip  Source:  http://www.directindustry.com/prod/agilent-­‐technologies-­‐life-­‐sciences-­‐and-­‐chemical/labs-­‐

on-­‐a-­‐chips-­‐loc-­‐32598-­‐243049.html    A   big   stimulation   in   research   and   commercial   interest   came   in   the   1990’s,   when  µTAS   technologies   turned   out   to   provide   interesting   tooling   for   genomics  applications,   like   capillary   electrophoresis   and   DNA  microarrays.   The   main   point  was  the   integration  of   lab  processes  for  analysis,  but  also   there  was  the  additional  value  of   the   individual  components  and  their  application  to  other  non-­‐analysis   lab  processes.  Hence,  the  term  "Lab-­‐on-­‐a-­‐Chip"  was  introduced.  

                                                                                                               1  Bingcheng  Lin,  Microfluidics:  Technologies  and  Applications,  2011  

Page 8: Raul Broto Master Thesis

   

8  

Even   nowadays,   there   is   still   an   increasing   need   for   sensitive   high-­‐throughput  analysis.   Lab-­‐on-­‐a-­‐chip   devices   can   considerably   improve   the   speed   and   scale   at  which  chemical  and  biological  analyses  are  performed.  Such  a  microfluidics  system  exhibits  the  ability  to  reduce  conventional  analytical  systems  and  bring  advantages  of   high-­‐throughput,   low   cost,   low   sample   consumption   and   portability.   The  major  challenge   in   the   field   of   analytical   Lab-­‐on-­‐a-­‐chip   devices   is   to   provide   sensitive  detector   for  minute   amount  of   samples   (typically   less   than   few  nanolitres),  which  can  be  miniaturized  in  order  not  to  compromise  the  portability  of  the  Lab-­‐on-­‐a-­‐chip  device.      The   driving   force   behind   the   miniaturization   is   the   aspiration   to   increase   the  processing   power,   while   reducing   the   economic   cost   (and,   only   recently,  environmental  impact).  Two  important  consequences  appear  from  these  important  premises:      

-­‐ The  increase  in  processing  power  brings  new  possibilities  such  as  numerical  modeling   of   complex   systems,   minimally   invasive   surgeries,   and   high  throughput  biochemical  screening,  to  name  a  few  current  examples.    

-­‐ The   decrease   in   production   cost   generally   makes   these   capabilities   more  accessible   to   the   general   public,   as   it   happened   in   the   past   with   personal  computers,  glucose  monitors  or  pregnancy  tests.  

 Lab-­‐on-­‐chips   generally   speed   up   the   reaction   times,   allow   for   massively   parallel  design,   and   are   field   deployable.   Moreover,   reagent   and   energy   consumption   are  dramatically  reduced,  and  so   is   the  amount  of  waste  produced.   It  should  be  noted,  however,  that  the  massive  fabrication  of  inexpensive  and  disposable  LOCs  may  pose  an   environmental   problem   simply   due   to   the   sheer   volume   of   production   -­‐   a  problem  already  faced  with  many  other  miniaturized  technologies:  nickel-­‐cadmium  batteries  or  mobile  phones.    The  range  of  applications  can  suitably  be  divided  into  three  major  categories:

1) Micro   total-­‐analysis   systems   (µTAS),   for   analysis   identification   or  quantification  purposes.  This  concept  was   the  main  premise  of  microfluidic  systems   in   the   early   199Os,   and   has   since   emerged   into   a   variety   of  diagnostic,  environmental  and  military  applications.    

2) Microreactors  for  chemical  synthesis  or  energy  production.  This  field  started  in   the   late   199Os,   and   uses   methods   to   synthesize   unstable,   precious   or  dangerous    materials     on     demand,     tailored     nanoparticles  and  patterned  surfaces  or  to  develop  micropower  sources.  

 3) Microfluidic   tools   for   purposes   ranging   from   screening   for   protein  

crystallization   conditions   to   interacting   with   single   cells.   These   strategies  take   the   advantage   of   physical   and   chemical   properties   that   are   unique   to  microfluidic  systems  (laminar   flow,  high  surface-­‐to-­‐volume  ratio,  or   feature  sizes   comparable   to   the   size   of   cells),   enabling   experiments   that  would   be  very  hard  or  even  impossible  to  realize  in  the  conventional  format.

Page 9: Raul Broto Master Thesis

   

9  

Large-­‐scale   integration   and   batch   fabrication   have   led   to   commercial   release   of  several   LOCs,   used   mostly   in   the   pharmaceutical   and   biotechnology   markets.   An  extensive   list   of   principal   and  optional  modules  of   an   analytical   LOC,   for   instance,  would   include   sample   preparation   and   enrichment,   pumping/manipulation,  separation,  detection,  signal  conditioning,  temperature  control,  and  power.      More  detailed  information  can  be  found  in  this  reference2,  where  also  can  be  found  a  deeply  analysis  of  magnetic  tools  in  lab-­‐on-­‐a-­‐chip  technologies.    1.1.3 Advantages  and  Disadvantages  of  LOCs    As  every  new  technology,  with  lab-­‐on-­‐a-­‐chip  we  have  to  take  into  consideration  the  viability   of   its   implementation.  Here   there   is   a   list   of   some   advantages,  which   are  specific  to  their  application:    

-­‐ Low   fluid   volumes   consumption   (less  waste,   lower   reagents   costs   and   less  required  sample  volumes  for  diagnostics).  

-­‐ Faster   analysis   and   response   times   due   to   short   diffusion   distances,   fast  heating,  high  surface  to  volume  ratios,  small  heat  capacities.  

-­‐ Compactness   of   the   systems   due   to   integration   of   much   functionality   and  small   volumes.   Massive   parallelization   due   to   compactness,   which   allows  high-­‐throughput  analysis.  

-­‐ Lower   fabrication   costs,   allowing   cost-­‐effective   disposable   chips,   fabricated  in  mass  production.  

-­‐ Safer   platform   for   chemical,   radioactive   or   biological   studies   because   of  integration  of  functionality,  smaller  fluid  volumes  and  stored  energies.  

 There  are  also  some  aspects  that  need  to  be  solved  or  minimized  in  the  future.  Some  of  the  disadvantages  of  LOCs  are:    

-­‐ Novel  technology  and  therefore  not  yet  fully  developed.  -­‐ Physical   and   chemical   effects   (like   capillary   forces,   surface   roughness)  

become  more  dominant  on  small-­‐scale.  This  can  sometimes  make  processes  in  LOCs  more  complex  than  in  conventional  lab  equipment.  

-­‐ Detection  principles  may  not  always  scale  down  in  a  positive  way,  leading  to  low  signal-­‐to-­‐noise  ratios.  

-­‐ Although   the   absolute   geometric   accuracies   and   precision   in  microfabrication   are   high,   they   are   often   rather   poor   in   a   relative   way,  compared  to  precision  engineering  for  instance.  

 1.1.4 Present  and  Future    For  all   the   reasons   that  we  have   seen,   it   seems  highly  probable   that   lab-­‐on-­‐a-­‐chip  technology  will  be  a  powerful  industry  in  the  next  decades.  According  to  the  experts,  in   next   years   will   appear   new   discoveries   in   physics,   micro-­‐scale   dynamics,   and  nanotechnology   that   will   act   as   enabling   technologies,   solving   dilemmas   for   LOC  developers  one  step  at  a  time.    

                                                                                                               2  Nikola  Slobodan  Pekas,  Magnetic  tools  for  Lab-­‐on-­‐a-­‐chip  Technologies,  2006  

Page 10: Raul Broto Master Thesis

   

10  

Two  major   developments   have   occurred   in   the   LOC   landscape,   opening   doors   for  innovators  while  creating  new  standards.  The  first  is  the  use  of  microarrays,  where  these   tiny  wafers   are   now   standard   laboratory   equipment   for   almost   any   type   of  high-­‐throughput   analysis.   The   second   is   LOCs   integration   into   market-­‐ready  products  by  several  laboratories.        Complete   chemical   LOCs   will   have   the   greatest   direct   impact   on   two   markets:  medical  diagnostics  and  laboratory  instrumentation.  Chemical  sensing  markets  and  chemical   synthesis   will   also   be   affected.  LOCs   will   most   likely   not   be   used   for  uncomplicated   "yes"   or   "no"   tests,   as   simple,   reliable,   inexpensive   solutions   are  already  on  the  market.  LOCs  will  be  used  to  replace  some  functions  of  instruments  in   situations   where   concentrations   of   more   than   one   analyte   needs   to   be  determined,  or  where  a  complex  separation  must  precede  analysis.        While  several  groups  are  working  on  the  realization  of  a  complete  LOC,  some  others  are   working   on   what   will   eventually   become   components   of   future   LOCs:  microfluidics,   sample   handling   systems,   analyzers   and   detection   schemes,   signal  processors,  control  software,  and  chemical  sensors  for  analytical  LOCs.      Finally,   it   is  necessary   to   remark  one   important  and  hopeful   idea   related  with   the  future   of   LOCs.   This   technology  may   soon   become   an   important   part   of   efforts   to  improve  global  health,  particularly  through  the  development  of  point-­‐of-­‐care  testing  devices.   In  countries  with  few  healthcare  resources,   infectious  diseases  that  would  be  treatable   in  a  developed  nation  are  often  deadly.  Many  researchers  believe  that  LOC  technology  may  be  the  key  to  powerful  new  diagnostic  instruments.  The  goal  of  these  researchers  is  to  create  microfluidic  chips  that  will  allow  healthcare  providers  in   poorly   equipped   clinics   to   perform  diagnostic   tests   such   as   immunoassays   and  nucleic  acid  assays  with  no  laboratory  support.  These  information  can  be  extended  in  this  source3.      

                                                                                                               3  http://en.wikipedia.org/wiki/Lab_on_a_chip#LOCs_and_Global_Health  

Page 11: Raul Broto Master Thesis

   

11  

1.2  Optical  Lab-­‐on-­‐a-­‐chip        Taking   the   next   step   from   individual   functional   components   to   higher   integrated  devices,   lab-­‐on-­‐a-­‐chip   systems   are   usually   monolithically   integrated   on   one  substrate   with   other   components.   These   components   belong   to   the   three   main  domains  of  microchip  technology:  optics,  fluidics  and  electronics.      In  monolithic  integration  all  the  fabrication  process  steps  are  integrated  on  a  single  substrate,  so  it  gives  the  benefit  that  no  assembly  of  the  components  is  required.  The  advantage   of   this   technique   is   that   the   geometric  measurements   are   no   longer   of  primary   importance   for   achieving   functionality   of   nanosystem   or   control   of   the  fabrication  process.    In   essence,  when  we   talk   about   Optical   Lab-­‐on-­‐a-­‐chip,   it   refers   to   integrate   some  high  performance  optics  onto  a  chip  that  contains  microfluidics  as  well.  This  allows  us   to   be   able   to   parallelize   the   optics   in   the   same  way   that   a  microfluidic   device  parallelizes   sample   manipulation   and   delivery.   Unlike   a   typical   optical   detection  system   that   uses   a   microscope   objective   lens   to   scan   a   single   laser   spot   over   a  microfluidic  channel,  the  optical  LOCs  can  be  designed  to  detect  light  from  multiple  channels  simultaneously.      In   several   cases   LOCs   are   interfaced   with   a   detector,   configuring   the   new   LOC  system,  and  due  to   its  high  sensitivity   laser-­‐induced  fluorescence  detection   is  very  often  the  method  of  choice.  For  efficient  measurements  the  exciting  light  has  to  be  focused   into   the   channel   and   the   intensity   of   the   excited   fluorescence   has   to   be  collected  and  focused  onto  a  photodetector.  This  requires  a  considerable  amount  of  optical   components,   such   as   lenses,   collimators,  mirrors,   pinholes   and   filters   that  need  to  be  aligned  very  carefully.  In  relation  to  the  microfluidic  device  this  assembly  becomes   fairly   bulky.   This   stands   in   contrast   to   the   incentive   of  microfabrication  and  miniaturization.                                

   

Figure  1.4:  Integrating  optical  sensing  into  Lab-­‐on-­‐a-­‐Chip  devices  Source:  http://spie.org/x35060.xml  

Page 12: Raul Broto Master Thesis

   

12  

The   tackling   of   this   drawback   goes   together   with   poly(dimethylsiloxane)   (PDMS)  finding   its  way   into  microfabrication.   For   example,   some   researchers   reported   on  integrating  optical  fibres  and  lenses  for  fluorescence  detection  by  taking  advantage  of  the  elastomer’s  extraordinary  properties  concerning  the  ability  to  form  complex  structures   from   a   given  mold4.   Also,   they   found   an   improvement   of   laser-­‐induced  fluorescence   and   absorbance   measurements   by   integrating   arrangements   of  collector  and  collimator  lenses.  In  one  case  collimation  was  achieved  by  combining  a  lens  with  channels  made  in  PDMS  that  can  be  filled  with  black  ink5.      However,   one   problem   that   remains   is   the   integration   of   filters.   They   are   used   to  separate   the   wavelength   of   the   exciting   light   from   the   one   of   the   emitted  fluorescence.   This   is   essential   when   the   output   signal   is   generated   by   a  photodetector.   So   far,   filters   are   incorporated  by  either  using   conventional  optical  components  or  complex  and  expensive  technological  steps.    1.2.1 Optical  Detection    Detection   is   clearly   one   of   the   key   features   in   analytical   LOC   platforms,   but   also  plays   a   potentially   important   role   as   a   part   of   process   control   in  microdevices.   A  variety  of   detection   strategies  have  been  deployed   in   the  LOC   field,  with  different  levels   of   integration   and   portability.   Conventional   microscopy   abolishes   the  portability   and   low-­‐cost   advantages   of   such   LOCs,   and   a   number   of   groups   have  been  working  on  integrating  optical  excitation  sources  and  detectors    into     LOCs.  Electrochemical     methods  usually  rely  on  microfabricated,  integrated  electrodes  and  therefore  promise  a  higher  level  of  portability.      Conventional   optical   detection   methods,   including   absorbance,   fluorescence,  chemiluminescence,   interferometry,   and   surface  plasmon  resonance,  have  all  been  applied   in   microfluidic   biosensors.   However,   optical   detection   generally   requires  expensive  hardware  which   is  difficult   to  miniaturize,  and   it  suffers  at   lower   length  scales.  The  shorter  optical  path   lengths   through   the   sample   reduce  sensitivity  and  higher   surface-­‐to-­‐volume   ratios   lead   to   increased   noise   from   non-­‐specific  adsorption  to  chamber  walls.      To   address   these   issues,   many   integrated   optical   systems   are   being   explored   in  which  waveguides,  filters,  and  even  optoelectronic  elements  are  integrated  onto  the  microfluidic  device   to   improve  sensitivity  while  reducing  cost.   In  conjunction  with  these   on-­‐chip   integrated   components,   many   groups   are   incorporating   low-­‐cost  optics,   laser  diodes,   LEDs,   CCD   cameras,   and  photodiodes   into  portable  diagnostic  platforms.      It’s  also  worth  noting  that  optical  systems  can  not  only  be  used  for  detection  but  also  for   actuation   through   various   optical   forces.   Furthermore,   through   microscale  manipulation   of   fluids   one   can   achieve   tunable   and   reconfigurable   on-­‐chip   optical  systems.   These   fascinating   techniques   have   given   rise   to   the   new   field   of  optofluidics.    

                                                                                                               4  S.  Camou,  H.  Fujita  and  T.  Fujii,  Lab  Chip,  2003,  3,  40-­‐45  5  K.W.  Ro,  B.C.  Shim,  K.  Lim  and  J.H.  Hahn,    Micro  Total  Analysis  Systems,  2001,  274-­‐276  

Page 13: Raul Broto Master Thesis

   

13  

 In   our  project,   our  work  will   be   centered   exclusively   in   the   absorbance  detection,  but  more  information  and  applications  of  optical  lab-­‐on-­‐a-­‐chip  can  be  found  in  this  review6.    1.2.1.1 Absorbance  Detection    The  absorbance  of  an  object  quantifies  how  much  of   the   incident   light   is  absorbed  by  it  (not  all  photons  get  absorbed,  some  are  reflected  or  refracted  instead).  Precise  measurements  of  the  absorbance  at  many  wavelengths  allow  the  identification  of  a  substance  via  absorption  spectroscopy,  where  a  sample  is  illuminated  from  one  side,  and   the   intensity   of   the   light   that   exits   from   the   sample   in   every   direction   is  measured.      The   term   absorption   refers   to   the   physical   process   of   absorbing   light,   while  absorbance  refers   to   the  mathematical  quantity.  Also,  absorbance  does  not  always  measure   absorption:   if   a   given   sample   is,   for   example,   a   dispersion,   part   of   the  incident   light   will   in   fact   be   scattered   by   the   dispersed   particles,   and   not   really  absorbed.    Absorbance  is  a  quantitative  measure  expressed  as  a  logarithmic  ratio  between  the  radiation  falling  upon  a  material  and  the  radiation  transmitted  through  a  material:        where   Aλ  is  the  absorbance,   I1  is  the  intensity  of  the  radiation  (light)  that  has  passed  through  the  material  (transmitted  radiation),  and   I0  is  the  intensity  of  the  radiation  before  it  passes  through  the  material  (incident  radiation).                                

Figure  1.5:  Measuring  Absorbance  Source:  http://chemwiki.ucdavis.edu/Physical_Chemistry/Kinetics/Reaction_Rates/  

Experimental_Determination_of_Kinetcs/Spectrophotometry    

                                                                                                               6  Frank  B.  Myers  and  Luke  P.  Lee,  Innovations  in  optical  microfluidic  technologies  for  point-­‐of-­‐care  diagnostics,  Lab  Chip,  2008,  8,  2015-­‐2031  

Page 14: Raul Broto Master Thesis

   

14  

Any   real   measuring   instrument   has   a   limited   range   over   which   it   can   accurately  measure  absorbance.  An  instrument  must  be  calibrated  and  checked  against  known  standards   if   the   readings   are   to   be   trusted.   Many   instruments   will   become   non-­‐linear   (fail   to   follow   the   Beer-­‐Lambert   law)   starting   at   approximately   ~1%  transmission.  It  is  also  difficult  to  accurately  measure  very  small  absorbance  values  with  commercially  available  instruments  for  chemical  analysis.  In  such  cases,  laser-­‐based  absorption   techniques  can  be  used,   since   they  have  demonstrated  detection  limits   that  supersede   those  obtained  by  conventional  non-­‐laser-­‐based   instruments  by  many  orders  of  magnitude.    

Page 15: Raul Broto Master Thesis

   

15  

1.3    Materials,  Structures  and  Fabrication      The   basis   for   most   LOC   fabrication   processes   is   photolithography.   Initially   most  processes   were   in   silicon,   as   these   well-­‐developed   technologies   were   directly  derived  from  semiconductor  fabrication.  Because  of  demands  (for  example  specific  optical   characteristics,   bio   or   chemical   compatibility,   lower   production   costs   and  faster  prototyping),  new  processes  have  been  developed  such  as  glass,  ceramics  and  metal   etching,   deposition   and   bonding,   polydimethylsiloxane   (PDMS)   processing  (soft   lithography),   as  well   as   fast   replication  methods   via   electroplating,   injection  molding  and  embossing.      More  specifically,  soft  lithography  refers  to  a  family  of  techniques  for  fabricating  or  replicating   structures   using   "elastomeric   stamps,   molds,   and   conformable  photomasks".  It   is  called  "soft"  because  it  uses  elastomeric  materials,  most  notably  PDMS.    1.3.1 PDMS      Polydimethylsiloxane   (PDMS)   belongs   to   a   group   of   polymeric   organosilicon  compounds   that   are   commonly   referred   to   as   silicones.   PDMS   is   the  most  widely  used   silicon-­‐based   organic   polymer,   and   is   particularly   known   for   its   unusual  rheological   (or   flow)   properties.   PDMS   is   optically   clear,   and   in   general,   is  considered  to  be  inert,  non-­‐toxic  and  non-­‐flammable.  PDMS  is  viscoelastic,  meaning  that  at  long  flow  times  (or  high  temperatures),  it  acts  like  a  viscous  liquid,  similar  to  honey.   However,   at   short   flow   times   (or   low   temperatures),   it   acts   like   an   elastic  solid,  similar  to  rubber.  In  other  words,  if  some  PDMS  is  left  on  a  surface  overnight  (long   flow   time),   it   will   flow   to   cover   the   surface   and   mold   to   any   surface  imperfections.      PDMS   is   commonly   used   as   a   stamp   resin   in   the   procedure   of   soft   lithography,  making   it   one   of   the   most   common   materials   used   in   microfluidics   chips.   The  process  of  soft   lithography  consists  of  creating  an  elastic  stamp,  which  enables  the  transfer  of  patterns  of  only  a  few  nanometers  in  size  onto  glass,  silicon  or  polymer  surfaces.  With   this   type  of   technique,   it   is  possible   to  produce  devices   that   can  be  used   in   the   areas   of   optic   telecommunications   or   biomedical   research.   The  resolution  depends  on  the  mask  used  and  can  reach  6  nm.    In  Bio-­‐MEMS,  soft   lithography   is  used  extensively   for  microfluidics   in  both  organic  and  inorganic  contexts.  Silicon  wafers  are  used  to  design  channels,  and  PDMS  is  then  poured  over   these  wafers  and   left   to  harden.  When  removed,  even   the  smallest  of  details   is   left   imprinted   in   the  PDMS.  With   this  particular  PDMS  block,  hydrophilic  surface  modification  is  conducted  using  RF  Plasma  techniques.  Once  surface  bonds  are   disrupted,   usually   a   piece   of   glass   slide   is   placed   on   the   activated   side   of   the  PDMS  (the  side  with  imprints).  Once  the  bonds  relax  to  their  normal  state,  the  glass  is  permanently  sealed  to  the  PDMS,  thus  creating  a  waterproof  channel.  With  these  devices,   researchers   can   utilize   various   surface   chemistry   techniques   for   different  functions  creating  unique  lab-­‐on-­‐a-­‐chip  devices  for  rapid  parallel  testing.    

Page 16: Raul Broto Master Thesis

   

16  

1.4  Limitations  due  to  optical  path  length      The  path   that   light   takes   in   traversing  an  optical   system   is  often  called   the  optical  path.   In   optics,   optical   path   length   (OPL)   or   optical   distance   is   the   product   of   the  geometric   length   of   the   path   light   follows   through   the   system,   and   the   index   of  refraction   of   the   medium   through   which   it   propagates.   Optical   path   length   is  important  because  it  determines  the  phase  of  the  light  and  governs  interference  and  diffraction  of  light  as  it  propagates.      In   our   case,   optical   path   length   is   very   important   because   it   results   in   some  limitations  that  we  have  to  take  into  consideration.  For  example,  the  most  important  case  is  when  we  have  a  very  low  quantity  of  substance  to  measure  the  absorbance,  when  it   is  necessary  to  extend  the  optical  path   length  to  obtain  a  better  result.  On  the   other   hand,   we   have   other   limitations   such   as   the   optical   path   can   not   be  unlimited,   there  are  some  restrictions.  That   is  why  we  need  to  enter  deeply   in   the  Beer-­‐Lambert  Law.                          

Figure  1.6:  Beer-­‐Lambert  Law  scheme  Source:  http://en.wikipedia.org/wiki/Absorbance  

 The  law  states  that  there  is  a  logarithmic  dependence  between  the  transmission  (or  transmissivity),   T,   of   light   through   a   substance   and   the   product   of   the   absorption  coefficient   of   the   substance,   α,   and   the   distance   the   light   travels   through   the  material,  ℓ.  The  absorption  coefficient  can,  in  turn,  be  written  as  a  product  of  either  a   molar   absorptivity   (extinction   coefficient)   of   the   absorber,   ε,   and   the   molar  concentration  c  of  absorbing  species  in  the  material.  For  liquids,  these  relations  are  usually  written  as:          And  remembering  the  definition  of  the  absorbance  of  a  material,  Beer-­‐Lambert  law  implies  that  the  absorbance  becomes  linear  with  the  concentration  according  to:      Hence,  if  the  path  length  and  the  molar  absorptivity  are  known  and  the  absorbance  is  measured,  the  concentration  of  the  substance  can  be  deduced.    

Page 17: Raul Broto Master Thesis

   

17  

More  information  about  the  law  and  the  limitations  that  implies  can  be  found  at  this  source7 .   In   this   introduction   chapter,   we   do   not   want   to   extend   the   topics  excessively,  so  now  we  will  present  briefly  some  other  important  aspects  related  to  the   optical   path   length   such   as   refractive   index,   lower   limit   of   detection   and  sensitivity.    1.4.1 Refractive  Index    In  optics  the  refractive  index  of  a  substance  or  medium  is  a  measure  of  the  speed  of  light   in   that   medium.   It   is   expressed   as   a   ratio   of   the   speed   of   light   in   vacuum  relative  to  that  in  the  considered  medium.  This  can  be  written  mathematically  as:  

 n  =  speed  of  light  in  a  vacuum  /  speed  of  light  in  medium.  

 As   light   moves   from   a   medium,   such   as   air,   water,   or   glass,   into   another   it   may  change   its   propagation   direction   in   proportion   to   the   change   in   refractive   index.  This  refraction  is  governed  by  Snell's  law,  and  is  illustrated  in  this  figure:                        

Figure  1.7:  Visualization  for  Snell’s  Law  Source:  http://phelafel.technion.ac.il/~lk/  

 Another   common  definition  of   the   refractive   index   comes   from   the   refraction  of   a  light   ray   entering   a   medium.   The   refractive   index   is   the   ratio   of   the   sines   of   the  angles  of  incidence   θ1  and  refraction   θ2  as  light  passes  into  the  medium:            The   wavelength   λ   of   light   in   a   material   is   determined   by   the   refractive   index  according   to   λ   =   λ0   /   n ,   where   λ0   is   the   wavelength   of   the   light   in   vacuum.   The  refractive   index   of  materials   varies  with   the  wavelength   (and   frequency)   of   light.  This  is  called  dispersion  and  causes  prisms  to  divide  white  light  into  its  constituent  spectral  colors,  and  explains  how  rainbows  are  formed.      So  it’s  obvious  that  the  refractive  index  is  a  extremely  important  value  in  all  the  ray  tracing   theory.   For   example,   concepts   such   as   dispersion,   Snell’s   law,   Brewster's  angle,  the  critical  angle  for  total  internal  reflection,  and  the  reflectivity  of  a  surface  are  also  affected  by   the   refractive   index.  All  of   these   topics,   as  well   as   the  Fresnel  equations,  will  be  expanded  in  Chapter  2  (Mirrors,  Theoretical  Description).                                                                                                                  7  http://www.chemguide.co.uk/analysis/uvvisible/beerlambert.html  

Page 18: Raul Broto Master Thesis

   

18  

1.4.2 Limit  of  Detection  and  Sensitivity    These   two   concepts,   Limit   of   Detection   (LOD)   and   Sensitivity,   are   the   key   of   our  project  and  all  the  efforts  will  be  directed  to  improve  these  two  measures.  We  do  not  only   want   to   design   a   system   that   helps   us   calculating   the   absorbance   of   a  concentration,  the  main  objective  is  to  have  the  most  accurate  measure  (sensitivity)  and  if  even  if  the  concentration  is  very  low  we  can  have  a  correct  measure  (LOD).  As  we  have  seen  in  this  chapter,  to  improve  both  of  them  it  is  necessary  to  increase  the  optical  path  length,  so  finally  everything  is  linked.    In  analytical  chemistry,  the  detection  limit,  lower  limit  of  detection,  or  LOD  (limit  of  detection),  is  the  lowest  quantity  of  a  substance  that  can  be  distinguished  from  the  absence  of  that  substance  (a  blank  value)  within  a  stated  confidence  limit  (generally  1%).  In  our  case,  the  LOD  will  be  the  lowest  concentration  of  analyte  detectable  by  the  method.      On  the  other  hand,  we  have  sensitivity  that  is  the  smallest  concentration  change  that  the   method   is   capable   of   detecting.   As   we   can   read   in   this   document8,   it   is   very  important  to  not  confuse  and  take   it  as  a  synonim  of  LOD,   the  concepts  are  totally  different.    The   best   way   to   see   these   concepts   is   through   the   absorbance   calibration   curve  (image  below).  LOD  it  is  usually  determined  by  extrapolating  a  plot  of  concentration  (x)  vs  absorbance  (y)  to  the  x-­‐axis.  The  intercept  is  the  lower  limit  of  detection.  On  the  same  plot  we  also  can  find  sensitivity  that  it  is  determined  from  the  slope  of  the  plot  of  the  LOD.                                      

Figure  1.8:  Example  of  an  absorbance  calibration  curve  Source:  http://terpconnect.umd.edu/~toh/models/BeersLaw.html  

   

                                                                                                               8  http://www.clinchem.org/content/35/3/509.1.full.pdf+html  

Page 19: Raul Broto Master Thesis

   

19  

1.5 Perspectives  of  the  Project      As  we  have  seen   in   the  previous  chapters,  our  objective   is   to  create  a   system  that  allows   us   to   calculate   the   absorbance   of   a   determined   concentration.   Using   this  result  and  Beer-­‐Lambert  Law,  we  will  try  to  improve  the  system  in  order  to  obtain  the  minimum  LOD  as  possible  and  the  best  sensitivity.    On  the  way  of  conquering  these  goals  we  have  seen  clearly  that  there  is  key  point:  extend  the  optical  path  length  as  much  as  possible  (always  taking  into  consideration  the   superior   limits).   To   achieve   it,   there   are   several  methods  but  we  have   chosen  following  the  work  of  the  researcher  A.  Llobera.    In   the   documentation   that   I   could   access9,   the   evolution   of   his   systems   can   be  summarized   in   3   steps,   (that   we   will   analyze   deeply   in   Chapter   2,   Mirrors,  Theoretical  Description).  But  briefly  we  can  state  them:    

1) Abbe  Prism10:  This  system  has  two  important  targets.  First  as  we  said  before,  extend   the   optical   path   length   with   the   reflection   on   the   prism   walls.  Secondly,  the  collocation  of  the  optical  fibers,  lenses  and  angles  of  the  prisms  allow  only  one  wavelength  to  be  collected  by  the  photodetector.  

 2) Air  Mirror11:  This  improvement  was  directed  to  solve  the  biggest  problem  of  

the   previous   system.   Due   to   the   low   difference   between   the   index   of  refraction   ‘n’   of   the   concentration   and   the   PDMS,   nearly   all   the   light   was  escaping   instead   of   being   reflected.  With   the   air  mirror,   this   light   that  was  escaping   is  now  reflected  again   to   the   system  so   the   reflectivity   increase   is  huge.  

 3) Multiple  Air  Mirror12:  In  that  case,  they  took  the  last  system  and  they  tried  to  

extend   the   optical   path   as  much   as   possible  with   some   extra   reflections   in  other  air  mirrors.  The  results  were  also  better  than  in  the  previous  cases,  and  even   there   are   some   updates   (like   reducing   the   fluidic   path   or   circular  system),  that  even  increase  the  system  throughput.  

 In  our  project  we  will  try  to  follow  the  work  from  this  point  on,  but  instead  of  using  Air  Mirrors  we  will  try  to  substitute  it  with  Indium  Mirrors.  Obviously,  at  first  sight  we   can   see   that   we   are   adding   an   extra   fabrication   step,   but   we   think   that   this  drawback  will  be  exceeded  by  the  benefits  that  the  Indium  Mirror  will  give  us.  The  refraction   index  coefficient   ‘n’   is  even   lower  than  air  coefficient  and  therefore  also  the  Reflectivity  will   be  much  better,   so  we   expect   to   obtain   a  much  better   results  than  the  previous  works.      

                                                                                                               9  http://pubs.rsc.org/en/results/searchbyauthor?selectedAuthors=A.:Llobera  10  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2004,  4,  24-­‐27  11  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Talanta,  2008,  75,  473-­‐479  12  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐1566  

Page 20: Raul Broto Master Thesis

   

20  

Page 21: Raul Broto Master Thesis

   

21  

CHAPTER  2:  MIRRORS,    THEORETICAL  DESCRIPTION  

   2.1 Theoretical  Concepts      During  the  realization  of  our  project,  we  have  to  make  a  brief  study  in  optics  for  a  better  understanding  of  the  system  and  specifically  about  the  working  principles  of  mirrors.  Optics  is  a  branch  of  physics,  which  involves  the  behavior  and  properties  of  light,  including  its  interactions  with  matter  and  the  construction  of  instruments  that  use  or  detect  it.    Reflection,  transmission  and  absorption  and  their  relations  to  optical  constants  are  matters   of   interest   for   experimental   and   theoretical   investigations.   The   optical  parameters  like  absorption  coefficient,  optical  band  gap  and  refractive  index  can  be  determined  from  transmittance  as  well  as  absorbance  measurements.      Another   optical   issue   of   high   importance   is   ray   tracing.   Ray   tracing  is   used   to  describe  the  propagation  of   light  rays  through  a   lens  system  or  optical  instrument,  with   regions   of   different   propagation   speed,   absorption   characteristics,   and  reflecting  surfaces.  The  most  important  thing  that  we  use  from  it  is  that  allows  the  image-­‐forming  properties  of  the  system  to  be  modeled.    The   optical   properties  mainly   depend   on   the   refractive   index   of   the  material   and  thickness  of   the   film.   In   this  chapter  will  be  presented  several  concepts   that  affect  directly  to  the  future  design  of  the  optical  system  such  as  Snell’s  Law,  Total  Internal  Reflection  and  Fresnel  Equations.    2.1.1 Index  of  Refraction  (‘n’)    More   fundamentally,  ‘n’  is   defined   as   the   factor   by   which   the  wavelength  and  the  velocity  of   the   radiation   are   reduced   with   respect   to   their   vacuum   values:  The  speed  of  light  in  a  medium  is  v  =  c/n,  where  c  is  the  speed  in  vacuum.  Similarly,  for   a   given   vacuum  wavelength  λ0,   the   wavelength   in   the  medium   is  λ=λ0/n.   This  implies  that  vacuum  has  a  refractive  index  of  1.  Refractive  index  of  materials  varies  with   the  wavelength.   This   is   called  dispersion   and   it   causes   the   splitting   of   white  light  in  prisms  and  rainbows.    A  widespread  misconception  is  that  according  to  the  theory  of  relativity,  nothing  can  travel  faster  than  the  speed  of  light  in  vacuum,  the  refractive  index  cannot  be  lower  than  1.  This   is  erroneous  since   the  refractive   index  measures   the  phase  velocity  of  light,   which   does   not   carry  energy   or  information,   the   two   things   limited   in  propagation  speed.  The  phase  velocity  is  the  speed  at  which  the  crests  of  the  wave  move   and   can   be   faster   than   the   speed   of   light   in   vacuum,   and   thereby   give   a  refractive  index  below  1.      

Page 22: Raul Broto Master Thesis

   

22  

When  light  passes  through  a  medium,  some  part  of  it  will  always  be  absorbed.  This  can  be  conveniently  taken  into  account  by  defining  a  complex  index  of  refraction:          Here,   the   real   part   of   the   refractive   index  ‘n’  indicates   the   phase   speed,   while   the  imaginary  part  ‘k’  indicates  the  amount  of  absorption  loss  when  the  electromagnetic  wave   propagates   through   the   material.   The   physical   significance   of   k   is   that   on  traversing  a  distance  equal   to  one  vacuum  wavelength,   the  amplitude  of   the  wave  decreases  by  the  factor  exp(-­‐2πik).  That  effect  can  be  seen  by  inserting   ‘n’   into  the  expression   for  electric   field   of   a   plane  electromagnetic   wave   traveling   in   the  z-­‐direction.   We   can   do   this   by   relating   the  wave   number  to   the   refractive   index  through  this  equation  (k=2πn/λ0),  with  λ0  being  the  vacuum  wavelength:    

 Here  we  see  that  ‘k’  gives  an  exponential  decay,  as  expected  from  the  Beer–Lambert  law.  Both  n  and  k  are  dependent  on  the  frequency.  In  most  circumstances  k>0  (light  is  absorbed)  or  k=0  (light  travels  forever  without  loss).      2.1.2 Snell’s  Law    Snell's  law  is  used  to  determine  the  direction  of  light  rays  through  refractive  media  with  varying  indices  of  refraction.  The  indices  of  refraction  of  the  media,  labeled  n1  and  n2,  are  used  to  represent  the  factor  by  which  a  light  ray  speed  decreases  when  traveling   through   a   refractive   medium,   such   as   glass   or   water,   as   opposed   to   its  velocity  in  a  vacuum.              As   light  passes   the  border  between  media,   depending  upon   the   relative   refractive  indices   of   the   two  media,   the   light  will   either   be   refracted   to   a   lesser   angle,   or   a  greater  one.  These  angles  are  measured  with  respect  to  the  normal  line,  represented  perpendicular  to  the  boundary.  Refraction  between  two  surfaces  is  also  referred  to  as  reversible  because  if  all  conditions  were  identical,  the  angles  would  be  the  same  for  light  propagating  in  the  opposite  direction.    2.1.3 Total  Internal  Reflection  (TIR)  and  Critical  Angle    Total   internal   reflection  is   an  optical   phenomenon  that   happens   when   a   ray  of  light  strikes  a  medium  boundary  at  an  angle  larger  than  a  particular  critical  angle.  This   can   only   occur   where   light   travels   from   a   medium   with   a   higher   refractive  index  to  one  with  a  lower  refractive  index.  If  the  angle  of   incidence  is  greater  than  the   critical   angle,   then   the   light   will   stop   crossing   the   boundary   altogether   and  instead  be  totally  reflected  back.  The  most  known  application  of  TIR  is  the  principle  of  propagation  of  the  light  inside  the  optical  fibers.  

Page 23: Raul Broto Master Thesis

   

23  

 The   critical   angle  of   incidence   is  measured   respect   to   the   normal  at   the   refractive  boundary.  When   the   incident   angle   is   increased   sufficiently,   the   transmitted  angle    reaches  90  degrees.  The  critical  angle  θc,  is  given  by  Snell's  law:        To  find  the  critical  angle,  we  find  the  value  for  θi  when  θt=90°  and  thus  sin(θt)=1.  If  the   incident  ray   is  precisely  at   the  critical  angle,   the  refracted  ray   is  tangent  to  the  boundary  at  the  point  of  incidence.  Now,  we  can  solve  for  θi,  and  we  get  the  equation  for  the  critical  angle:        If  the  fraction  n2/n1  is  greater  than  1,  then  arcsin  is  not  defined,  meaning  that  total  internal  reflection  does  not  occur  even  at  very  shallow  or  grazing  incident  angles.  So  the  critical  angle  is  only  defined  when  n2/n1  is  less  than  1.    2.1.4 Fresnel  Equations      The  Fresnel  equations  describe  the  behavior  of  light  when  moving  between  media  of  different  refractive  index.  Snell’s  Law  is  one  of  the  Fresnel  Equations,  but  these  also  contain   some   extra   equations   that   state   the   behavior   of   the   power   in   the   media  change.   They   describe   what   fraction   of   the   light   is   reflected   and  what   fraction   is  transmitted.   The   equations   assume   the   interface   is   flat,   planar   and   homogeneous,  and  that  the  light  is  a  plane  wave.  Law  of  Reflection  and  Snell’s  Law  give  the  relation  between  these  two  angles:          Also  the  equations  state  that  the  fraction  of  the  incident  power  that  is  reflected  from  the  interface,  is  given  by  the  reflectance  R  and  the  fraction  that  is  refracted  is  given  by  the  transmittance  T.  Due  to  it  is  an  important  aspect  in  our  work,  it  is  necessary  to  enter  deeply  to  Reflectivity  and  how  to  calculate  it  with  the  Fresnel  equations.    2.1.4.1 Reflectivity      Reflectivity   and   reflectance   generally   refer   to   the   fraction   of   incident  electromagnetic   power   that   is   reflected   at   an   interface,  while   the   term   "reflection  coefficient"  is  used  for  the  fraction  of  electric  field  reflected.  The  reflectivity  is  thus  the  square  of  the  magnitude  of  the  reflection  coefficient.      According  to  the  CIE  (the  International  Commission  on  Illumination),  reflectivity  is  distinguished   from  reflectance  by   the   fact   that   reflectivity   is   a   value   that   applies  to  thick  reflecting   objects13.   When   reflection   occurs   from   thin   layers   of   material,  internal   reflection  effects   can  cause   the   reflectance   to  vary  with  surface   thickness.  

                                                                                                               13  http://www.cie.co.at/index.php/index.php?i_ca_id=306  

Page 24: Raul Broto Master Thesis

   

24  

Reflectivity   is   the   limit   value   of   reflectance   as   the   surface   becomes   thick;   it   is   the  intrinsic  reflectance  of  the  surface.    The   calculations   of  R  depend   on  polarization  of   the   incident   ray.   If   the   light   is  polarized   with   the  electric   field  of   the   light   perpendicular   to   the   plane   of   the  diagram   above   (s-­‐polarized),   the  reflection   coefficient  is   given   by   this   equation,  where   the   second   form   is   derived   from   the   first   by   eliminating  θt  using  Snell's  law  and  trigonometric   identities.  The  first  one  refers  to  s-­‐polarized  and  the  second  one  p-­‐polarized  

Finally,  an  important  conclusion  that  we  can  take  from  these  last  plots,  is  that  when  TIR  occurs,  the  reflectivity  is  equal  to  1,  so  that  is  why  we  will  try  to  be  in  the  TIR  angle  zone  as  much  as  it  is  possible.      

 Figure  2.1:  Reflectivity  in  different  situations  

Source:  http://en.wikipedia.org/wiki/Fresnel_equations      

Page 25: Raul Broto Master Thesis

   

25  

2.2 Previous  Research  (Other  research  groups)      Now   that   we   have   seen   the   optical   principles,   it   is   time   to   take   a   look   on   other  previous   works   that   will   be   the   basis   for   this   project.   It   is   strictly   necessary   to  understand   every   of   this   references   because   it   shows   the   evolution   of   the   idea.  Every  time  they  are  adding  more  improvements,  which  is  basically  what  we  want  to  do  now.  In  this  chapter  will  be  taken  into  consideration  the  optical  aspects,  and  in  the  next  ones  will  be  entered  deeply  in  the  fabrication  methods  and  results.    2.2.1 Abbe  Prism  

 The   first  reference  taken   into  consideration14  is  a  hollow  prism  called  Abbe  prism.  From   all   the   prisms   available,   they   have   chosen   this   one   because   it   is   simple   and  allows   the   filling   of   the   fluid   under   investigation   through   two   inlets.   As   we   said  before,   it   is  very   important   the  monolithic   integration.  This  device  accomplishes   it  with  the  integration  of  several  components  on  it,  such  as  optical  fiber  positioners.    If  we  enter  deeply  on  the  prism  structure,  we  can  see  that  is  a  combination  of  three  prisms   (ADE,   AEB   and   BEC).   One   of   the  most   important   variables   is   ‘δ’,   which   is  considerate   the   total  deviation  of  a   light  ray  propagating   through  the  system.  This  total  deviation  can  be  easily  calculated  with  ray  tracing  theory  that  results  in  60°.                                

Figure  2.2:  Abbe  Prism,  Working  Principle  Source:  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2004,  4,  24-­‐27  

   Any  other  wavelength  propagating  through  the  prism  does  not  fulfill  the  minimum  deviation  condition  and  emerges  at  a  higher  angle,  being  not  collected  by  the  output  fiber   optics.   If  we   rotate   the  prism,   the  mentioned   λ1  will   not   be   collected   for   the  output  fiber  because  of  the  reason  that  we  have  just  said.  In  that  case,  another  λ2  will  be  collected  on  it.    

                                                                                                               14  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2004,  4,  24-­‐27  

Page 26: Raul Broto Master Thesis

   

26  

From  these  theoretical  concepts,  a  new  optical  detector  was  designed.  On  the  next  picture  we   can   see   the   prim   filled  with   the   fluid   under   investigation   through   two  fluidic   reservoirs.   Also   we   can   see   the   inclusion   of   the   optical   fiber   positioners,  which  allow  a   correct   insertion  of   the   fiber  and   together  with   the  biconvex   lenses  produce  parallel  light  beams  on  the  prism  entrance.  In  that  case,  the  position  of  the  fibers  it  is  designed  in  order  to  have  maximum  intensity  for  λ  =460nm.                              

   

 Figure  2.3:  Optical  Detector  System  

Source:  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2004,  4,  24-­‐27    2.2.2 Air  Mirror    Even   tough   the   previous   system   had   a   good   response   for   the   designed   purposes,  some  changes  can  be  applied  to  obtain  a  better  throughput.  The  first  improvement  that   this   research   group   made   was   the   definition   of   an   air   mirror15,   in   order   to  improve   the   reflectivity   of   the   Abbe   prism.   An   air   mirror   can   be   seen   as   an   air  entrapment   with   a   concrete   shape   and   position   that   modifies   the   light   path.   The  main   objective   is   that   the   input   ray   strikes   the   mirror   in   the   conditions   of   Total  Internal  Reflection  (TIR).    Even  though  we  have  seen  that  the  Abbe  prism  is  a  good  microfluidic  system,  we  can  confirm  that  this  is  not  true  in  terms  of  reflectivity.  The  small  difference  between  the  index  of  refraction  of  the  fluid  and  the  PDMS  (1.33  and  1.41  respectively)  makes  that  only  a  tiny  portion  of  the  light  is  coupled  back  on  the  prism  wall.  With  the  Fresnell  Equations  we  can  exactly  calculate  that,  and  the  results  are  0.029  for  s-­‐polarized  and  0.062   for  p-­‐polarized,  which   confirms   that   long   integration   times  will   be   required  and  because  of  that  the  throughput  obtained  will  be  low.            

                                                                                                               15  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Talanta,  2008,  75,  473-­‐479  

Page 27: Raul Broto Master Thesis

   

27  

                           

Figure  2.4:  Optical  Detector  System  with  Air  Mirror  Source:  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Talanta,  2008,  75,  473-­‐479  

 A  ray  tracing  simulation  on  the  boundary  region  is  presented  in  the  picture  below,  with  a  special  consideration  of  the  angles  that  match  the  TIR-­‐conditions.                                                        

 Figure  2.5:  Detailed  Boundary  Region  

Source:  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Talanta,  2008,  75,  473-­‐479    

Page 28: Raul Broto Master Thesis

   

28  

As  we   can   see   at   the   first   boundary   region,   the   small   step  between   the   refraction  coefficient  of  PDMS  and  the  buffer,  has  the  consequence  that  most  of  the  light  is  not  reflected  back   to   the  output   fiber.  Then,  when  the  air  mirror   is   included,   this   light  that  escapes  can  enter  the  TIR  zone,  resulting  in  a  complete  reflection  towards  the  system.      Using  the  Snell’s  Law,  we  can  find  that  the  critical  angle  is  θc  PDMS–air=  45.17°.  All  the  propagation  angles  with  θ  >  θc  PDMS–air  (marked  in  dark  grey  in  the  figure)  accomplish  the  TIR  conditions,  so  we  can  assure  that  the  reflectivity  in  that  cases  will  be  equal  to  1,  and  the  light  will  reach  again  the  hollow  prism.    Apart  from  this  TIR  zone,  we  can  see  in  the  picture  that  there  is  another  one  when  the  light  ray  strikes  back  from  the  PDMS  to  the  buffer.  Using  the  Snell’s  Law,  we  can  find   that   this   critical   angle   is   θc   PDMS–PBS=   70.60° (the   angles   where   TIR   regime  happens  are  also  marked  in  dark  grey).  Here  enters  one  design  condition,  because  in  the  way   that   the  system   is  designed   light  matches   the  TIR  at   the  PDMS-­‐air  region,  but  it  is  really  difficult  that  at  the  same  time  it  does  it  on  the  PDMS-­‐fluid  region.  In  case  that  this  undesired  happens,  the  light  will  remain  confined  at  the  PDMS  like  in  a  waveguide,  which  is  totally  the  opposite  that  we  want.    Experimental   results  have  shown  that   the  use  of  air  mirrors  enhances   the  sensing  properties  of  the  hollow  prisms  due  to  several  reasons:      

-­‐ The  integration  time  is  strongly  reduced.    -­‐ The  signal-­‐to-­‐noise  ratio  (SNR)  is  increased.    -­‐ An  important  improvement  of  the  LOD  has  been  experimentally  measured.    -­‐ The  sensitivity  is  increased  (the  factor  depends  on  the  geometry  used).    

 2.2.3 Multiple  air  mirrors    The   next   step   on   the   evolution   of   the   system  was   the   positioning   of   multiple   air  mirrors  (MIR  systems16)  at  both  sides  of  the  sensing  region.  The  reason  behind  this  action   is   that   it   is   possible   to   increase   the   optical   path   length   and   simultaneously  reduce  the  fluidic  path,  which  allows  obtaining  more  compact  and  miniaturized  lab-­‐on-­‐a-­‐chip  systems.  After  this  increase  of  the  path,  the  throughput  will  be  increased  also  due  to  the  higher  absorption  of  light.    It  is  easy  to  see  that  MIR  systems  have  a  lot  of  advantages  compared  to  the  previous  systems  (Abbe  Prism  and  Air  Mirror).  But  there  are  some  problems  that  need  to  be  addressed   before   the   realization,   because   if   not   they   may   cause   some   problems.  Firstly,  light  diverges  since  it  is  out  of  the  source,  and  a  larger  optical  path  results  in  more   divergence   in   all   the   process.   Secondly,   with   each   additional   reflection   in   a  mirror  the  intensity  of  the  light  decreases,  which  means  that  the  power  collected  on  the  output  fiber  also  decreases.        

                                                                                                               16  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐1566  

Page 29: Raul Broto Master Thesis

   

29  

The   solution   to   address   these   drawbacks   was   a   change   in   the   mirrors   shape.  Basically   focused   on   avoiding   the   beam   broadening,   these   curved   mirrors   were  implemented   (instead   of   the   flat  mirror   previously   seen).  We   can   see   on   the   next  picture   that   a   correct   curvature  of   the  mirror  makes   the   light   converge   in   a  point  inside   the   system,   and   even   it   is   possible   to   choose   this   point   depending   on   the  curvature  that  we  apply.                                                              

Figure  2.6:  Ray  tracing  simulation  in  different  situations  Source:  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  IEEE,  2009,  (978-­‐1-­‐4244-­‐4210-­‐2)  

 After   designing   the   air  mirrors,   two   different   configurations  were   presented.   The  first   one   consisted   in   an   extra  mirror   placed   on   the   position  where   the   detection  optical  fiber  was  before  (PMIR  System).  As  in  the  previous  system,  the  light  strikes  on  the  first  mirror,  but  then  light  reaches  the  second  mirror  before  being  collected  by  the  fiber.  We  can  see  that  light  propagates  with  a  zigzag  shape.    As   we   said,   every   additional   mirror   supposes   an   increase   on   the   whole   systems  dimensions.  To  tackle  this  situation,  another  system  was  designed  following  a  ring  configuration  (RMIR).  In  this  system,  we  can  achieve  a  bigger  number  of  reflections  but  without  enlarging  the  fluidic  volume.  

Page 30: Raul Broto Master Thesis

   

30  

   

 

       

 Figure  2.7  /  Figure  2.8:  Representation  of  the  systems  PMIR  (left)  and  RMIR  (right)  

Source:  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐1566      The  predictions  were  confirmed  after   the  experimental  results,  and  different  goals  were   achieved.  The   reduction  of   the   integration   time   results   in   a   reduction  of   the  LOD   (nearly   45   times   smaller).   Also,   the   RMIR   configuration   has   the   highest  sensitivity,  which  matches  exactly  with  the  largest  optical  path.          

Page 31: Raul Broto Master Thesis

   

31  

2.3 Other  components  of  the  System      The  most  crucial  step  of  the  design  of  the  system  is  the  adequate  positioning  of  the  optical   fibers   in   relation   to   the  biconvex   lens  and   the  prism.  Now,  we  will  make  a  brief   overview   on   how   the   previous   papers   tried   to   solve   the   issue.   The   results  presented  there,  are  referred  to  a  single  wavelength  and  a  concrete  buffer  solution,  but  we  can  take  the  main  idea  and  adapt  it  to  our  project.    2.3.1 Collimation  Lenses    Collimation  lenses  are  necessary  to  achieve  reasonable  optical  path  lengths  because  light   diverges   from   the   source.   In   the   optimal   situation,   light   emerging   from   the  microlens  will  have  parallel  beams  and  will  not  diverge.      Obviously   this   behavior  will   only   be   obtained  with   perfect   spherical  microlenses,  which   are   technologically   difficult   to   obtain.   For   ease   of   fabrication,   cylindrical  lenses,  which  only  vary   the   light  direction   in  one  axis   (that   is,   instead  of  having  a  focal   point,   they   have   a   focal   plane),   are  more   commonly   used.   The   result   is   that  light  emerges  from  the  lenses  with  parallel  beams  in  the  horizontal  direction  while  it  broadens  in  the  vertical  axis,  which  is  exactly  what  we  expect  in  our  case.    2.3.2 Alignment  of  Optical  Fibers    This   group   is   required   to   implement   a   system   not   only   able   to   position   the   fiber  optics   but   also   to   assure   that   the   optimal   condition   is   reached.   Both   issues   are  obtained  by  defining  a  microchannel  slightly  thinner  than  the  diameter  of  the  optical  fiber.  Optical  fibers  are  stopped  at  a  distance  S0  that,  considering  the  RI  of  PDMS  and  air,  together  with  the  curvature  of  the  lens  (R1  and  R2),  allows  having  parallel  beams  at  the  biconvex  lens  output.      Lens   and   channel   are   tilted   an   angle   θ   to   have   the   deserved   propagation   angle  through   the  prism.   For   example,   in   the   case   that  we  want   a   60°   input   light   beam,  applying  the  Snell’s  Law  we  can  find  that  the  angle  will  be  θ=54.8°.  An  air  gap,  with  a   minimum   distance   d,   separates   the   PDMS   bulk   region   from   the   PDMS   lens.   No  variation   of   the   ray   tilt   is   produced   at   the   air–PDMS   interface   due   to   the   90°  incidence.        

                   

Figure  2.9:  Scheme  of  the  optical  fiber  channel  and  the  lenses  Source:  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2004,  4,  24-­‐27    

Page 32: Raul Broto Master Thesis

   

32  

2.4 Pure  Indium  Mirror      Although  silicon  or  metal-­‐coated  mirrors  can  be  easily  defined,  this  would  lead  to  a  more  complex  fabrication  process  and  an  increase  of  the  cost  of  the  device.  The  ideal  solution  would  be   to  obtain  a  mirror  without  any  additional  process  steps.  This   is  the  main  reason  why  we  have  chosen  to  use  a  pure  indium  mirror  in  our  project.  As  we  have   seen   in  previous   chapters,   a   very   important   issue   in   lab-­‐on-­‐a-­‐chip,   is   the  monolithic   integration,   and   with   the   indium   mirror   we   keep   the   high   rate   of  integration   that   the   other   groups   have   obtained.   Also,   as   we   will   see   in   the   next  sections,   with   indium   we   can   even   obtain   better   conditions   for   the   TIR   and  Reflectivity,  so  the  situation  is  at  first,  highly  favorable.    2.4.1 Material  Characteristics    Indium  is  a  chemical  element  with  the  symbol  ‘In’  and  atomic  number  49.    Indium  is  a   soft,  ductile   and  malleable  metal.   It   is   liquid  over  a  wide   range  of   temperatures,  like   gallium   that   belongs   to   its   same   group.   Indium   has   a   low  melting   point,  compared  to  those  of  most  other  metals,  156.60  °C  (313.88  °F).   Indium  is  stable   in  air  and  in  water  but  dissolves  in  acids.  Some  other  Indium  chemical  characteristics  can  be  found  here17.    Normally,  mirrors  which   need   superior   reflectivity   for   visible   light   are  made  with  silver   as   the   reflecting   material   in   a   process   called  silvering,   though   common  mirrors  are  backed  with  aluminum.  But  we  have  found  that  Indium  can  be  put  on  to  metal   or   evaporated   onto   glass   to   form   a   good   mirror.   For   example,   an   indium  mirror  is  more  resistant  to  corrosion.  Also  Indium  can  be  used  to  make  mirrors  that  are  as  reflective  as  silver  mirrors  but  do  not  tarnish  as  quickly.  So  at  this  point,  we  arrive  to  the  conclusion  that  Indium  can  be  a  good  material  for  our  purpose,  but  we  need  to  enter  deeply  in  a  very  important  fact,  the  refractive  index.  

 2.4.1.1 Refractive  index  of  Pure  Indium      When   we   think   about   the   mirror   characteristics,   two  main   parameters   take   high  importance  to  have  a  successful  result.  These  parameters  are  the  critical  angle  and  the  reflectivity,  and  they  depend  directly  from  the  value  of  the  refractive  index.  We  have  seen  that  the  air  has  a  refractive  index  equal  to  1,  so  we  expect  that  indium  will  have   a   n<1,   because   it  means   that   the   critical   angle  will   be   lower   (more   incident  angles  are  in  TIR  situation)  and  the  reflectivity  will  be  higher.    It  was  very  difficult  to  find  this  data,  because  pure  indium  is  not  one  of  the  typical  materials  used   for   these  purposes.   In  addition,   as  we   can   see   in   the  next   graph,   it  was  difficult  to  find  accurate  values  for  the  range  of  wavelength  that  we  expect  to  be  working.  For  example,  in  the  next  graph  we  can  see  the  evolution  of  ‘n’  and  ‘k’  in  the  whole   spectrum,  but   in   our   region   (300nm  –  700nm)   the   graph   is   not   clear,   even  though  we  can  expect  good  results  for  the  future.  

                                                                                                               17  http://www.lenntech.com/periodic/elements/in.htm  

Page 33: Raul Broto Master Thesis

   

33  

                                     

 Figure  2.10:  ‘n’  and  ‘k’  in  the  whole  spectrum  Source:  http://www.angstec.com/nkPlots2.jsp  

   After  a  deep  investigation  and  sending  several  mails  to  expert  companies,  one  of  the  workers  that  nicely  replied  me,  recommend  me  the  book  ‘Palik,  Handbook  of  Optical  Constants,  Vol.  3’18.  This  book  is  the  reference  on  the  field,  and  it  is  commonly  used  to  obtain   the  value  of  optical   constants.  The   results  obtained  are  presented   in   the  next  table:    

λ  (nm)   n   k  310   0,38   3  355   0,4   3,4  380   0,45   3,7  410   0,5   4  450   0,6   4,3  460   0,75   4,4  495   0,75   4,8  550   0,7   4,7  555   0,85   5,5  600   0,8   5  620   1,05   6  650   0,9   5,42  

 Figure  2.11:  ‘n’  and  ‘k’  values  for  the  range  (300nm  –  700nm)  

Source:  Palik,  Handbook  of  Optical  Constants,  Vol.3  (AP,  1998)(ISBN  0125444230)                                                                                                                    18  Palik,  Handbook  of  Optical  Constants,  Vol.3  (AP,  1998)(ISBN  0125444230)  

Page 34: Raul Broto Master Thesis

   

34  

The   results   of   the   table   are   also   presented   in   these   graphics,   to   a   better  understanding  of  their  evolution:                                                                As  we  can  see,  our  expectation  has  been  accomplished,  and  for   the  range  between  300nm  and  600nm  the  value  of  the  refractive  index  is  below  1.    2.4.1.2 Relation  between  ‘nindium’  ,  TIR  and  Reflectivity    Now  that  we  have  the  values  of  the  refractive  index,  we  are  going  to  see  the  benefit  that   this   supposes   to   the   reflectivity  and   the  critical   angle.  A   comparison  between  the   indium  values  and   the  air  value  will  be  made,   to  ensure  and  compare   that   the  results  are  the  expected.      First,  we  can  see  that   the  values   for  the  critical  angle  are  much  better  than  the  air  one.  That   implies   that  a  higher  number  of   light  beams  will  be   in   the   total   internal  reflection  zone.    

nAir   θc  (o)  1   45,17  

0  

0,2  

0,4  

0,6  

0,8  

1  

1,2  

310   355   380   410   450   460   495   550   555   600   620   650  

n  

λ  (nm)  

0  

1  

2  

3  

4  

5  

6  

7  

310   355   380   410   450   460   495   550   555   600   620   650  

k  

λ  (nm)  

Page 35: Raul Broto Master Thesis

   

35  

 

   But   the   big   improvement   can   be   seen  with   the   reflectivity   values.   There   are   two  different   situations,   in   one   hand   we   can   see   that   the   TIR   zone   is   larger,   which  implies  that  reflectivity  will  be  equal  to  one  in  a  higher  range.  On  the  other  hand,  we  can   also   see   that   for   the   different   angles   of   incidence   we   obtain   much   higher  reflectivity  values  in  the  indium  case.       Reflectivity-­‐TE  (angle  of  incidence  respect  of  the  normal)  

nAir   45   40   35   30   25   20   15   10   5  1   0,73   0,19   0,10   0,07   0,05   0,04   0,03   0,03   0,02      

   Reflectivity-­‐TE  (angle  of  incidence  respect  of  the  normal)  

λ  (nm)   nindium   30   25   20   15   10   5  310   0,38   TIR(1)   TIR(1)   TIR(1)   0,73   0,43   0,35  355   0,4   TIR(1)   TIR(1)   TIR(1)   0,62   0,40   0,33  380   0,45   TIR(1)   TIR(1)   TIR(1)   0,46   0,33   0,28  410   0,5   TIR(1)   TIR(1)   0,67   0,36   0,27   0,24  450   0,6   TIR(1)   0,80   0,33   0,23   0,19   0,17  460   0,75   0,43   0,23   0,16   0,12   0,11   0,10  495   0,75   0,43   0,23   0,16   0,12   0,11   0,10  550   0,7   TIR(1)   0,31   0,20   0,15   0,13   0,12  555   0,85   0,19   0,13   0,10   0,08   0,07   0,06  600   0,8   0,28   0,17   0,12   0,10   0,09   0,08  620   1,05   0,05   0,04   0,03   0,03   0,02   0,02  650   0,9   0,14   0,10   0,07   0,06   0,05   0,05  

       

λ  (nm)   nindium   θc  (o)  310   0,38   15,63  355   0,4   16,48  380   0,45   18,61  410   0,5   20,77  450   0,6   25,18  460   0,75   32,13  495   0,75   32,13  550   0,7   29,76  555   0,85   37,07  600   0,8   34,56  620   1,05   48,13  650   0,9   39,66  

0  10  20  30  40  50  60  70  80  90  

310  355  380  410  450  460  495  550  555  600  620  650  θ c

 (o)    

λ  (nm)  

Page 36: Raul Broto Master Thesis

   

36  

For  example,  in  the  next  graph  we  can  see  the  evolution  of  the  reflectivity  for  each  wavelength.  We  can  see  that  the  lower  wavelengths  in  our  range  have  better  results,  but  at  the  same  time  we  have  to  be  careful  to  do  not  enter  to  the  infrared  zone,  so  we  will  take  a  compromise  between  these  two  ideas  and  the  best  range  for  our  purpose  will  be  400nm  -­‐  550nm.    

   Finally,   the   next   graph   shows   the   difference   between   air   and   indium   for   a  determined  wavelength  in  that  range  (λ=460nm).  As  we  can  see  the  improvement  is  substantial,  and  our  expectations  are  that  the  results  will  be  positive.    

   All   the   graphics   and   calculations   are   presented   in   the   attached   Excel   file  ‘Calculations  of  R  and  Ocrit’.    2.4.2 Position    Another   important   theoretical   fact   of   the   mirror   is   the   place   where   it   will   be  positioned.  When  we   talk   about   this,  we   refer   about   two   facts:   the  position  of   the  mirrors  in  the  whole  system  and  the  position  of  the  fiber  to  obtain  the  desired  angle  at  the  entrance  of  the  system.  

0  0,1  0,2  0,3  0,4  0,5  0,6  0,7  0,8  0,9  1  

310   355   380   410   450   460   495   550   555   600   620   650  

R  

λ  (nm)  

30º  

15º  

5º  

0  

0,2  

0,4  

0,6  

0,8  

1  

45   40   35   30   25   20   15   10   5  

R  

Incidence  Angle  (º)  

AIR  

λ=460  nm  

Page 37: Raul Broto Master Thesis

   

37  

 For   example,   if   we  want   that   light   starts   propagating   through   the   fluidic   channel  with   an   angle   of   60°,   it   is   required   to   study   the   relative   position   between   the  channel,   the   lenses   and   the   prism   wall.   Considering   that   the   prism   is   filled   with  buffer,  we  need  to  apply  the  Snell’s  Law  and  we  obtain  that  we  need  to  position  the  lens-­‐channel   system   with   an   angle   of     θ=52,98°,   (buffer   solution   with   n=1,3)   or  θ=54,8°,  (buffer  solution  with  n=1,334),  just  to  put  two  examples  of  the  situation.    On  the  other  hand,  the  position  of  the  mirrors  in  the  system  have  to  be  selected  to  have  the  previously  mentioned  TIR  conditions  of  the  incident  light  and  hence  assure  the  most  of  the   light   is  reflected  back.  The  first  mirror  has  to  be  positioned  on  the  way  of  the  source  light  beam,  which  will  be  easy  taking  into  consideration  that  we  decide   the   angle   of   this   light.   Further  mirrors  will   be   positioned   according   to   the  results  of  the  Matlab  simulations  of  the  next  chapter,  because  due  to  the  broadening,  the  light  could  not  follow  the  desired  path.    2.4.3 Shape    As  we  have  previously  seen,  light  inherently  diverges.  As  the  optical  path  increases  there   is   an   enlargement   of   the   diameter   beam   that   causes   a   degradation   of   the  properties   of   the   system,   due   to   a   fraction   of   light   is   not   collected   by   the  photodetectors,  causing  a  decrease  of  the  SNR.      The  shape  of   the  air  mirror  can  modify   the  behavior  of   the  optical  beam,  allowing  the   light   focusing   at   concrete   places.   From   the   initial   parallel   beams,   an   adequate  curvature   of   the   air   mirror  make   the   light   converge   inside   the   system,   as   is   also  shown  in  the  ray  tracing  of  the  next  picture.  With  this  simple  structure,  the  two  most  significant  problems  (reflection  and  beam  broadening)  can  be  addressed  and  solved.  So   this  shape  change  allows  multiple  reflections  without  causing  a  decrease  of   the  SNR.                                

Figure  2.12:  Ray  tracing  simulation  on  the  mirror  vicinity  Source:  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐1566  

Page 38: Raul Broto Master Thesis

   

38  

2.4.4 Thickness    Obviously  thickness  is  a  key  aspect  in  the  mirror  design.  Directly  depending  on  the  thick  of  the  mirror  we  have  the  transmittance.  The  transmittance  is  the  fraction  of  the  power  that  trespass  the  mirror,  so   ideally,  we  want  that  this  equals  zero.  With  the  indium  thin  films,  transmittance  is  relatively  high  but  asking  experts  on  the  field,  with  a  thick  higher  than  20μm  this  totally  disappears.      The  most  important  design  condition  related  with  this  aspect  is  that  we  always  have  to  maintain   at   least   a   relation   1:1   between   the   indium   channel   height   and  width.  That  means  that  we  can  have  some  indium  parts  wider  than  higher,  but  never  on  the  opposite   way.   The   consequences   of   this   fact   are   that   due   to   the   microchannel  designed  to  align  the  optical  fiber,  which  has  to  be  at  least  250μm  to  contain  it  (the  optical  fiber  diameter  is  around  230μm),  we  have  a  minimum  width  for  our  indium  channels.  That  matches  exactly  with  our  purpose,  because  it  is  higher  than  20μm,  so  our  mirror  thickness  will  be  around  these  value,  which  means  that  no  light  will  be  transmitted  from  the  mirror  on.    2.4.5 Conclusions  and  Expectative    Finally,  summarizing  all  that  we  have  seen  during  this  chapter,  it  is  necessary  to  list  all  the  advantages  that  theoretically  our  system  has:    

-­‐ The   indium  mirror   does   not   affect   the  monolithic   integration.  We   continue  having   the   same   level   of   it,   because   the   mirror   will   be   made   in   the   same  fabrication  step  of  the  rest  of  the  system    

-­‐ We  can  easily  obtain  a  better  refractive  index  (compared  with  air  mirrors)  in  a  huge  range  of  wavelength.  This  directly  implies  a  lower  critical  angle  (more  beams  in  TIR  conditions)  and  a  higher  reflectivity.  

 -­‐ With  the  proposed  shape,  the  light  will  converge  in  some  point  that  we  will  

try   to  make  coincidence  with   the  next  mirror.  This  will  allow  the  system  to  have  multiple  reflections  without  a  big  decrease  of  the  SNR.  

 -­‐ With  the  thickness  of  our  indium  mirror  we  will  not  have  any  transmittance  

of   power.   At   the   same   time   this   obviously   improves   the   reflection   of   our  mirror.  

 So  the  conclusion  that  we  can  obtain  is  that  at   least  our  results  will  be  better  than  the  obtained  with  the  air  mirror.  As  we  can  see  there  are  some  advantages  and  none  disadvantage,  because  the  use  of  indium  for  the  mirror  is  not  adding  any  difficulty  to  the  system  realization.    Our   expectation   is   to   obtain   a  better   result,   but   as  we  have   seen,   one  of   the  most  important  parts  is  the  design  of  the  mirror.  In  the  next  chapter,  we  will  choose  the  best  design  to  obtain  the  best  response  of  the  mirror  with  a  Matlab  simulation.    

Page 39: Raul Broto Master Thesis

   

39  

   

Page 40: Raul Broto Master Thesis

   

40  

CHAPTER  3:  DESIGN  OF  THE  MIRROR,  SIMULATION  

   3.1 Previous  considerations      On  the  previous  chapter  we  have  seen  the  general  aspects  that  we  have  to  take  into  consideration   when   we   are   designing   our   system,   but   now   that   we   are   entering  deeply   on   the   simulation,   we   need   to   introduce   some   topics,   more   specifically,  mirrors  ray  tracing.    In   optics,   ray-­‐tracing   can   be   used   to   model   how   light   interacts   with   optical  components  such  as  mirrors  and   lenses  where   the  EM  wave   is  approximated  by  a  large   number   of   narrow   beams   or   rays   that   are   traced   throughout   the   optical  system.  The  surface  is  treated  as  locally  smooth  so  that  each  scattering  event  on  the  surface  is  treated  as  a  specular  reflection  (Fresnel  approximation).      3.1.1 Concave  Mirror  (Spherical/Parabolic)    A  curved   mirror  is   a  mirror  with   a   curved   reflective   surface,   which   may   be  either  convex  or  concave.  As  we  have  seen   in  the  previous  chapter,   in  our  case,  we  will   use   a  concave   mirror.   A   concave   mirror   has   a   reflecting   surface   that   curves  away  from  the  incident  light.  They  reflect  light  inward  to  one  focal  point  and  are  also  called  converging  mirrors  because  they  are  used  to  focus  light.  For  our  purpose,  the  most  important  thing  is  that  they  refocus  parallel  incoming  beams  to  a  focus,  which  matches  exactly  with  our  expectations.    On  the  previous  theoretical  investigation  all  the  surfaces  presented  where  flat,  and  now  we  are   facing  a  curved  mirror.   It  changes  the  way  to  calculate  the  rebounded  ray,  because   in   that  case   is   it  necessary   to  calculate   the   tangent  of   the  parabola   to  apply  the  previously  seen  Law  of  Reflection.      Normally,   concave  mirrors   are   shaped   like   part   of   a  sphere,   but   other   shapes   are  sometimes   used   in   optical   devices.   The   most   common   non-­‐spherical   types  are  parabolic   reflectors,   since   spherical   mirror   systems   suffer   from  spherical  aberration.  Spherical  aberration  occurs  due  to  the  reflection  of  light  rays  when  they  strike  a  mirror  near  its  edge,  in  comparison  with  those  that  strike  nearer  the  center.  It  results  in  an  imperfection  of  the  produced  image.    Parabolic  mirrors  and  spherical  mirrors  have  a  lot  of  similarities.  In  our  case  these  similarities   are   even   more,   due   to   we   will   have   a   large   radius   of   curvature   that  makes   the   difference   between   the   shapes   nearly   imperceptible.   But   the   parabolic  mirrors  have  some  special  characteristics  that  we  will  use  for  other  purposes,  such  as  to  ensure  that  the  simulation  is  working  correctly.    

Page 41: Raul Broto Master Thesis

   

41  

A  parabolic   mirror   is   normally   used   to   collect   or   project   energy   from   a   distant  source   and   bring   it   to   a   common  focal   point.   Since   the   principles   of  reflection  are  reversible,  parabolic  reflectors  can  also  be  used  to  project  energy  of  a  source  at  its  focus  outward  in  a  parallel  beam.  In  this  simulation,  to  ensure  the  proper  operation,  we  will  use  that  any  incoming  ray  that  is  parallel  to  the  axis  of  the  mirror  is  reflected  to  the  focus.  If  the  rays  are  not  accomplishing  that,  we  can  state  that  the  simulation  is  not  working  properly.    

 Figure  3.1:  Parabolic  Mirror  Ray  Tracing  

Source:  http://www.slideshare.net/solartime/espejos-­‐esfricos-­‐cncavos    3.1.2 Focal  point    As  we  have  seen,  these  mirrors  are  called  "converging"  because  they  tend  to  collect  light   that   falls   on   them,   refocusing   parallel   incoming  rays  toward   a   focus.   This   is  because   the   light   is   reflected   at   different   angles,   since   the   normal   to   the   surface  differs  in  each  spot  of  the  mirror.    For  a  spherical  or  parabolic  mirror,  a  focal  point   it   is  a  point  onto  which  collimated  light  parallel   to   the  axis   is   focused.  The  distance   in  air   from   the  mirror's  principal  plane  to  the  focus  is  called  the  focal  length  (F).  It  is  very  important  to  notice  that  this  length  is  exactly  the  half  of  the  center  of  curvature  (2F).                                

Figure  3.2:  Focus  Point  on  the  Mirror  Source:  http://en.wikipedia.org/wiki/Concave_mirror#Concave_mirrors  

   

Page 42: Raul Broto Master Thesis

   

42  

As  we  can  see  in  the  next  table,  the  focal  point  is  very  important  because  its  relation  with   the   convergence   point.   In   our   case,   the   situation   it   is   not   exactly   like   these,  because  we  do  not  have   a   single   object,  we  have  parallel   light   beams.  But  we   can  take  the  general  idea  from  the  table  and  apply  it  to  our  purpose.      As  we  can  see,  the  most  favorable  case  is  the  one  where  the  object  is  between  F  and  2F.   In   that   case   the   convergence   point   will   be   even  more   fare   than   the   center   of  curvature,   so   it   means   that   our   fluidic   channel   can   be   enlarged   (which   means   a  larger   optical   path),   but  without   affecting   the   SNR  because   the   light   can   converge  near   the  second  mirror.  The  conclusion   that  we  have   to   take   from  here   is   that   for  our  purposes  we  need  a  high   focal  point  compared  to  the  measures  of   the  system,  which   will   allow   a   more   distant   convergence   point.   We   will   confirm   these  suppositions  on  the  simulation.    Object  Position  vs  Focal  Point   Diagram  

Object  <  F  

 

2F  <  Object  <  F  

 

Object  >  2F  

   

Figure  3.3:  Different  Situations  Depending  on  the  Object  Position  Source:  http://en.wikipedia.org/wiki/Concave_mirror#Concave_mirrors  

Page 43: Raul Broto Master Thesis

   

43  

3.2 Simulation  Parameters      Just  before  starting  the  simulation,  it  is  necessary  to  declare  the  parameters  that  we  are  going  to  use  for  it.  The  main  idea  consist  in  having  several  inputs  referred  to  the  mirror   characteristics,   and   changing   these   inputs   will   give   as   some   degrees   of  freedom  to  obtain  the  optimum  desired  design.    These  inputs  are:    

-­‐ Center  of  curvature  (or  focal  length,  R=2F).  -­‐ Angle  of  aperture  (controlled  by  the  variable  size).  -­‐ Width.  

                                       

Figure  3.4:  Simulation  Parameters    The  center  of  curvature  is  directly  related  to  the  shape  of  the  sphere/parabola.  If  the  center   value   is   high   the  mirror  will   be  more   ‘opened’   (considering   the   same   size  value).  The  angle  of  aperture   is   related  with   the   size  of   the  mirror,   a  higher  angle  will  make   a   bigger  mirror.   Finally,   the  width   has   not   any   effect   on   the   simulation  (always  remembering  that  this  has  to  be  higher  than  20  μm),  but  we  also  add  it  to  the  simulation  to  obtain  a  better  visual  result.    Another   simulation   parameter   that  we   have   to   take   into   consideration   is   that   the  values   that   we   obtain   during   the   simulation   are   referred   in   ‘pixels’.   We   have   to  realize  one  way   to   transform  these  pixels   to   real  values  such  as  micrometers.  The  way  to  make  this  conversion  will  be  deeply  explained  in  the  following  sections.  

   

Page 44: Raul Broto Master Thesis

   

44  

3.3 Simulation  Program      At  this  point,  the  Matlab  simulation  program  was  designed.  This  simulation  consists  on  reflections  at  a  parabolic  or  spherical  mirror  and  a  light  beam  that  reflects  on  it.  All   the   code   is   inspired   in   versions   found   in   MathWorks19,   a   free   database   from  Matlab   users,   and   also   some   others   Internet   sources  20,21.   These   programs   were  adapted  to  obtain  our  desired  purpose  and  the  result  is  presented  here.    3.3.1 Program  Structure  

 The  program  is  divided  in  6  modules,  where  each  of  them  has  a  concrete  purpose.  In  the   next   figure   we   can   see   the   performance   of   the   program.   It   starts   with   the  execution  of  mirror.m,  which  calls  mirr_draw.m  to  draw  the  initial  mirror.  From  that  point  on,  the  Control  Window  is  created  (mirr_cntr.m)  and  all  the  changes  applied  to  it   involve   the   execution   of   the   required   module   to   make   the   change   on   the  simulation.    

                                                                                                                     19  http://www.mathworks.com/  20  http://www.mysimlabs.com/ray-­‐tracing.html      21  http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48  

MIRROR.m  

Initialization  

MIRR_DRAW.m  

First  Image  

MIRR_BEAM.m  

First  Beam  

MIRR_CNTR.m  

Control  Window  

MIRR_CB.m  

Execute  Commands    

MIRR_DRAW.m  

Draw  New  Mirror  

MIRR_BEAM.m  

Draw  New  Beam  

MIRR_MOVE.m  

Pointer  Position  

Page 45: Raul Broto Master Thesis

   

45  

3.3.2 Matrix  MC  [6][5]    One  of  the  most   important  parts  of  the  program  is  the  Matrix  MC[6][5],  which  is  a  global   variable  used   in   every  module  of   the  program.   In   this  matrix   all   the   values  related  to  the  working  of  the  program  are  saved.  In  every  module  the  values  of  the  matrix   are   changed,   so   the   objective   is   to   obtain   an   overall   pattern   and   avoid   the  overwriting  between  the  different  parts.    For  example,  the  variables  MirrFig  and  MirrAxe  contain  the  information  related  with  the  simulation  figure  that  we  could  see  on  the  users  interface.  All  the  other  variables  can  be  easily  understood   in   the   code  context   (also  with   the  help  of   the   comments  available  on  the  code).    

MirrFig   MirrAxe   PonterX   PointerY   Empty  HandleMirror   HandleFocus   Focus   <1/2>  

Parabolic/Sphere  Empty  

HandleMag   X0   Y0   Rotation   ScaleFactor  HanldeBeam   NofBeam   ScatterAngle   Empty   InfDummy  MirrBase   MirrorXMax   MirrorXMin   MirrorYMax   Empty  ControlFig   ControlAxe   Empty   Empty   Empty  

 3.3.3 Modules  Functions    In  this  section  we  are  going  to  see  each  module  separately  and  a  briefly  summary  of  their  functions.    3.3.3.1 Mirror.m    Mirror.m  is  the  central  part  of  the  program.  It  initializes  the  variable  MC[6][5],  and  also  the  rest  of   the  user   interface  parameters.  At   the  end,   it  draws  the   first  mirror  and  beam,  and   finally   it  opens  a  Control  Window  to  start  with   the  changes  on   the  simulation.    3.3.3.2 Mirror_cntr.m    In  this  part  the  Control  Window  is  created.  This  window  allows  the  user  to  control  the  parameters  of  the  mirror  and  the  light.  The  way  that  the  Control  Window  works  basically   consists   on   different   matrix   4x4   where   each   position   of   the   matrix   is  related  to  the  same  position  of  the  Control  Window  as  seen  on  the  screen.  We  can  see   an   example   here,   with   the   matrix   ‘tt’   that   controls   the   editing   types   of   each  position  of  the  matrix:                    

tt  1   1   NaN   NaN  3   2   2   2  2   2   2   2  NaN   2   2   NaN  

Types  1-­‐Text  2-­‐Edit  3-­‐Popup  

Page 46: Raul Broto Master Thesis

   

46  

                             There  are  different  arrays  that  control  different  parameters,  but  the  most  important  are   MCii   and   MCjj,   because   they   are   related   with   the   matrix   MC[6][5].   In   each  position  of  MCii,   for  example,  we  have  the  row  of  MC[6][5]   that  correspond  to   the  Control  Window  position,   (and   in  MCjj   the   column).  As   an   example,  MCii(2,1)   has  the  value  2,  and  MCjj(2,1)  the  value  4.  So  following  what  we  have  said,  this  refers  to  the   value   of  MC(2,4)   that   is:   ‘Parabolic/Sphere’.   As  we   can   easily   see   the   position  (2,1)   in  the  Control  Window  is  exactly   the  popup  where  we  can  choose  between  a  parabolic  or  spherical  shape.    The  module  also  defines  all  the  style  and  graphical  issues  of  the  control  window,  and  the   relation  between  every  button  and   its   action.  Finally,  depending  on   the  action  taken  it  makes  a  callback  that  is  received  by  the  module  mirror_cb.m.    3.3.3.3 Mirror_cb.m    This  module   takes   the  different  actions   that  are  made   in   the  Control  Window  and  applies   the   next   step   to   perform   it;   we   have   named   these   actions   as   Callbacks.  Depending   if   it   is   an   edit/slider/popup   action,   the  parameter   changes   applied   are  different.   In   each   of   the   three   actions,   the   orders   taken   are   very   intuitive.   The  module   it   is   required  by  mirror_cntr.m   that   is   the  want   that   creates   the   callbacks,  and  then  mirror_cb  starts  mirr_draw.m  with  the  parameters  changed.    3.3.3.4 Mirror_draw.m    Mirr_draw.m   takes   the  orders   from  mirror_cb.m  and   execute   them.  Here   is  where  the  mirror,  the  light  beams  and  the  mag  light  are  drawn.  It  needs  mirror_beam.m  for  the  calculation  of  the  beam  path.  It  differences  between  several  situations:  if  the  action  involves  the  mirror,  the  light  beams  or  the  mag  light  (and  therefore  also  the  light  beam  in  that  case).  Also  there  is  a   different   protocol   for   the   initialization   of   the   simulation,   where   everything   is  drawn  for  the  first  time.      

Page 47: Raul Broto Master Thesis

   

47  

3.3.3.5 Mirror_beam.m    Mirror_beam.m  is  the  part  of  the  code  where  the  mathematical  calculations  for  the  beam   paths   are   made.   The   module   receives   3   parameters:   xx0   and   yy0   are   two  vectors   with   the   position   of   the   points   of   the   incoming   light   beam.   The   third  parameter,  beam0,  is  also  a  vector  that  contains  the  direction  of  those  beams.    The   first   action   taken   is   the   calculation   of   the   equation   of   the   line   for   all   the  incoming   beams.   After   that,   taking   into   consideration   that   the  mirror   equation   is  y=x2+p*x+q,   the   intersection   points   are   found.   There   is   a   special   attention   on   the  special   cases   such   as   the   horizontal   or   vertical   beams,   or   the   ones   that   cannot   be  exact  points.    As   we   have   seen   before,   in   the   case   of   curved   mirrors,   the   reflected   beams   are  calculated  with  the  law  of  reflection  but  it  is  necessary  to  calculate  the  tangent  slope  for  the  intersection  points.  So  the  next  step  made  is  to  calculate  that  slope,  and  with  it,   calculate   the   angle  of   the   reflected  beam.  Finally   the  module   returns   also   three  vectors,  which  are  exactly  the  same  as  the  parameters  received  but  for  the  reflected  beam  (xx1,  yy1  and  beam1).    3.3.3.6 Mirror_move.m    This   module   basically   stores   the   mouse   position,   in   MC[1][3]   and   MC[1][4].   The  pointer   position   it   is   showed   on   the   Control   Window   and   every   change   it   is  displayed   instantly.   It  will   be   used   to   know   the  position   of   the   convergence  point  and  therefore,  calculate  the  width  of  the  fluidic  channel.        

Page 48: Raul Broto Master Thesis

   

48  

3.4 Results      

Once  the  simulation  was  programmed,  it  is  time  to  ensure  the  correct  performance  and   obtain   the   results   from   it.   To   make   it   we   have   performed   some   theoretical  verifications  such  as  the  parallel  beams  on  a  parabolic  mirror,  or  some  tests  based  on  the  theory  previously  seen.  

 3.4.1 Verification    As  we  have  seen  on  the  previous  sections,  when  parallel  light  beams  are  reflected  on  a  parabolic  mirror  on  the  direction  of  the  x-­‐axis,  the  convergence  point  is  exactly  the  focus  point.  We  thought  about  using  this  to  ensure  the  correct  performance  of  our  simulation  program.  As  we  can  see  in  the  first  figure,  this  is  totally  accomplished  for  a  parabolic  mirror  and  not  accomplished  for  a  spherical  mirror  (second  image),  so  we  can  confirm  that  our  simulation  principles  are  working  in  the  way  that  we  desire.    

 

     

                             

Page 49: Raul Broto Master Thesis

   

49  

3.4.2 General  simulation    In  this  section  we  are  going  to  study  how  the  changes  on  the  different  parameters  affect   on   the   simulation   result.   Also   we   will   try   to   obtain   the   best   range   of   the  parameter   to   obtain   the   optimum   result.   In   this   part  we   are   going   to   explain   the  parameters   that   have   a   direct   impact   on   the   mirror   (even   the   system)   design.  Parameters  like  number  of  beams,  scattering  or  size  of  the  light  source  do  not  affect  to  it,  they  only  have  the  purpose  of  make  the  simulation  more  visual.    3.4.2.1 Focus    The  focus  parameter  is  clearly  the  most  important  of  all  the  control  parameters.  Is  directly   related   with   the   radium   (2F=R),   so   it   controls   basically   the   shape   of   the  mirror   making   it   more   ‘opened’   (higher   focus)   or   ‘closed’   (smaller   focus),  considering   that   we   have   the   same   size   for   each   focus   value.   Also,   as   we   have  previously  seen,  the  focus  point  has  a  huge  importance  on  ray  tracing.  In  our  case,  that  we  want  to  design  a  device  as  small  as  possible  but  with  the  longer  optical  path,  we  have  to  take  special  attention  on  it  to  decide  the  width  of  the  fluidic  channel.    As  an  example,  we  can  see  here  some  pictures  of  the  simulation  with  different  focus  values.  From  left  to  the  right  and  up  and  down,  the  values  are  25px,  75px,  125px  and  200px:    

                       

Page 50: Raul Broto Master Thesis

   

50  

We  can  see  that  for  small  focus  values  the  light  beams  converge  really  close  from  the  mirror,  so  we  can  say  that  our  goal  (avoid  beam  broadening)  is  not  achieved.  On  the  other   hand,   for   higher   focus   values   the   convergence   point   is   more   far   from   the  mirror,   and   also   the   rays   are   not   broadening   so   fast,   which  will   give   a   degree   of  freedom   when   the   system   is   designed   (is   not   necessary   to   position   exactly   the  mirror  on  the  convergence  point,  it  can  be  on  the  vicinity).      The   conclusion   that  we   can   take   from   it   is   that   for   our   purpose   a   higher   focus   is  more  convenient.  Even  though,  the  difference  of  changing  the  focus  from  100px  on,  is   not   so   big,   so   considering   other   factors  we  have  decided   that   the  best   range   to  choose  our  focus  is  around  150px-­‐200px.    3.4.2.2 Size    As  we  can  see  in  the  simulation,  the  size  parameter  has  no  effect  on  the  light  beams  always   that   they   can   reach   the  mirror.   So   taking   it   into   consideration,  we  need   to  take  a  compromise  between  two  opposite  factors:    

-­‐ A  bigger  size  will  lead  to  a  bigger  system  that  attempts  directly  to  our  idea  of  having  a  smaller  system  as  possible.    

-­‐ Considering  that  the  simulation  is  not  an  exactly  reproduction  of  the  reality  (maybe   in   the   real   fabricated   device   the   light   beams   can   broaden  more),   a  bigger  mirror  will  allow  to  reflect  more  light  beams.  

 Here  there  are  two  examples  with  different  size  (3px  and  15px),  remembering  that  size  value  is  referred  to  the  width  of  the  mirror  in  the  X-­‐axis.  Our  idea  is  to  have  a  mirror  that  improves  that  system  considering  these  two  factors,  but  at  the  moment  it   is   no   possible   to   say   a   value   range,   due   to   the   hole   size   of   the   mirror   is   also  depending  on  the  focus  value.    

   

Page 51: Raul Broto Master Thesis

   

51  

3.4.2.3 Width    We   saw   in   the   previous   chapter   that   the   width   value   is   not   related   with   the   ray  tracing  or  the  reflection  always  that  it  is  higher  that  20μm.  So  in  our  simulation  this  is   also   accomplished,   here   we   can   see   two   different   pictures   with   two   different  widths  (3px  and  10px)  and  the  result  is  exactly  the  same.  

 3.4.2.4 Parabolic/Spherical    Obviously  there  is  a  big  difference  between  using  a  spherical  or  parabolic  mirror  in  most   of   the   cases.   As   we   could   see   before,   with   a   parabolic   mirror   and   parallel  beams,   the   reflected   beams   converge   into   the   focal   point,   and   with   a   spherical  mirror  not.  Also  there  are  little  differences  on  the  reflected  beams  depending  on  the  shape.    But   in   our   case,   considering   that   our   focus   point  will   be   as   high   as   possible,   this  difference  is  inexistent  or  so  reduced  that  is  nearly  inappreciable.  As  we  can  see  in  the  next   figures,  when   the   focal  point   is  high  enough  (and  considering  also  a   little  size  compared  with  the  focus)  there  are  only  small  differences  in  the  extremes  of  the  mirror.  In  that  case,  and  taking  into  consideration  that  our  purpose  is  that  the  rays  strike   nearly   the   center   as   possible,   there   are   no   effects   on   the   change   between  parabolic   (left   image)   and   spherical   (right   image).   With   this   information,   our  decision  is  to  use  the  spherical  because  it  is  easier  to  obtain  all  the  parameters.  

                     

Page 52: Raul Broto Master Thesis

   

52  

3.4.2.5 Rotation    

The  rotation  of   the   incoming  beam   it   is  not  a  parameter   itself  of   the  design  of   the  mirror,   but   it   has   to   be   taken   into   consideration   because   it   will   determine   other  values  such  as  the  convergence  point,  that  results  directly  in  the  value  of  the  width  of  the  fluidic  channel  or  the  position  of  the  second  mirror.    The  first  factor  to  look  at  is  that  due  to  the  better  refractive  index  of  the  indium  we  can   operate   in   a   higher   range   of   incoming   angles.   As   we   have   seen   before,   the  indium  critical  angle  is  around  30°  or  less,  which  allows  us  to  have  more  degrees  of  freedom  compared  with  the  air  mirror  (critical  angle  equals  45°).    It  can  be  easily  seen  that  a  low  entrance  angle  has  the  consequence  of  a  wider  fluidic  channel   (and   the   possibility   that   in   the   next   reflections   the   light   beam   does   not  strike  on  the  TIR  zone),  and  a  high  angle  gives  as  a  result  a  long  fluidic  channel  (with  the   consequent   enlargement   of   all   the   system).   That   is   the   reason   why   we   have  chosen  an  intermediate  point,  so  in  our  opinion  the  best  entrance  angle  is  45° (right  figure).  Also  at   the  same   time  we  will  make  some   tests  with   the  value  of  60° (left  figure)  because   it   is   the  value  used   in   the  previous  papers,   so  a  quick  comparison  can  be  made  to  ensure  our  hypothesis  of  the  advantages  of  our  system.    

       

     

Page 53: Raul Broto Master Thesis

   

53  

 3.5 Conclusions    During  the  realization  of  this  chapter  some  theoretical  concepts  were  presented  and  then   applied   to   the   design   of   a   Matlab   simulation   (with   the   corresponding  verification  of  the  correct  working).  After  seeing  how  the  different  parameters  of  the  simulation   affect   to   the   result,   it   is   time   to   choose   the   optimum   design   for   the  mirror.   Apart   from   the   mirror   design,   the   simulation   will   have   a   direct   effect   to  other   parameters   such   as   the   fluidic   channel  width   or   the   position   of   the   second  mirror.    3.5.1 Searching  of  the  Optimum  Result    As  we  have  seen  during  the  entire  chapter,  the  design  of  the  mirror  has  quite  a  lot  of  freedom  degrees,   so   it   is   difficult   to   say   exactly  which   one   is   the   optimum   result.  Even  though,  we  will   try  to   focus  on  these  ranges  that  are  better   for  our  purposes  and  then  decide  one  value  from  it.    Basically,  the  three  parameters  that  we  have  to  choose  are  focus,  size  and  width:    

-­‐ On  the  previous  section,  it  was  said  that  the  best  range  for  the  focus  value  is  between   150px   and   200px.   The   focus   is   directly   related   with   the   distance  where  we  can  find  the  convergence  point,  so  we  want  it  as  far  as  possible,  but  avoiding  the  light  divergence.  These  are  the  reasons  why  we  have  chosen  to  use  200px  as  focus.    

-­‐ Related  with  the  size,  the  main  objective  is  that  the  mirror  can  collect  all  the  incoming  beams,   that   is   the   reason  why  we  have  chosen  a   size  of  2px,   that  maybe   at   first   sight   seems   little,   but   due   to   the   huge   focus   supposes   a  sufficiently  big  mirror  for  our  system.  

 -­‐ The   width   parameter   as   a   result   of   the   simulation   and   remembering   that  

when   is   greater   than   20μm   the   transmittance   equals   zero,   has   no   direct  relation   with   this   simulation,   so   the   way   that   we   will   choose   it   is   more  related  with  fabrication  parameters  as  we  will  see  in  the  next  chapter.  

 Apart   from   these   parameters,   the   simulation   also   gives   us   another   important  information,   that   is   the   convergence   point.   The   convergence   point  will   help   us   to  adjust  the  fluidic  channel  width  and  the  position  of  the  second  mirror  (we  want  it  as  close   as   possible   from   that   point).   Obviously,   to   know   the   position   of   the  convergence  point  we  have  to  decide  the  rotation  of  the  incoming  light.  We  will  split  it  in  two  cases,  60° and  45°:    

-­‐ The   first  case  with  60  degrees   is  basically  oriented   to  directly  compare  our  indium   system   with   the   paper   proposed   air   mirror   system.   This   income  rotation  is  the  one  that  they  use,  so  the  comparison  between  our  system  and  there  is  direct  and  will  allow  us  to  see  the  impact  of  using  an  indium  mirror.  In  that  case,  we  can  see  that  the  convergence  point  is  X=65px  and  Y=100px.    

Page 54: Raul Broto Master Thesis

   

54  

-­‐ The  second  case  (45  degrees)  is  based  on  the  better  properties  of  the  indium.  As  we  have  seen  in  previous  chapters,  the  critical  angle  is  lower  so  we  have  a  higher  range  of  entrance  angles.  This  lower  angle  directly  matches  with  our  purpose  of  a  more  compact  system,  so  theoretically   is  the  angle  of  our  final  system.  In  that  case,  we  can  see  that  the  convergence  point   is  X=110px  and  Y=110px.  

 We  can  see  all  these  results  in  the  next  figures  (first  60°  and  second  45°):                                                                                    

Page 55: Raul Broto Master Thesis

   

55  

                                                                                                 

Page 56: Raul Broto Master Thesis

   

56  

3.5.2 Conversion  to  Real  Units    Finally,   the   last   step   regarding   to  our   simulation   is   the   conversion   from   that  pixel  values   to   the  real  units.   It   is  quite  difficult   to  adjust  exactly   this  conversion   factor,  and  at  the  same  time  it  is  a  crucial  step  because  all  the  system  measures  will  depend  from  it.      A  lot  of  ways  to  make  this  conversion  are  possible,  but  our  decision  finally  has  been  to   relate   that   conversion   with   the   fluidic   channel   width.   This   width   has   to   been  planned  beforehand,   (it   has   a  minimum  value   and   also   some  optimum  values),   so  our  plan  is  to  decide  first  the  fluidic  channel  width  and  then  relate  it  to  the  X  value  of  the   convergence   point   plus   the   PDMS   gaps   between   the   mirror   and   the   fluidic  channel.  Once  we  have  this  value,  we  will  obtain  the  desired  conversion  factor  that  will  be  used  to  multiply  all  the  other  pixel  values  and  obtain  the  real  measures.    As  an  example,  we  can  see  here  the  values  of  all  the  parameters  for  a  fluidic  channel  width  equals  to  900μm.  We  have  also  to  consider  that  the  width  that  light  will  travel  it   is  not  only  the  fluidic  channel  width,  we  have  to  add  the  PDMS  gap  between  the  channel   and   the  mirror   (900+250*2  =  1400  μm).  Once  we  have   this  value  we  can  obtain   the   conversion   factor   just   dividing   it   by   the   pixel   value   and   the   result   is   a  conversion  factor  of  21.5  for  the  60  degrees  case  (and  12.7  for  the  45  degrees).  Here  in  the  next  tables  we  can  see  the  values  applying  this  factor:    

  Px  Value   Input  60°  Fluidic  Channel  

Width   65   900  μm  

Position  of  the  second  mirror   110   2365  μm  

Mirror  Focus   200   4300  μm  Mirror  Size   2   43  μm  

    Px  Value   Input  45°  Fluidic  Channel  

Width   110   900  μm  

Position  of  the  second  mirror   110   1400  μm  

Mirror  Focus   200   2540  μm  Mirror  Size   2   25  μm  

   Finally,  only  emphasize  on  the  point  that  these  calculations  has  been  made  for  some  specific  values,  but  during   the  realization  of   the  next  chapter  we  will   see   that   it   is  easy   to  change   these  parameters  only   taking   into  consideration   the  change  on   the  conversion  factor.  

Page 57: Raul Broto Master Thesis

   

57  

   

Page 58: Raul Broto Master Thesis

   

58  

 

CHAPTER  4:  FABRICATION  DESIGN      4.1 Introduction      In  this  chapter  we  are  going  to  enter  deeply  on  the  fabrication  design  of  the  master  of  our  devices.  We  need  to  see  how  will  be  each  one  of  the  devices  and  calculate  the  exact  dimensions  of  every  part  of  it.  It  is  a  crucial  part,  because  we  are  working  on  the  micro  scale,  which  means  that  every  error   in  our  calculations  can  carry  a   fatal  error   on   the   experimental   results.   The  master   is   designed  with   Autocad   software  and  sent  to  a  specialized  printer  company.    Basically,  our   idea   is   to  create  a  master  with  8  different  devices,  each  one  of   them  with  a   specific  purpose.  That   is  not   a   final  design,  we  are  going   to   check  different  values   for   different   aspects   so   then  we   can  decided  which   one   is   the   best   for   our  purposes.   As   we   have   been   doing   during   the   entire   project,   we  will   continue   the  work  of  the  previous  papers,  so  the  idea  is  to  start  with  the  same  design  there  (not  100%  exactly  but  similar),  and  then  add  some  modifications  that  we  think  that  will  improve  the  system.    The  different  devices  with   their  modifications  are   listed  here   (all   the  explanations  are  extended  in  the  next  sections):    

1) PMIR  inspired  in  the  previous  paper22.  (REF)  2) Reduced  gap  between  PDMS  and  fluidic  channel  to  100μm.  3) Input  light  angle  changed  to  45°.  4) Same  case  as  3  but  with  a  wider  fluidic  channel.  5) Same  case  as  1  but  adding  a  3rd  mirror.  6) Same  case  as  3  but  adding  a  3rd  mirror.  7) Input  light  angle  changed  to  35°.  8) Final  design  with  4  mirrors  and  two  different  input  light  angles.  

 4.1.1 Master  Design    Before  starting  with   the  description  of   the  designing  reasons  of   the  8  devices,   it   is  necessary   to   explain   some   generalities   about   the  master   design.   The  masters   that  we  are  going  to  use  have  3  inches  of  diameter  (7.6cm),  but   it   is  necessary  to   leave  1cm  at  the  end  of  it,  so  finally  we  have  a  circle  of  5.6  cm  to  fit  as  much  devices  as  we  can  or  want.      Our   initial   idea   was   to   fit   as   many   devices   as   we   can,   but   with   a   minimum  dimensions   that  allow  a  correct  working  of   the  system.  After   trying  some  designs,  the  two  options  were  6  and  8  devices  per  master  and  we  decided  that  the  optimum  

                                                                                                               22  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐1566  

Page 59: Raul Broto Master Thesis

   

59  

is  with  the  design  containing  8.  The  space  is  enough  to  fit  our  designs  and  there  is  enough  space  to  work  properly  with  it.      Each  device  is  contained  in  a  rectangle  with  the  following  dimensions:  2.2  cm  on  the  long  side  and  1.7  on  the  short  side.  Some  parts  of  the  square  are  outside  the  inner  circle,  but  not  the  important  parts,  that  are  the  ones  that  contain  the  device.  We  can  see  a  sample  of  how  is  the  master  design:                                                                

Figure  4.1:  AutoCad  Mask  Design    

Page 60: Raul Broto Master Thesis

   

60  

4.2 Mirrors  Design      In  this  section,  a  complete  characterization  of  the  mirrors  design  will  be  made.  Is  the  continuation  of  the  last  section  of  Chapter  3,  but  in  this  part  we  will  add  new  design  values   such   as   height   and   also   some   changes  will   be   applied   from   the   theoretical  design  to  the  real  world.    As  we  have  previously  seen,  the  mirror  design  basically  depends  on  the  simulation  values   that  we  have  obtained  on   the  Matlab  Simulation.  After  obtaining   the  values  there  is  a  conversion  from  the  pixel  values  to  the  real  values.  We  have  to  take  special  attention   in   this   point   because   depending   on   the   angle   of   the   input   fiber,   these  factors  are  different,  which  directly  implies  different  values  for  the  mirror.    Another   facts   that   can  change   the  mirror  design  are   the   fluidic   channel  width,   the  gap   length  between   the   fluidic   channel   and   the  mirror,   etc.,   but   in   this   section  we  will   focus   on   the   general   parameters   and   then   on   every   specific   case   we   will  calculate  specifically  if  there  is  some  change  to  apply.  The  theoretical  values  for  the  two  general  cases  are:    

  Px  Value   Input  60°   Input  45°  Mirror  Focus   200   4300  μm   2540  μm  Mirror  Size   2   43  μm   25  μm  

 And  the  values  for  the  real  design  are:                  We  can  see  on  the  previous  table  that  the  radium  value  is  exactly  the  double  of  the  theoretical  focus  value.  The  size  of  the  60° input  case  has  been  round  up  to  50  μm,  but  the  most  important  thing  that  we  have  to  see  in  this  table  is  the  size  value  for  the  45°   input.  With  the  theoretical  value  of  25  μm,  the  mirror  height  was  too  low,  and  the  direct  consequence  of  this  is  that  maybe  not  all  the  light  beams  will  be  reflected.  Remembering  the  conclusions  that  we  extract  on  last  chapter,  the  size  value  is  only  determined  with  the  objective  of  reflect  as  much  light  as  possible,  and  also  doesn’t  affect  to  the  position  of  the  convergence  point,  so  we  decided  to  enlarge  it  until  50  μm.   The   value   of   the   mirror   height   has   been   calculated   with   the   circumference  equation  (x2+y2=R2,  considering  x=R-­‐Size).    Finally,  the  mirror  width  has  been  decided  to  be  250  μm,  because  as  we  previously  said,  that  is  the  minimum  value  to  follow  the  relation  1:1  between  width  and  height  (due  to  the  optical  fiber  diameter).    

  Input  60°   Input  45°  Mirror  Radium   8600  μm   5080  μm  Mirror  Size   50  μm   50  μm  Mirror  Height   926  μm   711  μm  Mirror  Width   250  μm   250  μm  

Page 61: Raul Broto Master Thesis

   

61  

 4.3 Design  of  the  General  Aspects      Before  entering  deeply  to  each  particular  case,  there  are  some  issues  that  are  exactly  the  same  in  each  device,  so  we  can  make  a  brief  study  before  entering  the  different  cases.    First   of   all,   as   it  was   commented  before,   the   group   lenses-­‐fiber   has   been   inspired  from  the  design  of  the  previous  papers.  As  it  was  mentioned  in  chapter  2,  the  design  is  exactly   the  same  (maintaining   the  distance  L=140μm  between   the  corner  of   the  lens  and  the   fluidic  channel)  and  the  only   thing  that  will  change   is   the   tilted  angle  depending  on  each  case.      Continuing  with  that  issue,  the  position  of  the  output  fiber  is  exactly  the  same  than  the   input,   only   considering   that   this   time   our   reference   is   the   second   (or   third)  mirror   instead  of   the   first.   The   vertical   position   respect   the   fluidic   channel   length  also  varies  depending  of  the  number  of  mirrors.    Secondly,  if  we  talk  about  the  fluidic  channel  measures,  we  can  see  that  the  width  it  is  set  by  us  in  each  case,  but  the  channel  length  has  a  degree  of  freedom.  Finally  we  fixed   it   at   1.2cm   that   will   allow   us   to   contain   there   the   designs   with   3   mirrors  without  any  problem.  The  drawback  is  that  for  the  designs  with  2  mirrors  there  will  be   too  much   fluid   without   use,   but   we   have   preferred   to   have   a   standard   fluidic  channel  for  all  the  cases  instead  of  one  different  for  each  one.    Thirdly,   and   maybe   one   of   the   most   important   facts,   is   that   the   real   measures  between  the  mirrors  does  not  exactly  coincide  with  the  theoretical  results  obtained  with   the   Matlab   simulation   in   Chapter   3   (even   though   the   results   are   very  approximate).   The   main   reason   is   that   in   our   simulation   the   little   PDMS   gap  between   the  mirror  and   the   fluidic   channel   is  not   taken   into   consideration.  As  we  have   said   before,   the   convergence   point   is   an   approximate  measure,   so   the  most  important   aspect   with   it   is   to   be   on   the   vicinity,   it   is   not   necessary   an   exactly  coincidence.  That  is  why  we  use  the  simulation  as  a  reference.    Also  related  with  the  mirrors,  we  determine  the  position  of  the  first  mirror,  and  the  main  objective  is  to  have  the  light  beam  striking  on  the  center  of  it.  So  it  is  directly  depending  on  the  input  light  angle.    Finally,   there   is   two   last  aspects  determined  by  us   that  we  designed   following  our  judgments:   the   indium  mirror   reservoirs  and   the   fluidic   reservoirs.  On   the   indium  one,  we  made  a  circle  to  put  the  indium  into  the  channels,  and  the  distance  between  it  and  the  mirrors   is  the  same  as  other  designs  available  on  the   lab,   to  ensure  that  will  be  enough  space  to  have  a  correct  working.  On  the   fluidic  case,   the  shape  and  length  is  oriented  to  have  the  optimum  result  and  avoid  some  problems  that  can  be  presented  with  more  complex  designs.        

Page 62: Raul Broto Master Thesis

   

62  

4.4 Design  of  the  Specific  Cases      In  this  section  the  different  cases  will  be  reviewed.  It  is  necessary  to  remember  that  there  is  a  main  case  (Case  1)  and  then  all  the  others  are  the  same  pattern  with  some  specific  change  or  some  mixture  between  two  different  cases,  that  is  the  reason  why  only   the  changes  applied   to  every  case  will  be  commented.  We  can  also  see   in   the  pictures  a  theoretical  ray-­‐tracing,  that  simulates  the  light  path.    4.4.1 Case  1  (PMIR  inspired  on  the  paper,  Gap=250  μm)                                              

Figure  4.2:  Case  1    This  case  is  made  following  similar  measures  and  similar  aims  as  the  device  that  we  have  on  the  previous  paper.  The  reason  for  making  it  is  that  we  will  obtain  a  direct  comparison   between   the   air  mirror   and   the   benefit   of   using   indium  mirrors.   It   is  necessary  to  point  that  is  not  an  exactly  copy,  (we  don’t  have  the  exact  measures,  so  it  was  not  possible)  it  is  only  a  source  of  inspiration  and  the  easiest  way  to  compare  with  our  system.    It   is  also  very   important   to  point   the   fact   that   this  device  will  be   the  pattern   from  where  all  the  other  cases  will  be  inspired.  The  reason  is  that  with  the  same  system  but  with  a  small  change  applied,  it  is  possible  to  notice  quickly  where  are  the  points  where  we  can  improve  the  device.  This  will  allow  the  future  designs  to  include  these  improvements.    Entering  deeply  to  the  device  measures,  first  we  can  see  that  the  position  and  angle  of   the  group  fiber-­‐lenses   is  exactly   the  same  that  we  stated   in   the  Chapter  3,   (that  

Page 63: Raul Broto Master Thesis

   

63  

also  coincides  with  the  paper  value).  The  entrance  angle  value  is  54.8°,  to  obtain  the  desired  60° inside   the   fluidic  channel.  Also   the  mirror  measures  are   the  ones   that  we   have   seen   before   on   the   previous   section.   On   the   next   table   we   can   see   the  measures  for  the  distances  on  the  device.  As  it  was  said  before,  the  real  value  is  a  bit  different  due  to  the  change  of  surface  (not  included  on  the  simulation).      

  Simulation  Value   Distance  between  Mirrors  

Distance  between  Mirrors  and  Lenses  

Case  1   2365  μm   2409.4  μm   2559.5  μm      One  of  the  differences  between  our  design  and  the  one  in  the  paper  is  the  mirror  gap  (PDMS   distance   between   the   fluidic   channel   and   the   mirror).   Following   a  recommendation   of   the   professor,   we   put   it   on   250um,   just   to   be   sure   that   no  problems   will   appear   because   of   not   following   the   law   1:1.   This   point   will   be  reviewed  with  Case  2,  because  the  law  1:1  refers  to  the  indium  parts  but  we  wanted  to  be  completely  sure  in  this  pattern  case.    Also  another  difference  is  the  reservoir  shape  and  measures,  but  we  concluded  that  these  facts  would  not  have  a  big  importance  on  the  result,  always  remembering  that  our  objective  is  to  see  that  if  the  difference  of  these  two  similar  devices  is  huge  due  to  the  indium  mirror.    4.4.2 Case  2  (Reduced  Gap=100  μm)                                              

Figure  4.3:  Case  2    

Page 64: Raul Broto Master Thesis

   

64  

As  we  have  just  seen,  the  objective  of  this  case  is  to  confirm  if  it  is  possible  to  use  in  our  device  a  mirror  gap  under  250  μm.  The  design  is  exactly  the  same  as  the  case  1,  only  changing  the  gap  distance  between  the  mirror  and  the  fluidic  channel  from  250  μm  to  100  μm.    This   distance   change   causes   that   the   whole   system   is   slightly   changed.   If   we  remember   the  way   that  we  calculated  all   the  parameters,   it  was   supposing  a   total  distance  of  1400  μm  (900  μm  +  250  μm  *2),  so  now  the  new  value  should  be  1100  μm   (900  μm  +  100  μm   *2).   This  makes   changes  on   the  distance  between   the   two  mirrors,   and   the   distance   between   the   mirrors   and   the   fiber-­‐lenses,   the   new  distances  are:      

  Simulation  Value   Distance  between  Mirrors  

Distance  between  Mirrors  and  Lenses  

Case  2   -­‐   1984.1  μm   2346.9  μm    If  we  compare  it  with  case  1,  the  distances  are  shorter  (which  totally  makes  sense).  After   that,   considering   the   new   mirrors   values,   we   noticed   that   the   values   were  extremely   similar.   Remembering   the   purpose   of   the  mirror,   and  more   exactly   the  convergence  point,   the  most   important  thing   is   to  stay  on  the  vicinity  of   it.  That   is  the  reason  why  this  system  also  incorporates  the  same  mirror  than  in  Case  1.    4.4.3 Case  3  (Input  light  45°)                                                

Figure  4.4:  Case  3      

Page 65: Raul Broto Master Thesis

   

65  

With  this  system  our  goal  is  to  try  to  take  advantage  of  the  indium  properties,  such  as  the  lower  critical  angle.  We  can  have  a  lower  input  angle  and  still  be  in  TIR  zone,  which  means  that  we  are  reducing  the  volume  of  our  system.  The  only  drawback  is  that   the   optical   path   is   reduced,   so   it  will   be  worse   for   the   lower   concentrations.  This  fact  will  be  treated  in  case  4.    Comparing   with   Case   1,   the   change   on   the   input   fiber   angle   (42°)   to   obtain   the  desired   45°   inside   the   fluidic   channel,   makes   a   positional   change   in   the   entire  device.   The   values   of   the   mirror   measures   have   been   presented   before,   and   the  distance   between   the   lenses-­‐fiber   group   and   the   mirrors   change   to   these   new  values:    

  Simulation  Value   Distance  between  Mirrors  

Distance  between  Mirrors  and  Lenses  

Case  3   1400  μm   1440.2  μm   1492.2  μm    4.4.4 Case  4  (Input  light  45°  with  wider  fluidic  channel)                                              

Figure  4.5:  Case  4      In  Case  3  it  was  mentioned  that  the  optical  path  was  strongly  reduced,  producing  a  undesired  effect  for  the  lower  concentrations.  In  Case  4,  our  objective  is  to  compare  if  with  a  wider  fluidic  channel  we  can  also  have  good  results  for  the  45° input.    The  enlargement  of  the  fluidic  channel  to  1900  μm  (2400  μm  if  we  count  the  gaps)  produces  a  change   in   the  whole  system  because   the   fluidic  channel  width  was   the  

Page 66: Raul Broto Master Thesis

   

66  

base  for  all  the  transformation  between  the  simulation  and  the  real  world.  With  the  new  values,  the  new  conversion  factor  is  17.2,  which  gives  us  these  values:    

  Px  Value   Input  45°  Fluidic  Channel  

Width   110   1900  μm  

Position  of  the  second  mirror   110   2400  μm  

Mirror  Focus   200    3340  μm  Mirror  Size   2   35  μm  

 Exactly   as   in   the   previous   cases,   these   values   correspond   to   the   simulation   and  when  they  are  transformed  into  the  real  world,  the  results  are:                    

    Simulation  Value   Distance  

between  Mirrors  Distance  between  Mirrors  and  Lenses  

Case  4   2400  μm   2442.4  μm   2492.2  μm    4.4.5 Case  5  (Original  +  3rd  mirror)                                        

Figure  4.6:  Case  5  

  Input  45°  Mirror  Radium   6680  μm  Mirror  Size   50  μm  Mirror  Height   815.8  μm  Mirror  Width   250  μm  

Page 67: Raul Broto Master Thesis

   

67  

     Case  5  is  exactly  the  same  than  the  case  1,  but  adding  a  third  mirror.  Our  goal  behind  that   is   that   an   enlargement   of   the   optical   path   can   bring   us  more   sensitivity   and  LOD.   An   extra   reflection   always   involves   some   dangers   (lose   of   SNR   or   beam  broadening)  so  we  will  compare  if  the  three  mirrors  present  advantages  respect  the  one  with  only  two.      The  most  important  design  fact  is  that  the  vertical  distance  between  the  second  and  the   third   mirror   is   the   same   as   the   distance   between   the   first   and   the   second,  (maybe  we  can  not  ensure  this,  but  is  the  idea  that  seems  more  reasonable).  Another  option  it  can  be  thought  is  that  the  distance  should  be  the  same  as  it  was  with  the  output  fiber  before  (replace  the  output  fiber  in  case  1  for  the  third  mirror),  but  with  ray-­‐tracing  this  theory  is  down,  mostly  because  the  horizontal  distance  are  not  the  same  in  both  cases.  The  distance  between  the  3rd  mirror  and  the  output  fiber  is  the  same  as  with  the  first  mirror  and  the  input  fiber.    

    Simulation  Value   Distance  

between  Mirrors  Distance  between  Mirrors  and  Lenses  

Case  5   2365  μm   2409.4  μm   2559.5  μm    Finally,  it  is  necessary  to  ensure  two  facts:  the  first  one  is  to  look  at  the  values  of  the  previous  table.  They  totally  coincide  with  the  ones  in  Case  1.  The  second  fact  is  that  there   is  not  an  enlargement  of   the  channel   length.  The  only  change   is  related  with  the   distance   between   the   fluidic   reservoir   and   the   lenses-­‐fiber   group,   that   it   is  strongly  reduced.    4.4.6 Case  6  (Input  light  45° +  3rd  mirror)  

                                     

Figure  4.7:  Case  6  

Page 68: Raul Broto Master Thesis

   

68  

In   that   case,   as   in   the   previous   one,   is   exactly   the   same   than  Case   3   but   adding   a  third  mirror.  Our  objective  is  to  try  the  enlargement  of  the  optical  path  with  the  45  input.  This  case  is  also  very  important  compared  to  Case  4,  because  it  will  show  us  if  there  is  a  bigger  improvement  with  a  third  mirror  or  with  a  wider  fluidic  channel.    As  in  Case  5,  the  most  important  design  fact  is  that  the  vertical  distance  between  the  second  and   the   third  mirror   is   the   same  as   the  distance  between   the   first  and   the  second,  (maybe  we  can  not  ensure  this,  but  is  the  idea  that  seems  more  reasonable).      

  Simulation  Value   Distance  between  Mirrors  

Distance  between  Mirrors  and  Lenses  

Case  6   1400  μm   1440.2  μm   1492.2  μm    Finally,  it  is  necessary  to  point  that  in  this  case  there  is  no  change  on  the  position  of  the  input  fiber-­‐lenses  group  (in  Case  5  it  was  different).    4.4.7 Case  7  (Input  light  35°)  

                                         

Figure  4.8:  Case  7      As  in  Case  3,  we  will  try  to  take  advantage  of  the  indium  properties,  and  in  that  case  we  will  try  to  go  even  further,  with  a  35°  input  angle.  Theoretically  we  will  still  be  in  TIR  zone  with  most  of  the  angles,  but  we  have  chosen  35°  just  to  be  sure  that  we  will  not  reach  the  critical  angle.    The   change   in   the   input   fiber   angle   (32,9°)   to   obtain   the   desired   35°   inside   the  fluidic   channel,  makes   a   positional   change   in   the   entire   device.   The   values   of   the  

Page 69: Raul Broto Master Thesis

   

69  

mirror  and  the  distance  between  the   lenses-­‐fiber  group  and  the  mirrors  change  to  these  new  values  (considering  also  a  change  in  the  Conversion  Factor  =  9.93):    

  Px  Value   Input  35°  Fluidic  Channel  

Width   141   900  μm  

Position  of  the  second  mirror   97   963  μm  

Mirror  Focus   200   1986  μm  Mirror  Size   2   20  μm  

 Exactly   as   in   the   previous   cases,   these   values   correspond   to   the   simulation   and  when  they  are  transformed  into  the  real  world,  the  results  are:                    

    Simulation  Value   Distance  

between  Mirrors  Distance  between  Mirrors  and  Lenses  

Case  7   963  μm   1018.3  μm   1029.2  μm        

  Input  30°  Mirror  Radium   3972  μm  Mirror  Size   50  μm  Mirror  Height   628.3  μm  Mirror  Width   250  μm  

Page 70: Raul Broto Master Thesis

   

70  

4.5 Case  8  (Final  Design)                                                                      

Figure  4.9:  Case  8      As  we  can  see  in  the  picture,  this  case  is  a  mixture  between  case  1  and  case  3.  Our  main  objective  here  is  to  have  in  the  same  device  two  ways  of  calculating  different  concentrations.   The   first   way   is   related   with   the   3   mirrors   path,   which   means   a  longer  optical  path  that  allows  a  better  calculation  for  lower  concentrations.  At  the  same   time   with   the   second   way   we   can   calculate   better   the   result   for   higher  concentrations  (shorter  path).    As  a  specific  design  characteristics,  we  only  have  to  state  that  the  design  values  are  exactly  the  same  than  in  the  previous  cases,  except  that  due  to  a  possible  blocking  of  the  light  between  the  45°   input/output  fiber  and  the  second  mirror,  we  cut  a   little  bit  of  the  mirrors  edge  (it  is  a  little  part  that  will  not  affect  to  the  reflection  on  it).  

Page 71: Raul Broto Master Thesis

   

71  

   Finally,   we   can   see   the   final   design   of   the   mask   that   was   sent   to   the   printer  company:    

   

Figure  4.10:  Mask  Design  sent  to  the  Printer  Company  

Page 72: Raul Broto Master Thesis

   

72  

   

Page 73: Raul Broto Master Thesis

   

73  

CHAPTER  5:  FABRICATION  TECHNOLOGY      5.1 Master  Fabrication      In   the   previous   chapter,   the   devices   were   designed   and   now   we   are   going   to  describe  the  fabrication  process.  The  process  consists  in  three  different  main  steps:  first  the  fabrication  of  the  SU-­‐8  100  master  (which  contains  the  8  different  devices),  the   replication   of   the   devices   in   different   PDMS   stamps   and   finally   the   filling   of  melted  indium  inside  the  microchannels.    In  this  section  we  will  take  special  attention  on  the  master  fabrication  process,  and  the  other  two  other  main  steps  will  be  deeply  commented  in  following  sections.    5.1.1 Fabrication  Process    The  master   fabrication  process   is   based  on   conventional   photolithography.   In   our  case  it  is  not  necessary  to  use  a  cleanroom,  because  we  will  not  be  working  with  an  extremely  small  scale  or  an  extremely  accurate  precision  (even  though,  we  will  try  to  avoid  dust  entrapment  as  much  as  possible).  There  are  several  reasons  why  we  have  chosen  soft  lithography:  is  inexpensive,  easy  to  learn,  and  accessible  to  a  wide  range  of  users.    The   master   is   a   silicon   substrate   with   microscopic   reliefs,   which   in   our   case   are  made  of  a  negative  photoresist  called  SU-­‐8.  A  negative  photoresist  is  a  light  sensitive  polymer  that  cures  when  exposed  to  UV  radiation.  The  pattern  of  photoresist  is  the  negative  replica  of  our  devices  on  the  silicon  substrate.  In  the  picture  below,  we  can  see  a  simple  case  of  a  photolithography  master  with  some  microstructures  on  it:      

 

 

 

 

 

Figure  5.1:  Master  for  soft  lithography  Source:  Anil  B.  Shrirao  et  al.  (manuscript  in  preparation)  

           

Page 74: Raul Broto Master Thesis

   

74  

The  design  of  our  photolithography  mask  was  discussed  in  the  last  chapter,  and  the  real  mask   is   showed   in   the   next   picture.   The   Autocad   file  was   sent   to   an   outside  vendor,  who  printed  the  mask  on  a  flexible  transparent  film  using  a  high-­‐resolution  laser  printer.        

                                     

Figure  5.2:  Photolitography  Mask      The  process  starts  with  the  cleaning  of  the  silicon  wafer  on  the  Plasma  Cleaner.  After  that,  the  negative  photoresist  SU-­‐8  100  is  deposited  on  the  top  of  it,  approximately  1  mL  per   inch  (in  our  case  we  have  a  3   inches  wafer,   so  3  mL).  The  next  step   is   the  Pre-­‐exposure  baking,  used  to  evaporate  the  unnecessary  solvent  in  the  photoresist.    Then,  the  wafer  is  exposed  to  a  365  nm  UV  light  through  the  photolithography  mask,  which  will  ‘print’  our  draw  in  the  photoresist.  The  working  principle  is  to  cross-­‐link  the  photoresist  through  the  transparent  region  of  the  mask.  The  exposure  intensity  is  5  mW/cm2  (we  will  need  this  data  on  further  calculations).    After   this   step,   a  Post-­‐exposure  baking   is  made   for  a  better  adhesion  between   the  cross-­‐linked   photoresist   and   the   silicon   wafer.   With   a   developing   in   a   solvent  (PGMEA),  the  non  cross-­‐linked  photoresist  is  eliminated,  and  we  obtain  our  desired  draw  (the  negative  replica  of  the  microchannels).    Finally,  a  process  called  silanization   is  performed,   in  order  to  avoid  the  sticking  of  the  PDMS  stamps  on  the  master  during  the  next  process  of  replication.  This  process  is   performed   in   a   vacuum   chamber   with   a   product   called   Tridecafluoro-­‐1,1,2,2-­‐Tetrahydrooctyl-­‐1-­‐Trichlorosilane,   for   at   least   4   hours   (usually   we   leave   it   there  during  approximately  half  a  day).    

Page 75: Raul Broto Master Thesis

   

75  

 Here  we  can  see  a  schematic  that  summarizes  all  the  process:      

   

Figure  5.3:  Schematic  of  photolithography  process  used  to  fabricate  the  SU-­‐8  100  master  for  soft  lithography  

Source:  Anil  B.  Shrirao  et  al.  (manuscript  in  preparation)      All   the  values  used   in   the  different  process  parts,  can  be   found  at   the  datasheet  of  photoresist   SU-­‐8   100   according   to   our   desired   thickness23  (250μm).   On   that  datasheet  is  also  where  we  can  see  why  we  have  chosen  the  SU-­‐8  100  instead  of  the  SU-­‐8  50.  The  reason  is  that  with  SU-­‐8  50  it  is  not  possible  to  achieve  the  desired  250  μm   of   height.   All   the   values   found   there   are   direct   numbers,   except   for   the   UV  exposure  time,  where  we  have  to  make  an  easy  calculation:        

   

 

                                                                                                               23  http://mems.mirc.gatech.edu/msmawebsite/members/processes/processes_files/SU8/  Data%20Sheet%2050-­‐100.pdf  

2

2

8 50 ( / ) ( / )

dosetocurethedesigned thicknessofUVE T SU mJ cmxposureUV Intensityof exposuretoo

imel mW cm

=−

Page 76: Raul Broto Master Thesis

   

76  

 The  most   tricky  part  on   this   step   is   to  obtain   the  desired  height,  because  a  height  below   the  desired  won’t  be  able   to   contain   the  optical   fiber,   and  a  height  above   it  will  make  the  optical  fiber  not  being  constrain  and  this  means  that  light  can  diverge  on   the   vertical   direction.   The   value   of   this   desired   height   is   250   μm,   and   the  theoretical  datasheet  values  to  obtain  it  are:    

  Datasheet  Values  Spin  Speed   1000  rpm  

Pre-­‐Bake/Soft-­‐Bake   30  min  /  90  min  UV  Exposition   75  sec  Post-­‐Bake   1  min  /  20  min  Develop   20  min  

 The   values   on   this   table   are   used   only   as   a   reference.   We   will   see   with   the   real  experimentation   that   the   height   obtained   using   these   values   does   not   match   our  desired,  and  then  a  little  adjustment  will  be  necessary.  The  same  problem  applies  to  the  UV  exposure  time,  because  with  75  sec  some  devices  are  not  printed  perfectly.    All   the  master   fabrication   process   is   fully   explained   in   the   Dr.   Shrirao   Protocol24,  taking   special   attention   at   the   equipment   necessary,   precautions,   calculations   and  equipment   preparation,   as  well   as   obviously,   all   the   procedure   explained   in   great  detail.      The  final  result  of  one  of  the  masters  fabricated:                                          

Figure  5.4:  Master  Fabricated  by  us    

                                                                                                               24  Fabrication  of  SU-­‐8  Master  for  Soft  Lithography:  Standard  Operating  Protocol,  Dr.  Anil  Shrirao  

Page 77: Raul Broto Master Thesis

   

77  

5.2 PDMS  Stamp  Fabrication      The  second  step  in  the  soft-­‐lithography  fabrication  process  is  the  replication  of  the  master  by  using  PDMS   in  order   to  obtain   the  PDMS  stamp.  After  obtaining   it,   it   is  sealed  to  a  glass  substrate,  to  prepare  the  device  for  the  indium  filling.  In  this  section  we  will  explain  all  the  steps  involved  in  this  fabrication.    5.2.1 Fabrication  Process    The  process  starts  with  the  mixture  of  the  PDMS  elastomer  and  its  curing  agent,  in  a  proportion   10:1   by   weight   (that   is   2g   of   curing   agent   and   20g   of   elastomer,   for  example).   After   this,   it   is   necessary   to   remove   all   the   bubbles   from   the   PDMS   (in  order   to  avoid   future  problems  and  also   to  enhance  mechanical   force).  So   first  we  have   to  degas   the  mixture  alone  and  after  pouring   it   over   the  master,  we  degas   it  again.    The  master  covered  with  PDMS  and  conveniently  degassed,  is  then  cured  in  an  oven  at  65˚C  for  60  minutes,  which  accelerates  the  cross-­‐linking  rate  of  the  PDMS.  After  that,  the  PDMS  is  peeled  off  the  master  and  we  obtain  a  PDMS  stamp  as  we  can  see  on  the  next  picture:                                

Figure  5.5:  PDMS  Stamp    Once  we  have  the  PDMS  Stamp,  it  is  very  important  to  take  special  attention  during  the  perforation  of  the  indium  filling  holes.  Sometimes,  the  hole  can  not  match  exactly  with   the   indium   microchannel   or   some   PDMS   can   remain   inside   the   hole,   which  causes  a  failure  on  the  next  step.    Finally,  the  patterned  side  of  the  PDMS  Stamp  and  the  glass  substrate  are  oxidized  on  the  Plasma  Cleaner  and  irreversibly  sealed  together.  In  order  to  have  a  stronger  seal,  they  are  kept  in  an  oven  at  65˚C  for  10  min.    

Page 78: Raul Broto Master Thesis

   

78  

The  entire  PDMS  Stamp  fabrication   is   fully  explained   in   the  Dr.  Shrirao  Protocol25.  All  the  procedure  explained  in  great  detail.      Here  we  can  see  a  schematic  that  summarizes  all  the  process,  and  the  result  of  one  PDMS  Stamp  fabricated  sealed  with  the  glass  substrate:      

   

Figure  5.6:  Schematic  of  step-­‐by-­‐step  process  used  to  fabricate  the  PDMS  Stamp    Source:  Source:  Anil  B.  Shrirao  et  al.  (manuscript  in  preparation)  

         

 Figure  5.7:  PDMS  Stamp  sealed  with  a  Glass  Substrate  

                                                                                                               25  PDMS-­‐Glass  Bonding  using  air  Plasma:  Standard  Operating  Protocol,  Dr.  Anil  Shrirao  

Page 79: Raul Broto Master Thesis

   

79  

5.3 Filling  molten  indium  using  Vacuum      The  final  step  in  the  soft-­‐lithography  fabrication  process  is  the  filling  of  the  molten  indium  in  the  microchannels  through  the  single  inlet,  using  vacuum.  In  this  section  we   will   examine   all   the   process,   as   well   as   the   physics   involved   in   this   special  situation.    1.4.1 Physics  involved  in  the  Process    If  we  take  a  look  at  the  physics  involved  in  the  process,  there  are  two  characteristics  that   are   clearly   important:   the   surface   tension   and   the   gas   permeability.   Molten  Indium   has   a   high   surface   tension   that   implies   that   does   not   go   into   the  microchannel  on  its  own,  it  requires  an  external  force  to  pull  the  indium  inside  it.    The   permeability   of   a  material   is   defined   as   the   ability   of   a  material   to   allow   the  passage   or   diffusion   of   other   materials   through   it.   The   PDMS   blocks   vapor   and  liquids,   but   allows   the   passing   of   gasses,  which   is   the   reason  why   it   is   called   gas  permeable.   We   use   this   characteristic   together   with   the   vacuum   to   solve   the  previous  problem.    Because  of  the  gas  permeability,  the  applied  vacuum  removes  the  air  of  the  device  in  two  different  ways:  the  blue  lines  represent  the  air  that  flows  through  the  inlet,  and  the  red  lines  represent  the  air  that  is  removed  due  to  the  gas  permeability.    

 

Figure  5.8:  Air  removed  by  the  applied  Vacuum  Source:  Anil  B.  Shrirao  et  al.  (manuscript  in  preparation)  

   When   inside  the  chamber  we  have  the  vacuum  applied  conditions,   the  pressure   in  both  regions  (microchannel  and  chamber)  is  the  same.  Then,  when  indium  melts  it  seals   the   microchannel   region   completely   and   it   stays   isolated.   The   next   step   is  releasing   the  vacuum,   so   the   chamber   recovers   the  atmospheric  pressure   (but  we  still  keep  the  vacuum  in  the  microchannel).      The  pressure  gradient  between   the   two   regions   causes   the   flow  of  molten   indium  from   the   inlet   to   the   microchannel   and   the   mirror.   However,   if   we   take   into  

Page 80: Raul Broto Master Thesis

   

80  

consideration   the   Ideal   Gas   Law   (P*V=Constant),  we   can   easily   see   that  when   the  volume  decreases  the  pressure  raises  and  can  turn  equal  to  atmospheric  pressure.    But  as  we  have  previously  seen,  PDMS  is  a  gas  permeable  material  that  implies  that  the  vacuum  it  is  also  inside  the  walls  of  the  PDMS.  That  is  the  reason  why  the  Ideal  Gas  Law  cannot  be  applied  on  it.  This  means  that  apart  from  the  vacuum  inside  the  channel   pulling   force,   there   is   another   pulling   force   due   to   the   vacuum   inside   the  PDMS  walls.  Therefore,  the  melted  indium  continues  flowing  until  it  reaches  the  end  of  the  mirror  (the  indium  cannot  pass  through  the  PDMS).  When  this  happens,  the  device  is  cooled  at  room  temperature,  in  order  to  solidify  the  indium    Finally,   just   mention   that   we   have   chosen   indium   due   to   its   low   melting   point  (156˚C),  which  is  much  more  below  than  the  temperature  when  PDMS  starts  being  unstable  (343˚C).      1.4.2 Fabrication  Process    Before  starting  with  the  process,  the  device  should  be  placed  on  the  flat  surface  of  a  hot  plate.  Then  we  put  two  pieces  of  Indium  exactly  over  the  hole  that  we  previously  have  made  (large  enough  to  cover  the  mirror  and  the  microchannel).  After  that,  we  place  the  vacuum  chamber  over  the  hot  plate  and  we  turn  on  the  vacuum.                                      

Figure  5.9:  Hot  plate  and  conical  Vacuum  Chamber    After  20  minutes  applying  the  vacuum,  we  turn  on  the  hot  plate  to  a  temperature  of  205˚C   (250˚C   on   the   display)   for   10   minutes   more,   without   disconnecting   the  vacuum.  30  minutes  after   the  start  of   the  process,  we  have  to   turn  off   the  vacuum  but   without   taking   out   the   vacuum   valve.   It   is   very   important   that   the   indium   is  melted  (it  only  takes  around  5  min),  and  some  knocks  on  the  hot  plate  are  necessary  to  ensure  that  the  indium  covers  the  inlet  hole.    

Page 81: Raul Broto Master Thesis

   

81  

Finally,  we  open   the   valve   and   the   vacuum   is   released   to   the  normal   atmospheric  pressure.  Then,  we   can   see  how   the   indium   flows   inside   the  microchannel  until   it  arrives  to  the  mirror  (or  mirrors  in  some  cases).  Sometimes  we  need  a  second  round  to  achieve  the  complete  filling,  but  normally  it  works  at  the  first  one.  As  soon  as  the  mirror  is  completely  filled,  the  device  is  removed  from  the  hotplate  to  cool  at  room  temperature   to   solidify   the   indium.   If   required,   the   excess   of   indium   can   be  removed.    The  entire  Indium  filling  process  is  fully  explained  in  the  Dr.  Shrirao  Protocol26.  All  the  procedure  is  explained  in  great  detail.      Here  we  can  see  a  schematic  that  summarizes  all  the  process  (note  that  our  hot  plate  temperature   is   205˚C   (250˚C   on   the   display)),   and   the   result   of   one   PDMS   Stamp  with  indium  filling:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.10:  Schematic  of  process  used  to  fill  the  molten  Indium  using  vacuum    Source:  Anil  B.  Shrirao  et  al.  (manuscript  in  preparation)  

 

   

                                                                                                               26  PDMS-­‐Glass  Bonding  using  air  Plasma:  Standard  Operating  Protocol,  Dr.  Anil  Shrirao  

Page 82: Raul Broto Master Thesis

   

82  

                           

Figure  5.11:  PDMS  Stamp  with  indium  filling  the  mirrors  and  the  microchannels          In   this   chapter   we   have   seen   all   the   procedures   and   theory   implied   in   our  fabrication   process.   In   the   next   one,   we   will   present   the   results   that   we   have  obtained,  as  well  as,  the  problems  encountered  during  it.      

Page 83: Raul Broto Master Thesis

   

83  

         

Page 84: Raul Broto Master Thesis

   

84  

CHAPTER  6:  RESULTS      6.1 Experimentation  Results      This  chapter  is  oriented  to  present  the  results  obtained  from  the  fabrication  of  the  masters   and   the   stamps.  We  will   show   the   evolution   during   the   experimentation  process,  as  well  as  the  different  problems  that  had  appeared  during  the  realization  and  the  solutions  that  we  have  applied.    The  following  sections  will  be  focused  on  a  general  view  of  all  the  experiments,  but  a  more   detailed   view   of   the   progress   of   each   day   can   be   found   on   the   attached  Laboratory  Notebook,   that   present   the  work  done   each  day.  Also,   related  with   the  microscope  pictures,  only  the  most  significant  will  appear  in  this  chapter  but  every  picture  that  we  made  can  be  found  on  the  attached  Microscope  Pictures   (organized  depending  on  the  day  it  were  taken).    6.1.1 Master  Results    In  this  section,  the  results  obtained  with  the  fabrication  of  the  different  masters  are  presented.   As   an   overview,   we   can   say   that   from   the   7   attempts,   6   resulted   in   a  master  but  only  4  of  it  were  a  master  with  our  desired  height  (or  with  all  the  devices  fully  defined).  The  reason  behind   that   is   that   the  experimentation   is  a  path  where  every   day   we   were   refining   more   the   result   obtained,   depending   on   the   result  (satisfactory  or  not)  obtained  the  day  before.    The   first   important   thing   that   we   noticed   during   the   process   is   that   the   values  presented  on  the  datasheet  (also  presented  in  the  last  chapter),  are  not  the  correct  values  to  obtain  our  perfect  result.  So  our  main  objective  was  changing  these  values  to  arrive  to  the  optimal  point.  The  variables  changed  were:    

-­‐ Increase  of  the  spin  speed.  -­‐ Increase  of  the  exposure  time.  -­‐ All  the  other  values  were  exactly  the  same  as  in  the  datasheet.  

 On   the   next   table   we   can   see   a   summary   of   the   different   masters   that   we   have  fabricated:    

  Spin  Speed  (rpm)  

Exposure  Time  (sec)  

Height  (μm)   Observations  

Master  #1   1100   75   380-­‐395   Some  devices  are  not  perfectly  defined.  High  height.  

Master  #2   1500   81   295-­‐305   The  wafer  was  used  on  the  wrong  side.  Still  high  height.  

Page 85: Raul Broto Master Thesis

   

85  

Master  #3   1700   81   245-­‐250   Nearly  good,  a  little  bit  below  the  desired.  

Master  #4   1680   81   245-­‐252   Good.  We  realized  that  it  is  not  possible  to  accurate  more.  

Master  #5   1690   81   -­‐   Problem  after  developing.  The  master  was  ruined.  

Master  #6   1690   81   248-­‐250   Perfect.  Third  master  with  the  desired  height.  

Master  #7   1690   81   255-­‐260   A  little  bit  high.  It  is  not  possible  to  accurate  more.  

   From  the  seven  experiments,  we  can  see  that  4  cases  match  nearly  exactly  with  our  desired   height.   We   realized   that   it   is   not   possible   to   accurate   more   because   it  depends  on  a  huge  variety  of  factors  such  as  temperature,  humidity  and  others;  that  can  change  the  height  a  little  around  this  value.      Apart  from  the  height,  we  also  found  that  was  necessary  an  increase  of  the  exposure  time,  because  some  devices  were  not  perfectly  defined  with  75  seconds.  Finally,   in  all  the  fabricated  masters,  the  general  measures  were  the  ones  that  we  designed.    If  we   talk  about   the  problems,  we   can   consider   that   the   fabrication  process   is  not  really   difficult,   but   it   contains   some   steps   where   it   is   necessary   to   put   a   lot   of  attention.  For  example,  master  #2  was  fabricated  on  the  wrong  side  (the  side  that  is  not  polished),  resulting  in  a  wrong  master  even  though  we  use  it  for  calculating  the  height.   Also   a   problem   happened   during   the   realization   of   master   #5,   because  during  the  drying  after  the  develop  some  accident  happened  with  an  object  wrongly  fixed,  that  led  into  the  explosion  of  the  master  (and  of  course,  ruining  it).    This  special  attention  is  not  only  related  with  the  fabrication  process.  For  example,  master   #3   (a   correct  master),  was   broken   during   the   cutting   of   the   PDMS   Stamp,  which  ruined  the  master  completely.  We  conclude  that  even  it  is  not  a  complicated  process,  there  are  several  aspects  that  have  to  be  into  consideration,  and  always  it  is  necessary  to  be  very  careful  on  it.    Another   difficulties   that   we   found   are   mainly   that   is   a   long   process   in   time.  Considering  only  the  fabrication  time,  it  takes  approximately  3  hours  since  we  have  the  plain  silicon  wafer  until  we  obtain  the  wafer  with  our  design  on  it.  After  that  it  is  necessary   to   add   the   silanization   time,  which   is   at   least   of   four  hours.  Apart   from  this,  the  hot  plate  is  not  enough  big  to  perform  more  than  one  master  at  each  time.  This  is  the  reason  why  we  can  only  fabricate  one  master  per  day.    Finally,   only   comment   that   concerning   on   the   accuracy   of   the   different  measurements,   they   are   not   highly   precise   mainly   because   one   reason:   the  microscope  measures   are   done  manually,  which  means   that   some   precision   error  can   be   made.   The   microscope   is   connected   to   a   computer,   which   calculates   the  

Page 86: Raul Broto Master Thesis

   

86  

distance   between   two   points   that   we   select   with   the   mouse   (here   is   where   the  problem   is   located,   the   point  where  we   click   the  mouse   can   not   be   100%   exact).  Then,  this  distance  is  calculated  with  a  conversion  factor  (it  is  necessary  to  consider  the  same  optical  lens  in  the  computer  and  the  microscope).    Now   we   will   show   each   of   these   characteristics   more   detailed,   with   the   diverse  problems  and  solutions  that  we  have  taken.    6.1.1.1 General  measures    First,  it  is  necessary  to  take  a  look  at  the  general  measures  of  the  devices,  to  ensure  that  the  values  that  we  designed  are  respected  after  all  the  fabrication  process.  The  result  is  that  all  the  measures  are  accomplished,  considering  as  we  said  before  that  there  are  several  reasons  that  may  cause  a  little  variation.    As  we  can  see  on   the  next  pictures,   the  different  measures  such  as   fluidic  channel  width,  fiber-­‐channel  gap,  mirror  width  and  mirror-­‐fluidic  channel  gap  width,  match  nearly  exactly  with  the  ones  that  we  designed.    

§ Fiber-­‐Channel  Gap  Length:  149  μm    

 Figure  6.1:  #35  Fiber-­‐Channel  Gap  Case  5  GAP  LENGTH  

                     

Page 87: Raul Broto Master Thesis

   

87  

§ Fluidic  Channel  Width:  899  μm    

 Figure  6.2:  #36  Fluidic  Channel  Case  5  WIDTH  

   

§ Mirror  Microchannel  Width:  224  μm  § Distance  between  Mirror  and  Fluidic  Channel:  252  μm  

                                     

Figure  6.3:  #37  Mirror  Measures  Case  5              

Page 88: Raul Broto Master Thesis

   

88  

 § Mirror  width:  254  μm  

                             

Figure  6.4:  #7  Mirror  Case  2  WIDTH    6.1.1.2 Exposure  time    Another  important  point  is  the  exposure  time.  At  the  beginning,  our  calculations  of  it  where  75  sec,  but  some  of  the  devices  (Case  6,  7  and  8)  had  some  of  their  parts  not  perfectly  defined.  That   is   the  reason  why  we  increase   it  until  81  sec,  where  all   the  devices  and  parts  of  it  are  perfectly  defined.    The  reason  behind  these  values  is  that  if  we  take  a  look  at  the  SU-­‐8  datasheet,  there  is   not   an   exact   value   for   the   exposure   energy.   The   range   goes   from   400-­‐650  (approximately),   and   that   is   why   we   have   chosen   550   mJ/cm2   in   first   instance,  because  it  was  near  the  central  point  of  the  range.  This  value  of  550  mJ/cm2,  after  applying  the  correspondent  formula  (explained  in  the  last  chapter)  is  what  results  in  the  75  seconds.    

                                 

Figure  6.5:  Recommended  exposure  dose  Process  Source:  http://mems.mirc.gatech.edu/msmawebsite/members/processes/processes_files/SU8/  

Data%20Sheet%2050-­‐100.pdf  

Page 89: Raul Broto Master Thesis

   

89  

 As  we   can   see   on   the   pictures   at   the   end   of   this   section,  with   this   exposure   time  some   of   the   devices   were   not   totally   defined.  We   can   see   that   some   parts   of   the  device  does  not  appear,  for  example  the  part  for  the  optical  fibers  (Case  6,  7  and  8),  and  even  in  Case  7  one  mirror  does  not  exist.    After   examining   these   problems,  we   took   the   decision   of   increasing   the   exposure  time.  Instead  of  550  mJ/cm2,  we  decided  to  choose  600  mJ/cm2,  which  results  in  81  seconds  of  exposure  time.  After  this  change,  all  the  devices  were  clearly  defined  and  we   decided   that   this   is   the   exposure   time   we   will   be   using   in   the   following  experiments.    Here  we  can   see   some  of   the  problems   that  appear  with   the  Master  #1   (exposure  time  75  seconds):                                    Figure  6.6:  Case  6  not  defined,  Master  #1                                                            Figure  6.7:  Case  7  not  defined,  Master  #1  

           

                     

Figure  6.8:  Case  8  not  defined,  Master  #1    

Page 90: Raul Broto Master Thesis

   

90  

6.1.1.3 Master  Height    Finally,   the  measure  that  was  more  difficult   to  achieve   is   the  master  height.  As  we  said   in  numerous  occasions  before,   it   is   important   to  achieve  a  value  very  close  to  the  250  μm  because  the  optical  fiber  diameter  is  230  μm,  so  a  value  under  250  μm  will  not  allow  the  fiber  to  enter  and  a  value  above  it  will  result   in   light  divergence  due  to  a  bad  position  of  it.    The  most  important  parameter  related  with  the  height  is  the  Spin  Speed.  As  we  can  see   on   the   previous   table,   with   the   first  master  we   used   a   low   speed   (1100   rpm  although  the  recommended  value  in  the  datasheet  was  1000  rpm,  we  supposed  that  a  higher  value  was  necessary)  that  gave  us  a  high  height  (390  μm).  From  that  point  on,   an   increase   of   the   Spin   Speed   resulted   on   a   decrease   of   the   height   until   the  desired   point,   reached   with   the   third  master.   In   the   next   picture   we   can   see   the  calculation  of  the  height  on  the  first  master:                                              

Figure  6.9:  #1  Fluidic  Channel  Case  4  HEIGHT,  Master  #1      At  this  point  it  is  necessary  to  explain  a  bit  more  how  we  calculate  this  height.  Unlike  the   general   measures,   where   the   stamp   was   in   the   normal   position   at   the  microscope,  with  the  height  measures  the  procedure  is  completely  different.  First  of  all,  we  cut  the  stamp  vertically,  in  order  to  obtain  a  thin  portion  of  it.  After  that,  we  place   it   with   the   channel   horizontally,   in   order   to   have   a   transversal   view   of   the  stamp.  This  method  is  what  allows  us  to  have  a  picture  as  the  one  presented  above.    After   the   fabrication  of   the   first  master,   an   increase  of   the   spin   speed  was   clearly  necessary.   There   is   no   special   reason   why   we   have   chosen   1500   rpm,   the   only  reason  was  that  a  big  increase  was  necessary  to  go  from  390  μm  to  the  desired  250  

Page 91: Raul Broto Master Thesis

   

91  

μm.   So  we  picked  1500   rpm  as  well   as  we   could   choose   another   value.   The   same  happens  with  the  change  between  the  second  and  third  master.  But  in  that  case  the  height  change  necessary  was  smaller,  and  that  is  why  we  changed  from  1500  rpm  to  1700  rpm.    Here  we  can  see  a  couple  of  pictures  of  the  height  on  the  second  master  (295  μm  and  299  μm  respectively):                          

Figure  6.10:  #31  Fluidic  Channel  Case  4  HEIGHT,  Master  #2                                    

Figure  6.11:  #33  Mirror  Case  4  HEIGHT,  Master  #2        Then,  with   the   increase   to  1700   rpm  on   the   third  master,  we   finally  obtained  our  desired   height.   As   we   have   said   in   multiple   occasions,   we   considered   this   height  accurate  enough  for  our  purpose.  Here  we  can  see  some  pictures  from  it:                

Page 92: Raul Broto Master Thesis

   

92  

 

 Figure  6.12:  #51  Fluidic  Channel  Case  4  HEIGHT,  Master  #3  

                                   

Figure  6.13:  #53  Mirror  Case  4  HEIGHT,  Master  #3    After  that  point,  we  tried  to  be  more  accurate  refining  the  spin  speed,  but  as  can  be  seen  on  the  results  table  that  was  not  possible.  We  can  state  it  because  for  slightly  different  speeds  we  keep  obtaining  the  same  result.  Even  with  the  masters  #6  and  #7  we  can  see  that  with  the  same  speed  results  are  a  little  different.    Here  we  can  see  the  pictures  of  the  masters  #4,  #6  and  #7:    

   

Figure  6.14:  #71  Fluidic  Channel  Case  4  HEIGHT,  Master  #4  (249μm)  

Page 93: Raul Broto Master Thesis

   

93  

   

Figure  6.15:  #73  Mirror  Case  4  HEIGHT,  Master  #4  (247  μm)        

   

Figure  6.16:  #101  Fluidic  Channel  Case  4  HEIGHT,  Master  #6  (248  μm)        

   

Figure  6.17:  #102  Input  fiber  Case  4  HEIGHT,  Master  #6  (248  μm)            

Page 94: Raul Broto Master Thesis

   

94  

 

   

Figure  6.18:  #171  Fluidic  Channel  Case  4  HEIGHT,  Master  #7  (256  μm)          

     

Figure  6.19:  #172  Input  fiber  Case  4  HEIGHT,  Master  #7  (257  μm)                                  

Page 95: Raul Broto Master Thesis

   

95  

6.1.2 PDMS  Stamp  with  Indium  Filling  Results    The  process   to   fabricate   the  PDMS  stamp  with   Indium   filling  was  explained   in   the  last  chapter,  but  we  will  make  a  brief  summary  to  remember  it:    

§ PDMS  Stamps:  1) Mixture   1:10   between   the   PDMS   elastomer   and   the   curing   agent  

(normally,  if  we  want  to  fill  an  entire  master  we  need  20g:2g).  2) Degassing  the  mixture.  3) Put  the  mixture  over  the  master  and  degassing  again.  4) 1  hour  into  the  65ºC  Oven.  

 § Indium  filling:  

1) Plasma  Cleaner:  3  min  for  the  glass  slides  only.  2) Plasma  Cleaner:  2  min  for  the  PDMS  stamp  with  the  glass  slides.  3) 10  minutes  into  the  65ºC  Oven.  4) 20  Minutes  over  the  hot  plate  with  the  vacuum  activated  but  without  the  

hot  plate.  5) 10  minutes  at  250ºC  with  the  vacuum  still  activated.  6) Turn  off  the  vacuum  and  release  the  valve.  7) If   the   micro   channels   are   correctly   filled,   let   the   device   cool   at   room  

temperature.    After   the   step   number   6,   we   were   having   some   troubles   because   some   micro  channels  were  not  completely  filled.  That   is  the  reason  why  it   is  very  important  to  comment  the  solution  that  we  adopted  (it  is  also  presented  at  the  protocol  that  we  were  using).    If  the  micro  channels  and  the  mirrors  were  not  completely  filled  after  step  6,  we  try  again  the  step  5  but  only  for  two  minutes  (vacuum  on  and  the  hot  plate  at  250ºC).  After   this,  we  perform   step  6   again   and  most   of   the   times   the  micro   channels   are  successfully  filled.  Sometimes  it  is  necessary  a  third  attempt.  We  are  not  able  to  find  the  reason  why  this  extra  step  works,  but  experimentally  we  found  that  it  is.    Also,  it  is  important  to  comment  that  in  this  section,  the  results  are  obtained  through  the  microscope  pictures,  but  due  to  the  entire  device  is  too  big,  we  have  to  use  the  method  ‘Scan  Large  Image’,  where  different  pictures  are  captured  as  an  Array.  In  our  case,  the  best  array  that  fits  the  devices  is  9x10  images.    6.1.2.1 Problems  encountered  during  the  Process    During   the   fabrication   process   (specially   the   first   days   of   experimentation),   we  found   a   lot   of   problems   that   did  not   allow  us   to   obtain   a   correct   result.   As   in   the  master   fabrication,   the   process   is   not   particularly   complicated,   but   it   has   a   lot   of  tricks  where  it  is  necessary  a  lot  of  attention  to  avoid  undesired  mistakes.        

Page 96: Raul Broto Master Thesis

   

96  

Some  of   the  general  problems   that  happened  during   the  process  are  presented  on  the  following  list:    

-­‐ Mostly   at   the   beginning,   due   to   our   inexperience   we   sealed   some   of   the  devices  on   the  wrong  side.  This   implied   that   the  channel  was  on   the  upper  side,  so  we  were  not  able  to  perform  the  indium  filling  process.    

-­‐ Some  of   the   inlet  holes  were  too  close  to   the  end  of   the  PDMS  stamps.  This  made   that   when   the   inlet   hole   was   performed   the   wall   had   broken.   Also,  sometimes  the  wall  kept  apparently  fine  but  due  to  the  proximity  of  the  wall,  some  air  was  entering  inside  the  channel,  avoiding  the  indium  filling  process.  

 -­‐ After   re-­‐using   the   masters,   some   of   them   had   damaged   devices.   That   is  

mostly  due  to  the  cutting  process,  where  a  mistake  can  damage  seriously  one  of  the  parts  of  the  master.  

 -­‐ Finally,  without  finding  any  reason,  in  some  devices  the  indium  was  not  able  

to  reach  the  mirror  correctly.    Also,   during   some   days   of   the   experimentation  we  were   finding   lots   of   problems  basically  focused  on  the  cutting  and  the  indium  filling.  After  some  investigation,  we  found  that  it  was  due  to  the  excessive  height  of  the  PDMS  stamp.  Instead  of  20:2,  we  were  mixing  30:3  and  that  made  a  high  stamp,  which  was  difficult  to  cut,  to  perform  the   input  hole  and   to  be   filled  with   indium  (due   to   the  vacuum  force  necessary   to  enter  the  micro  channel  needed  was  also  higher).    After  locating  the  problem,  we  tried  with  some  thin  PDMS  stamps,  but  we  also  found  the  problem  that  the  sealing  was  not  enough  strong  in  some  occasions,  which  made  that  some  stamps  were  unsealed  avoiding  the  indium  filling.  So  we  concluded  that  it  is   necessary   to   achieve   a   compromise   between   this   two   aspects,   and   our   solution  was  the  previously  commented  20g:2g  per  master.    Finally,   the   last   trouble   that   we   had   is   that   after   some   days   of   fabrication,   we  realized  that  maybe  it  is  necessary  to  cut  the  PDMS  stamp  just  over  the  start  of  the  input  fiber  channel.  We  think  that  maybe  it  is  not  possible  to  cut  it  after  the  sealing,  so  can  be  a  huge  problem  that  will  disable  all  the  stamps  that  does  not  accomplish  that.    Apart   from   these   general   problems,   we   can   find   also   some   problems   in   specific  cases.  Sometimes  it  can  be  due  to  a  bad  cleaning  process,  a  damaged  master  or  some  indium  filling  imperfection.  In  the  next  pictures  we  can  see  some  of  it:      

Page 97: Raul Broto Master Thesis

   

97  

-­‐ Case  5  with  an  imperfection  in  front  of  the  first  mirror.  

Figure  6.20:  #91  Case  5  Ind  Fill  Input  Entire  Image      

-­‐ Case  1  with  the  input  fiber  wrong  fabricated  (the  failure  is  on  the  master,  so  every  stamp  replicated  has  this  error).  

Figure  6.21:  #104  Case  1  Ind  Filll  Entire  Image  

-­‐ Case  2  with  the  second  mirror  not  completely  filled.  

Figure  6.22:  #105  Case  2  Ind  Filll  Entire  Image  

Page 98: Raul Broto Master Thesis

   

98  

-­‐ Case   6   with   the   connection   between   the   fluidic   reservoir   and   the   fluidic  channel  broken.  

Figure  6.23:  #106  Case  6  Ind  Filll  Entire  Image  

-­‐ Case   6   with   the   fluidic   channel   bonded   to   the   glass,   probably   due   to   an  excessive  pressure  during  the  sealing  step.  

Figure  6.24:  #137  Case  6-­‐2  Ind  Filll  Entire  Image    

-­‐ Case  5  with  the  fluidic  channel  damaged.    

Figure  6.25:  #155  Case  5  Ind  Filll  Entire  Image  

Page 99: Raul Broto Master Thesis

   

99  

6.1.2.2 Results  Study    In   this   section,   we   are   going   to   present   the   final   results   obtained   during   the  fabrication  process.  Before  starting,  it  is  necessary  to  note  some  considerations  that  will  be  present  here:    

-­‐ A   successful   device   is   a  device  where   the   indium   filled   completely   and  any  problem  was  detected.    

-­‐ A   correct   device   is   a   device   where   the   indium   filled   completely   but   some  defect  is  present  that  probably  will  prevent  the  correct  working.  

 -­‐ A  failure  is  a  device  where  the  indium  was  not  correctly  filled,  (we  don’t  have  

microscope  pictures  for  these  stamps).    First  of   all,  we  want  a  present  a   table   that   shows   the  number  of   cases   that  where  successful,  correct  or  failure  during  every  day  of  experimentation:      

  Day  9   Day  10   Day  13   Day  14   Day  15  

TOTAL   8   8   16   8   12  

Successful   0   2   8   6   10  

Correct   1   2   3   1   1  

Failure   7   4   5   1   1  

   And  if  we  take  a  look  at  the  successful  percentages  of  the  total,  we  can  easily  see  our  improvement  during  all  the  fabrication  process.        

  Day  9   Day  10   Day  13   Day  14   Day  15  

TOTAL   8   8   16   8   12  

Successful   0   2   8   6   10  

Percentage   0%   25%   50%   75%   83%  

       

Page 100: Raul Broto Master Thesis

   

100  

Secondly,  we  will  present  a  table  with  the  successful  and  correct  devices  per  case,  to  see  if  we  can  find  a  pattern  of  a  wrong  designed  case  or  some  other  conclusion:         Case  1   Case  2   Case  3   Case  4   Case  5   Case  6   Case  7   Case  8  

TOTAL   4   4   4   2   6   7   3   4  

Successful   2   3   4   1   4   5   3   4  

Correct   2   1   0   1   2   2   0   0  

   We  can  extract  several  conclusions  from  the  table:    

-­‐ The   first   and   most   important   is   that   seeing   that   we   have   at   least   one  successful   device   in   every   case,   we   can   totally   reject   that   the   master   is  wrongly  designed.  At  the  same  time,  we  should  point  that  in  the  cases  1  and  4,  the  fact  that  they  have  less  successful  is  due  to  a  defective  master  (Case  1)  or  a  damaged  master  (Case  4),  not  because  of  a  design  mistake.    

-­‐ Another  very  important  conclusion,  directly  related  with  the  design  chapter,  is  the  results  of  Case  2.  It  is  necessary  to  remember  that  this  case  is  the  only  one  with  a  different  gap  width  between   the  mirror  and   the   fluidic   channel.  Our   hypothesis   was   that   maybe   it   would   not   work   because   the   height   is  higher  than  the  width.  We  can  see  that  this  is  not  accomplished;  the  devices  were  successful  as  much  as  the  others.  

                             

Figure  6.26:  #132  Case  2  Ind  Filll  Entire  Image            

Page 101: Raul Broto Master Thesis

   

101  

-­‐ Finally,  we  can  see  that  there  is  not  any  problem  with  the  cases  that  contain  2  or  3  mirrors  to  be  filled.  They  are  successful  as  much  as  the  others,  and  any  problem  was   related  with   this   fact.  We   can   ensure   that   the   design   on   this  aspect  has  been  perfect.  

                             

Figure  6.27:  #134  Case  5  Ind  Filll  Entire  Image      

                             

 Figure  6.28:  #136  Case  6  Ind  Filll  Entire  Image  

                     

Page 102: Raul Broto Master Thesis

   

102  

                             

Figure  6.29:  #139  Case  8  Ind  Filll  Entire  Image          As   we   said   before,   a   picture   of   every   correct/successful   device   and   the   daily  progress  can  be  found  in  the  Laboratory  Notebook.                                      

Page 103: Raul Broto Master Thesis

   

103  

6.2 Experimentation  Conclusions      After  all  the  experimentation  process,  we  can  draw  some  conclusions  extracted  from  our   daily   work.   Related   with   the   master   fabrication,   we   have   found   the   correct  fabrication  values  that  meet  our  purposes,  (which  are  different  from  the  datasheet  ones):       Datasheet  Values   Experimentation  Values  

Spin  Speed   1000  rpm   1690  rpm  Pre-­‐Bake/Soft-­‐Bake   30  min  /  90  min   30  min  /  90  min  

UV  Exposition   75  sec   81  sec  Post-­‐Bake   1  min  /  20  min   1  min  /  20  min  Develop   20  min   20  min  

   Also,  as  we  have  seen  on   the  previous  section,  we  can  conclude   that   the  master   is  well  designed,  because  we  have  at  least  one  successful  device  from  every  case.  The  mistakes  that  appear  on  the  devices  were  product  of  external  conditions.    Related  with   the  PDMS  stamps   fabrication  and   the   Indium   filling  process,   the   first  comment   is   that   we   found   that   a   lot   of   careful   is   needed   to   perform   all   the  fabrication,   and   that   is   the   reason   why   we   were   having   some   troubles   at   the  beginning.  But  as  we  can  see  in  the  previous  results,  our  progress  has  been  totally  satisfactory,  with  a  bigger  percentage  of  successful  cases  every  day.    The  biggest  problem  that  we  found  during  the  stamps  fabrication  was  the  excess  of  the   PDMS   stamp   height.   This   allows   us   to   conclude   that   in   order   to   avoid   the  majority   of   the   problems   that   we   are   having,   it   is   extremely   important   that   the  height  of  the  stamp  is  not  very  high  (but  avoiding  also  a  very  thin  stamp).  Our  final  decision  has  been  to  use  a  mixture  of  20g:2g  on  every  master.    Another  problem   that  we   encountered   at   the  beginning   is   related  with   the   letters  present   in   every   device   (explaining   the   particular   characteristics).   They   were  wrongly  replied,  and  it  may  cause  some  problems  to  the  device.  That  is  the  reason  why  we  were  thinking  on  erasing  it  from  the  fabrication  mask.  After  some  time,  and  due   to  our   improvement   in   the   fabrication  process,   this  problem  disappeared  and  we  kept  the  letters  on  the  design.    If  we  talk  about  the  improvements  that  can  be  made  on  future  designs,   in  order  to  make  easier  the  fabrication  process,  we  found  two:    

-­‐ As  we  said  we  had  some  problems  because  the  inlet  holes  were  two  close  to  the   PDMS   wall.   The   solutions   for   that   can   be   shorten   the   mirror   micro  channel  or  separate  more  the  devices  inside  the  master.    

Page 104: Raul Broto Master Thesis

   

104  

-­‐ Enlarge  the  fiber  positioner,  in  order  to  avoid  the  mentioned  cut.  As  we  have  seen,  a  diagonal  cut  was  necessary  because  after  the  sealing  maybe  it  was  not  possible  to  enter  the  fiber  inside  the  micro  channel.  

   Finally,  talking  more  concretely  about  the  cases,  we  can  state  that:    

-­‐ It  is  not  necessary  to  have  a  gap  of  250  μm  between  the  mirror  and  the  fluidic  channel.  We  can  see  that  in  Case  2  (with  only  100  μm)  the  device  is  fabricated  correctly.  This  will   imply  a  big   improvement  because  this  distance  does  not  contain  any  fluid,  so  it  is  not  useful  for  our  purpose.    

-­‐ The   second   aspect   is   that   even   the   cases   with   two   and   three   mirrors   are  correctly  filled,  which  means  that  our  design  has  been  perfect.  

                       

Page 105: Raul Broto Master Thesis

   

105  

   

Page 106: Raul Broto Master Thesis

   

106  

CONCLUSIONS  AND  FUTURE  WORK      In  conclusion,  my  work  during  these  eight  months  has  been  focused  on  the  design  and   fabrication  of   integrated   Indium  micromirrors.  Starting   from  the   investigation  of  all   the   information  available  about   the   topic  and  a  deep  study  of  some  concrete  papers  about  it,  we  realized  that  could  be  a  good  option  to  implement  these  mirrors  with  Indium.  We  went  on  with  a  simulation  test  to  optimize  the  design,  and  finally  the  fabrication  process,  which  has  been  successful.    One   of   the  most   important   things   that   I   can   conclude   after   the   realization   of   the  project,   is   that   is   really   gratifying   that   from   a   topic   where   I   did   not   had   any  knowledge,  I  have  reached  this  learning  level  eight  months  later.    During   the   research,   we   hypothesized   that   the   Indium   mirror   will   have   better  response   than   the   previously   studied   air   mirror.   We   found   some   theoretical  material   that  support  our   idea,  but  unfortunately  due  to   the   lack  of   time,  we  were  not  able  to  test  the  devices  to  characterize  the  response.    Also,   another   hypothesis  was   the   inclusion   of   a   third  mirror  with   the   purpose   of  enlarging  the  optical  path.  As  we  have  said,  we  were  not  able  to  characterize  it,  but  at  least  we  can  say  that  during  our  experimentation  we  have  seen  that  there  is  not  any  problem  about  adding  it,  from  the  fabrication  point  of  view.      To   support   these   hypotheses,   we   performed   a   Matlab   simulation   focused   on   the  obtaining   of   the   optimum  design.   Also,  we   used   this   simulation   to   confirm   all   the  theoretical  facts  that  we  had  previously  found.    The  fabrication  process  is  very  novel,  and  basically  permits  the  filling  of  a  dead  end  micro  channel  with   the  vacuum   force.  We  have  dealt  with  some  problems,  but  we  have   been   able   to   find   a   solution   for   them.   Finally,  we   obtained   excellent   results,  with  a  total  of  26  successful  devices.    In   this   way,   the   experimentation   has   demonstrated   that   our   design   was   correct,  even  tough  some  improvements  could  be  made  in  the  future.  The  fact  of  positioning  4  mirrors   in  one  device  (actually   in   less   than  2  cm2)  and  see   that  works  correctly,  confirms  our  statement.      

Page 107: Raul Broto Master Thesis

   

107  

To  fabricate  the  device,  we  had  followed  some  protocols  that  we  optimized  for  our  purpose.  For  the  master  fabrication  some  adjustments  were  necessary,  as  well  as  for  the   PDMS   stamp   fabrication,   where   we   improved   our   results   every   day   of  experimentation.    The  proposed  fabrication  method  is  simple,  inexpensive,  supports  mass  fabrication  and  is  suitable  to  fabricate  devices  for  Micro  Total  Analysis  System  (µTAS).    It   is   important  to  remark  that  during  the  project,  we  have  been  working  on  a  field  that  can  turn  out  in  a  leading  market  in  the  future  years.  As  we  previously  said,  this  technology  has  a  lot  of  advantages  and  for  sure  will  become  very  important  in  a  near  future.    Finally,   it   is   necessary   to   talk   about   the   future   work   related   concretely   with   this  thesis.   As   I   have   said   before,   a   lack   of   time   has   made   that   we   were   not   able   to  characterize   the   devices.   With   this   characterization,   some   important   conclusions  will  appear,  in  order  to  improve  a  future  design.    We   have   to   remember   that   the   eight   devices   presented   on   every   master,   have  different   characteristics   to   accomplish   this  purpose,   after   testing   each  of   them  we  will   choose   the   most   beneficial   ones.   Also   this   testing   will   serve   to   see   if   our  hypothesis   were   correct   or   not.   So   after   this   characterization,   a   final   device   can  appear  with  the  best  characteristics.            

         

Page 108: Raul Broto Master Thesis

   

108  

     

Page 109: Raul Broto Master Thesis

   

109  

REFERENCES    

 

[1]  Bingcheng  Lin,  Microfluidics:  Technologies  and  Applications,  2011  

[2]  Nikola  Slobodan  Pekas,  Magnetic  tools  for  Lab-­‐on-­‐a-­‐chip  Technologies,  2006  

[3]  http://en.wikipedia.org/wiki/Lab_on_a_chip#LOCs_and_Global_Health  

[4]  S.  Camou,  H.  Fujita  and  T.  Fujii,  Lab  Chip,  2003,  3,  40-­‐45  

[5]  K.W.  Ro,  B.C.  Shim,  K.  Lim  and  J.H.  Hahn,    Micro  Total  Analysis  Systems,  2001,  274-­‐

276  

[6]  Frank  B.  Myers  and  Luke  P.  Lee,   Innovations  in  optical  microfluidic  technologies  

for  point-­‐of-­‐care  diagnostics,  Lab  Chip,  2008,  8,  2015-­‐2031  

[7]  http://www.chemguide.co.uk/analysis/uvvisible/beerlambert.html  

[8]  http://www.clinchem.org/content/35/3/509.1.full.pdf+html  

[9]  http://pubs.rsc.org/en/results/searchbyauthor?selectedAuthors=A.:Llobera  

[10]  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2004,  4,  24-­‐27  

[11]  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Talanta,  2008,  75,  473-­‐479  

[12]  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐

1566  

[13]  http://www.cie.co.at/index.php/index.php?i_ca_id=306  

[14]  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2004,  4,  24-­‐27  

[15]  A.  Llobera,  R.  Wilke  and  S.  Büttgenbach,  Talanta,  2008,  75,  473-­‐479  

[16]  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐

1566  

[17]  http://www.lenntech.com/periodic/elements/in.htm  

[18]  Palik,  Handbook  of  Optical  Constants,  Vol.3  (AP,  1998)(ISBN  0125444230)  

[19]  http://www.mathworks.com/  

[20]  http://www.mysimlabs.com/ray-­‐tracing.html      

[21]  http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48  

[22]  A.  Llobera,  S.  Demming,  R.  Wilke  and  S.  Büttgenbach,  Lab  Chip,  2007,  7,  1560-­‐

1566  

[23]http://mems.mirc.gatech.edu/msmawebsite/members/processes/processes_fil

es  /SU8/Data%20Sheet%2050-­‐100.pdf  

Page 110: Raul Broto Master Thesis

   

110  

[24]  Fabrication  of  SU-­‐8  Master  for  Soft  Lithography:  Standard  Operating  Protocol,  

Dr.  Anil  Shrirao  

[25]   PDMS-­‐Glass   Bonding   using   air   Plasma:   Standard  Operating   Protocol,   Dr.   Anil  

Shrirao  

[26]   PDMS-­‐Glass   Bonding   using   air   Plasma:   Standard  Operating   Protocol,   Dr.   Anil  

Shrirao  

   

Page 111: Raul Broto Master Thesis

   

111  

   

Page 112: Raul Broto Master Thesis

   

112  

ACKNOWLEDGEMENTS        This  Master  Thesis  would  not  have  been  possible  without   the  help  and  support  of  

several  persons  who  contributed  in  the  realization  of  the  Project.    

 

First  of  all,  I  must  present  my  gratitude  to  my  advisor,  Dr.  Raquel  Pérez-­‐Castillejos.  

Thanks  for  the  opportunity  given,  and  also  for  all  the  guidance,  the  advices  and  your  

patience  and  time.  

 

Also  very  important  for  the  realization  of  the  Thesis  is  my  first  laboratory  mate,  Anil  

B.  Shrirao.  Thanks  for  all  the  help,  tips  and  all  the  transferred  knowledge.  

 

I   am   also   very   thankful   with  my   second   laboratory  mate,   Jeremy   Hsiao.   It   was   a  

pleasure  working  with  you  as  a  team  in  the  realization  of  Chapter  4.  

 

The  same  applies  to  my  third  and  last  laboratory  mate,  Rafa  Gómez.  Thanks  for  the  

help   and   support   during   the   fabrication  progress.   It  was   a   pleasure  working   (and  

even  risking  our  lives)  with  you.  Good  luck  with  the  future  work  that  you  have  from  

this  point  on.  

 

Also  thank  to  ETSETB-­‐UPC  and  NJIT  for  the  opportunity  given.  

 

And   finally,   the   greatest   gratitude   goes   to   my   family.   The   moral   and   economic  

support  has  been  really  appreciated.  

           

Page 113: Raul Broto Master Thesis

   

113